unleashed-firmware/lib/subghz/protocols/doitrand.c
hedger ffa3996a5e
[FL-3867] Code formatting update (#3765)
* clang-format: AllowShortEnumsOnASingleLine: false
* clang-format: InsertNewlineAtEOF: true
* clang-format: Standard:        c++20
* clang-format: AlignConsecutiveBitFields
* clang-format: AlignConsecutiveMacros
* clang-format: RemoveParentheses: ReturnStatement
* clang-format: RemoveSemicolon: true
* Restored RemoveParentheses: Leave, retained general changes for it
* formatting: fixed logging TAGs
* Formatting update for dev

Co-authored-by: あく <alleteam@gmail.com>
2024-07-15 13:38:49 +09:00

349 lines
13 KiB
C

#include "doitrand.h"
#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/encoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"
#define TAG "SubGhzProtocolDoitrand"
#define DIP_PATTERN "%c%c%c%c%c%c%c%c%c%c"
#define CNT_TO_DIP(dip) \
(dip & 0x0001 ? '1' : '0'), (dip & 0x0100 ? '1' : '0'), (dip & 0x0080 ? '1' : '0'), \
(dip & 0x0040 ? '1' : '0'), (dip & 0x0020 ? '1' : '0'), (dip & 0x1000 ? '1' : '0'), \
(dip & 0x0800 ? '1' : '0'), (dip & 0x0400 ? '1' : '0'), (dip & 0x0200 ? '1' : '0'), \
(dip & 0x0002 ? '1' : '0')
static const SubGhzBlockConst subghz_protocol_doitrand_const = {
.te_short = 400,
.te_long = 1100,
.te_delta = 150,
.min_count_bit_for_found = 37,
};
struct SubGhzProtocolDecoderDoitrand {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
SubGhzBlockGeneric generic;
};
struct SubGhzProtocolEncoderDoitrand {
SubGhzProtocolEncoderBase base;
SubGhzProtocolBlockEncoder encoder;
SubGhzBlockGeneric generic;
};
typedef enum {
DoitrandDecoderStepReset = 0,
DoitrandDecoderStepFoundStartBit,
DoitrandDecoderStepSaveDuration,
DoitrandDecoderStepCheckDuration,
} DoitrandDecoderStep;
const SubGhzProtocolDecoder subghz_protocol_doitrand_decoder = {
.alloc = subghz_protocol_decoder_doitrand_alloc,
.free = subghz_protocol_decoder_doitrand_free,
.feed = subghz_protocol_decoder_doitrand_feed,
.reset = subghz_protocol_decoder_doitrand_reset,
.get_hash_data = subghz_protocol_decoder_doitrand_get_hash_data,
.serialize = subghz_protocol_decoder_doitrand_serialize,
.deserialize = subghz_protocol_decoder_doitrand_deserialize,
.get_string = subghz_protocol_decoder_doitrand_get_string,
};
const SubGhzProtocolEncoder subghz_protocol_doitrand_encoder = {
.alloc = subghz_protocol_encoder_doitrand_alloc,
.free = subghz_protocol_encoder_doitrand_free,
.deserialize = subghz_protocol_encoder_doitrand_deserialize,
.stop = subghz_protocol_encoder_doitrand_stop,
.yield = subghz_protocol_encoder_doitrand_yield,
};
const SubGhzProtocol subghz_protocol_doitrand = {
.name = SUBGHZ_PROTOCOL_DOITRAND_NAME,
.type = SubGhzProtocolTypeStatic,
.flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable |
SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send,
.decoder = &subghz_protocol_doitrand_decoder,
.encoder = &subghz_protocol_doitrand_encoder,
};
void* subghz_protocol_encoder_doitrand_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolEncoderDoitrand* instance = malloc(sizeof(SubGhzProtocolEncoderDoitrand));
instance->base.protocol = &subghz_protocol_doitrand;
instance->generic.protocol_name = instance->base.protocol->name;
instance->encoder.repeat = 10;
instance->encoder.size_upload = 128;
instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
instance->encoder.is_running = false;
return instance;
}
void subghz_protocol_encoder_doitrand_free(void* context) {
furi_assert(context);
SubGhzProtocolEncoderDoitrand* instance = context;
free(instance->encoder.upload);
free(instance);
}
/**
* Generating an upload from data.
* @param instance Pointer to a SubGhzProtocolEncoderDoitrand instance
* @return true On success
*/
static bool subghz_protocol_encoder_doitrand_get_upload(SubGhzProtocolEncoderDoitrand* instance) {
furi_assert(instance);
size_t index = 0;
size_t size_upload = (instance->generic.data_count_bit * 2) + 2;
if(size_upload > instance->encoder.size_upload) {
FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer.");
return false;
} else {
instance->encoder.size_upload = size_upload;
}
//Send header
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_doitrand_const.te_short * 62);
//Send start bit
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_doitrand_const.te_short * 2 - 100);
//Send key data
for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) {
if(bit_read(instance->generic.data, i - 1)) {
//send bit 1
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_doitrand_const.te_long);
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_doitrand_const.te_short);
} else {
//send bit 0
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_doitrand_const.te_short);
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_doitrand_const.te_long);
}
}
return true;
}
SubGhzProtocolStatus
subghz_protocol_encoder_doitrand_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolEncoderDoitrand* instance = context;
SubGhzProtocolStatus ret = SubGhzProtocolStatusError;
do {
ret = subghz_block_generic_deserialize_check_count_bit(
&instance->generic,
flipper_format,
subghz_protocol_doitrand_const.min_count_bit_for_found);
if(ret != SubGhzProtocolStatusOk) {
break;
}
//optional parameter parameter
flipper_format_read_uint32(
flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);
if(!subghz_protocol_encoder_doitrand_get_upload(instance)) {
ret = SubGhzProtocolStatusErrorEncoderGetUpload;
break;
}
instance->encoder.is_running = true;
} while(false);
return ret;
}
void subghz_protocol_encoder_doitrand_stop(void* context) {
SubGhzProtocolEncoderDoitrand* instance = context;
instance->encoder.is_running = false;
}
LevelDuration subghz_protocol_encoder_doitrand_yield(void* context) {
SubGhzProtocolEncoderDoitrand* instance = context;
if(instance->encoder.repeat == 0 || !instance->encoder.is_running) {
instance->encoder.is_running = false;
return level_duration_reset();
}
LevelDuration ret = instance->encoder.upload[instance->encoder.front];
if(++instance->encoder.front == instance->encoder.size_upload) {
instance->encoder.repeat--;
instance->encoder.front = 0;
}
return ret;
}
void* subghz_protocol_decoder_doitrand_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolDecoderDoitrand* instance = malloc(sizeof(SubGhzProtocolDecoderDoitrand));
instance->base.protocol = &subghz_protocol_doitrand;
instance->generic.protocol_name = instance->base.protocol->name;
return instance;
}
void subghz_protocol_decoder_doitrand_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderDoitrand* instance = context;
free(instance);
}
void subghz_protocol_decoder_doitrand_reset(void* context) {
furi_assert(context);
SubGhzProtocolDecoderDoitrand* instance = context;
instance->decoder.parser_step = DoitrandDecoderStepReset;
}
void subghz_protocol_decoder_doitrand_feed(void* context, bool level, uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderDoitrand* instance = context;
switch(instance->decoder.parser_step) {
case DoitrandDecoderStepReset:
if((!level) && (DURATION_DIFF(duration, subghz_protocol_doitrand_const.te_short * 62) <
subghz_protocol_doitrand_const.te_delta * 30)) {
//Found Preambula
instance->decoder.parser_step = DoitrandDecoderStepFoundStartBit;
}
break;
case DoitrandDecoderStepFoundStartBit:
if(level && (DURATION_DIFF(duration, (subghz_protocol_doitrand_const.te_short * 2)) <
subghz_protocol_doitrand_const.te_delta * 3)) {
//Found start bit
instance->decoder.parser_step = DoitrandDecoderStepSaveDuration;
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
} else {
instance->decoder.parser_step = DoitrandDecoderStepReset;
}
break;
case DoitrandDecoderStepSaveDuration:
if(!level) {
if(duration >= ((uint32_t)subghz_protocol_doitrand_const.te_short * 10 +
subghz_protocol_doitrand_const.te_delta)) {
instance->decoder.parser_step = DoitrandDecoderStepFoundStartBit;
if(instance->decoder.decode_count_bit ==
subghz_protocol_doitrand_const.min_count_bit_for_found) {
instance->generic.data = instance->decoder.decode_data;
instance->generic.data_count_bit = instance->decoder.decode_count_bit;
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
}
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
break;
} else {
instance->decoder.te_last = duration;
instance->decoder.parser_step = DoitrandDecoderStepCheckDuration;
}
}
break;
case DoitrandDecoderStepCheckDuration:
if(level) {
if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_doitrand_const.te_short) <
subghz_protocol_doitrand_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_doitrand_const.te_long) <
subghz_protocol_doitrand_const.te_delta * 3)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 0);
instance->decoder.parser_step = DoitrandDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_doitrand_const.te_long) <
subghz_protocol_doitrand_const.te_delta * 3) &&
(DURATION_DIFF(duration, subghz_protocol_doitrand_const.te_short) <
subghz_protocol_doitrand_const.te_delta)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 1);
instance->decoder.parser_step = DoitrandDecoderStepSaveDuration;
} else {
instance->decoder.parser_step = DoitrandDecoderStepReset;
}
} else {
instance->decoder.parser_step = DoitrandDecoderStepReset;
}
break;
}
}
/**
* Analysis of received data
* @param instance Pointer to a SubGhzBlockGeneric* instance
*/
static void subghz_protocol_doitrand_check_remote_controller(SubGhzBlockGeneric* instance) {
/*
* 67892345 0 k 1
* 0000082F5F => 00000000000000000 10 000010111101011111
* 0002082F5F => 00000000000100000 10 000010111101011111
* 0200082F5F => 00010000000000000 10 000010111101011111
* 0400082F5F => 00100000000000000 10 000010111101011111
* 0800082F5F => 01000000000000000 10 000010111101011111
* 1000082F5F => 10000000000000000 10 000010111101011111
* 0020082F5F => 00000001000000000 10 000010111101011111
* 0040082F5F => 00000010000000000 10 000010111101011111
* 0080082F5F => 00000100000000000 10 000010111101011111
* 0100082F5F => 00001000000000000 10 000010111101011111
* 000008AF5F => 00000000000000000 10 001010111101011111
* 1FE208AF5F => 11111111000100000 10 001010111101011111
*
* 0...9 - DIP
* k- KEY
*/
instance->cnt = (instance->data >> 24) | ((instance->data >> 15) & 0x1);
instance->btn = ((instance->data >> 18) & 0x3);
}
uint8_t subghz_protocol_decoder_doitrand_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderDoitrand* instance = context;
return subghz_protocol_blocks_get_hash_data(
&instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}
SubGhzProtocolStatus subghz_protocol_decoder_doitrand_serialize(
void* context,
FlipperFormat* flipper_format,
SubGhzRadioPreset* preset) {
furi_assert(context);
SubGhzProtocolDecoderDoitrand* instance = context;
return subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
}
SubGhzProtocolStatus
subghz_protocol_decoder_doitrand_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolDecoderDoitrand* instance = context;
return subghz_block_generic_deserialize_check_count_bit(
&instance->generic,
flipper_format,
subghz_protocol_doitrand_const.min_count_bit_for_found);
}
void subghz_protocol_decoder_doitrand_get_string(void* context, FuriString* output) {
furi_assert(context);
SubGhzProtocolDecoderDoitrand* instance = context;
subghz_protocol_doitrand_check_remote_controller(&instance->generic);
furi_string_cat_printf(
output,
"%s %dbit\r\n"
"Key:%02lX%08lX\r\n"
"Btn:%X\r\n"
"DIP:" DIP_PATTERN "\r\n",
instance->generic.protocol_name,
instance->generic.data_count_bit,
(uint32_t)(instance->generic.data >> 32) & 0xFFFFFFFF,
(uint32_t)(instance->generic.data & 0xFFFFFFFF),
instance->generic.btn,
CNT_TO_DIP(instance->generic.cnt));
}