unleashed-firmware/lib/subghz/protocols/faac_slh.c
2022-04-25 22:22:09 +03:00

492 lines
18 KiB
C

#include "faac_slh.h"
#include "../subghz_keystore.h"
#include <m-string.h>
#include <m-array.h>
#include "keeloq_common.h"
#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/encoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"
#define TAG "SubGhzProtocolFaacSHL"
static const SubGhzBlockConst subghz_protocol_faac_slh_const = {
.te_short = 255,
.te_long = 595,
.te_delta = 100,
.min_count_bit_for_found = 64,
};
struct SubGhzProtocolDecoderFaacSLH {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
SubGhzBlockGeneric generic;
SubGhzKeystore* keystore;
const char* manufacture_name;
};
struct SubGhzProtocolEncoderFaacSLH {
SubGhzProtocolEncoderBase base;
SubGhzProtocolBlockEncoder encoder;
SubGhzBlockGeneric generic;
SubGhzKeystore* keystore;
const char* manufacture_name;
};
typedef enum {
FaacSLHDecoderStepReset = 0,
FaacSLHDecoderStepFoundPreambula,
FaacSLHDecoderStepSaveDuration,
FaacSLHDecoderStepCheckDuration,
} FaacSLHDecoderStep;
const SubGhzProtocolDecoder subghz_protocol_faac_slh_decoder = {
.alloc = subghz_protocol_decoder_faac_slh_alloc,
.free = subghz_protocol_decoder_faac_slh_free,
.feed = subghz_protocol_decoder_faac_slh_feed,
.reset = subghz_protocol_decoder_faac_slh_reset,
.get_hash_data = subghz_protocol_decoder_faac_slh_get_hash_data,
.serialize = subghz_protocol_decoder_faac_slh_serialize,
.deserialize = subghz_protocol_decoder_faac_slh_deserialize,
.get_string = subghz_protocol_decoder_faac_slh_get_string,
};
const SubGhzProtocolEncoder subghz_protocol_faac_slh_encoder = {
.alloc = subghz_protocol_encoder_faac_slh_alloc,
.free = subghz_protocol_encoder_faac_slh_free,
.deserialize = subghz_protocol_encoder_faac_slh_deserialize,
.stop = subghz_protocol_encoder_faac_slh_stop,
.yield = subghz_protocol_encoder_faac_slh_yield,
};
const SubGhzProtocol subghz_protocol_faac_slh = {
.name = SUBGHZ_PROTOCOL_FAAC_SLH_NAME,
.type = SubGhzProtocolTypeDynamic,
.flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_868 | SubGhzProtocolFlag_AM |
SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save |
SubGhzProtocolFlag_Send,
.decoder = &subghz_protocol_faac_slh_decoder,
.encoder = &subghz_protocol_faac_slh_encoder,
};
/**
* Analysis of received data
* @param instance Pointer to a SubGhzBlockGeneric* instance
* @param keystore Pointer to a SubGhzKeystore* instance
* @param manufacture_name
*/
static void subghz_protocol_faac_slh_check_remote_controller
(SubGhzBlockGeneric* instance,
SubGhzKeystore* keystore,
const char** manufacture_name,
uint32_t seed);
void* subghz_protocol_encoder_faac_slh_alloc(SubGhzEnvironment* environment) {
SubGhzProtocolEncoderFaacSLH* instance = malloc(sizeof(SubGhzProtocolEncoderFaacSLH));
instance->base.protocol = &subghz_protocol_faac_slh;
instance->generic.protocol_name = instance->base.protocol->name;
instance->keystore = subghz_environment_get_keystore(environment);
instance->encoder.repeat = 10;
instance->encoder.size_upload = 256;
instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
instance->encoder.is_runing = false;
return instance;
}
void subghz_protocol_encoder_faac_slh_free(void* context) {
furi_assert(context);
SubGhzProtocolEncoderFaacSLH* instance = context;
free(instance->encoder.upload);
free(instance);
}
static bool subghz_protocol_faac_slh_gen_data(SubGhzProtocolEncoderFaacSLH* instance, uint32_t seed) {
instance->generic.cnt++;
instance->generic.seed = seed;
FURI_LOG_I(TAG, "SEED (gen_data): %8X\n", instance->generic.seed);
uint32_t fix = instance->generic.serial << 4 | instance->generic.btn;
uint32_t hop = 0;
uint32_t decrypt = 0;
uint64_t man = 0;
int res = 0;
char fixx[8] = {};
int shiftby = 32;
for (int i = 0; i < 8; i++) {
fixx[i] = (fix >> (shiftby -= 4)) & 0xF;
}
if ((instance->generic.cnt % 2) == 0) {
decrypt = fixx[6] << 28 | fixx[7] << 24 | fixx[5] << 20 |
fixx[1] << 16 | instance->generic.cnt;
}
else {
decrypt = fixx[2] << 28 | fixx[3] << 24 | fixx[4] << 20 |
fixx[1] << 16 | instance->generic.cnt;
}
for
M_EACH(manufacture_code, *subghz_keystore_get_data(instance->keystore), SubGhzKeyArray_t) {
res = strcmp(string_get_cstr(manufacture_code->name), instance->manufacture_name);
if(res == 0) {
switch(manufacture_code->type) {
case KEELOQ_LEARNING_FAAC:
//FAAC Learning
man =
subghz_protocol_keeloq_common_faac_learning(instance->generic.seed, manufacture_code->key);
uint32_t hi = manufacture_code->key >> 32;
uint32_t lo = manufacture_code->key & 0xFFFFFFFF;
FURI_LOG_I(TAG, "mfkey: %08lX%08lX mf: %s\n", hi, lo, manufacture_code->name);
FURI_LOG_I(TAG, "SEED (encrypt): %8X\n", instance->generic.seed);
uint32_t mlhi = man >> 32;
uint32_t mllo = man & 0xFFFFFFFF;
FURI_LOG_I(TAG, "man_learning: %8X%8X\n", mlhi, mllo);
hop = subghz_protocol_keeloq_common_encrypt(decrypt, man);
FURI_LOG_I(TAG, "hop: %8X\n", hop);
break;
}
break;
}
}
if(hop) {
instance->generic.data = (uint64_t)fix << 32 | hop;
}
return true;
}
bool subghz_protocol_faac_slh_create_data(
void* context,
FlipperFormat* flipper_format,
uint32_t serial,
uint8_t btn,
uint16_t cnt,
uint32_t seed,
const char* manufacture_name,
uint32_t frequency,
FuriHalSubGhzPreset preset) {
furi_assert(context);
SubGhzProtocolEncoderFaacSLH* instance = context;
instance->generic.serial = serial;
instance->generic.btn = btn;
instance->generic.cnt = cnt;
instance->generic.seed = seed;
instance->manufacture_name = manufacture_name;
instance->generic.data_count_bit = 64;
bool res = subghz_protocol_faac_slh_gen_data(instance, instance->generic.seed);
FURI_LOG_I(TAG, "SEED: %8X\n", instance->generic.seed);
if(res) {
res =
subghz_block_generic_serialize(&instance->generic, flipper_format, frequency, preset);
}
return res;
}
/**
* Generating an upload from data.
* @param instance Pointer to a SubGhzProtocolEncoderFaacSLH instance
* @return true On success
*/
static bool
subghz_protocol_encoder_faac_slh_get_upload(SubGhzProtocolEncoderFaacSLH* instance) {
furi_assert(instance);
subghz_protocol_faac_slh_gen_data(instance, instance->generic.seed);
size_t index = 0;
size_t size_upload = 2 + (instance->generic.data_count_bit * 2);
if(size_upload > instance->encoder.size_upload) {
FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer.");
return false;
} else {
instance->encoder.size_upload = size_upload;
}
//Send header
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_faac_slh_const.te_long * 2);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_faac_slh_const.te_long * 2);
//Send key data
for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) {
if(bit_read(instance->generic.data, i - 1)) {
//send bit 1
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_faac_slh_const.te_long);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_faac_slh_const.te_short);
} else {
//send bit 0
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_faac_slh_const.te_short);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_faac_slh_const.te_long);
}
}
return true;
}
bool subghz_protocol_encoder_faac_slh_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolEncoderFaacSLH* instance = context;
bool res = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
FURI_LOG_E(TAG, "Deserialize error");
break;
}
if(!flipper_format_read_uint32(flipper_format, "SEED", (uint32_t*)&instance->generic.seed, 1)) {
FURI_LOG_E(TAG, "Missing SEED");
break;
}
subghz_protocol_faac_slh_check_remote_controller(
&instance->generic, instance->keystore, &instance->manufacture_name, instance->generic.seed);
//optional parameter parameter
flipper_format_read_uint32(
flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);
subghz_protocol_encoder_faac_slh_get_upload(instance);
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
break;
}
uint8_t key_data[sizeof(uint64_t)] = {0};
for(size_t i = 0; i < sizeof(uint64_t); i++) {
key_data[sizeof(uint64_t) - i - 1] = (instance->generic.data >> i * 8) & 0xFF;
}
if(!flipper_format_update_hex(flipper_format, "Key", key_data, sizeof(uint64_t))) {
FURI_LOG_E(TAG, "Unable to add Key");
break;
}
instance->encoder.is_runing = true;
res = true;
} while(false);
return res;
}
void subghz_protocol_encoder_faac_slh_stop(void* context) {
SubGhzProtocolEncoderFaacSLH* instance = context;
instance->encoder.is_runing = false;
}
LevelDuration subghz_protocol_encoder_faac_slh_yield(void* context) {
SubGhzProtocolEncoderFaacSLH* instance = context;
if(instance->encoder.repeat == 0 || !instance->encoder.is_runing) {
instance->encoder.is_runing = false;
return level_duration_reset();
}
LevelDuration ret = instance->encoder.upload[instance->encoder.front];
if(++instance->encoder.front == instance->encoder.size_upload) {
instance->encoder.repeat--;
instance->encoder.front = 0;
}
return ret;
}
void* subghz_protocol_decoder_faac_slh_alloc(SubGhzEnvironment* environment) {
SubGhzProtocolDecoderFaacSLH* instance = malloc(sizeof(SubGhzProtocolDecoderFaacSLH));
instance->base.protocol = &subghz_protocol_faac_slh;
instance->generic.protocol_name = instance->base.protocol->name;
instance->keystore = subghz_environment_get_keystore(environment);
return instance;
}
void subghz_protocol_decoder_faac_slh_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderFaacSLH* instance = context;
free(instance);
}
void subghz_protocol_decoder_faac_slh_reset(void* context) {
furi_assert(context);
SubGhzProtocolDecoderFaacSLH* instance = context;
instance->decoder.parser_step = FaacSLHDecoderStepReset;
}
void subghz_protocol_decoder_faac_slh_feed(void* context, bool level, uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderFaacSLH* instance = context;
switch(instance->decoder.parser_step) {
case FaacSLHDecoderStepReset:
if((level) && (DURATION_DIFF(duration, subghz_protocol_faac_slh_const.te_long * 2) <
subghz_protocol_faac_slh_const.te_delta * 3)) {
instance->decoder.parser_step = FaacSLHDecoderStepFoundPreambula;
}
break;
case FaacSLHDecoderStepFoundPreambula:
if((!level) && (DURATION_DIFF(duration, subghz_protocol_faac_slh_const.te_long * 2) <
subghz_protocol_faac_slh_const.te_delta * 3)) {
//Found Preambula
instance->decoder.parser_step = FaacSLHDecoderStepSaveDuration;
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
} else {
instance->decoder.parser_step = FaacSLHDecoderStepReset;
}
break;
case FaacSLHDecoderStepSaveDuration:
if(level) {
if(duration >= (subghz_protocol_faac_slh_const.te_short * 3 +
subghz_protocol_faac_slh_const.te_delta)) {
instance->decoder.parser_step = FaacSLHDecoderStepFoundPreambula;
if(instance->decoder.decode_count_bit >=
subghz_protocol_faac_slh_const.min_count_bit_for_found) {
instance->generic.data = instance->decoder.decode_data;
instance->generic.data_count_bit = instance->decoder.decode_count_bit;
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
}
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
break;
} else {
instance->decoder.te_last = duration;
instance->decoder.parser_step = FaacSLHDecoderStepCheckDuration;
}
} else {
instance->decoder.parser_step = FaacSLHDecoderStepReset;
}
break;
case FaacSLHDecoderStepCheckDuration:
if(!level) {
if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_faac_slh_const.te_short) <
subghz_protocol_faac_slh_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_faac_slh_const.te_long) <
subghz_protocol_faac_slh_const.te_delta)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 0);
instance->decoder.parser_step = FaacSLHDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_faac_slh_const.te_long) <
subghz_protocol_faac_slh_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_faac_slh_const.te_short) <
subghz_protocol_faac_slh_const.te_delta)) {
subghz_protocol_blocks_add_bit(&instance->decoder, 1);
instance->decoder.parser_step = FaacSLHDecoderStepSaveDuration;
} else {
instance->decoder.parser_step = FaacSLHDecoderStepReset;
}
} else {
instance->decoder.parser_step = FaacSLHDecoderStepReset;
}
break;
}
}
/**
* Analysis of received data
* @param instance Pointer to a SubGhzBlockGeneric* instance
*/
static void subghz_protocol_faac_slh_check_remote_controller
(SubGhzBlockGeneric* instance,
SubGhzKeystore* keystore,
const char** manufacture_name,
uint32_t seed) {
//uint64_t code_found_reverse =
//subghz_protocol_blocks_reverse_key(instance->data, instance->data_count_bit);
instance->seed = seed;
uint32_t code_fix = instance->data >> 32;
uint32_t code_hop = instance->data & 0xFFFFFFFF;
instance->serial = code_fix >> 4;
instance->btn = code_fix & 0xF;
uint32_t decrypt = 0;
uint64_t man;
for
M_EACH(manufacture_code, *subghz_keystore_get_data(keystore), SubGhzKeyArray_t) {
uint32_t hi = manufacture_code->key >> 32;
uint32_t lo = manufacture_code->key & 0xFFFFFFFF;
switch(manufacture_code->type) {
case KEELOQ_LEARNING_FAAC:
// FAAC Learning
man = subghz_protocol_keeloq_common_faac_learning(instance->seed, manufacture_code->key);
FURI_LOG_I(TAG, "mfkey: %08lX%08lX mf: %s\n", hi, lo, manufacture_code->name);
FURI_LOG_I(TAG, "SEED (decrypt): %8X\n", instance->seed);
uint32_t mlhi = man >> 32;
uint32_t mllo = man & 0xFFFFFFFF;
FURI_LOG_I(TAG, "man_learning: %8X%8X\n", mlhi, mllo);
decrypt = subghz_protocol_keeloq_common_decrypt(code_hop, man);
FURI_LOG_I(TAG, "hop: %8X\n", code_hop);
*manufacture_name = string_get_cstr(manufacture_code->name);
break;
}
}
instance->cnt = decrypt & 0xFFFF;
}
uint8_t subghz_protocol_decoder_faac_slh_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderFaacSLH* instance = context;
return subghz_protocol_blocks_get_hash_data(
&instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}
bool subghz_protocol_decoder_faac_slh_serialize(
void* context,
FlipperFormat* flipper_format,
uint32_t frequency,
FuriHalSubGhzPreset preset) {
furi_assert(context);
SubGhzProtocolDecoderFaacSLH* instance = context;
bool res = subghz_block_generic_serialize(&instance->generic, flipper_format, frequency, preset);
if(res && !flipper_format_write_uint32(flipper_format, "SEED", &instance->generic.seed, 1)) {
FURI_LOG_E(TAG, "Unable to add SEED");
res = false;
}
return res;
}
bool subghz_protocol_decoder_faac_slh_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolDecoderFaacSLH* instance = context;
return subghz_block_generic_deserialize(&instance->generic, flipper_format);
}
void subghz_protocol_decoder_faac_slh_get_string(void* context, string_t output) {
furi_assert(context);
SubGhzProtocolDecoderFaacSLH* instance = context;
subghz_protocol_faac_slh_check_remote_controller(&instance->generic, instance->keystore, &instance->manufacture_name, instance->generic.seed);
//uint64_t code_found_reverse = subghz_protocol_blocks_reverse_key(
//instance->generic.data, instance->generic.data_count_bit);
uint32_t code_fix = instance->generic.data >> 32;
uint32_t code_hop = instance->generic.data & 0xFFFFFFFF;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:%lX%08lX\r\n"
"Fix:%08lX Cnt:%04X\r\n"
"Hop:%08lX Btn:%lX\r\n"
"Sn:%07lX Sd:%8X",
instance->generic.protocol_name,
instance->generic.data_count_bit,
(uint32_t)(instance->generic.data >> 32),
(uint32_t)instance->generic.data,
code_fix,
instance->generic.cnt,
code_hop,
instance->generic.btn,
instance->generic.serial,
instance->generic.seed);
}