unleashed-firmware/applications/external/mfkey32/mfkey32.c
Sergey Gavrilov 0e4344a83c
Services: simplify api (#2540)
Co-authored-by: あく <alleteam@gmail.com>
2023-06-09 20:02:47 +09:00

1350 lines
47 KiB
C

#pragma GCC optimize("O3")
#pragma GCC optimize("-funroll-all-loops")
// TODO: Add keys to top of the user dictionary, not the bottom
// TODO: More efficient dictionary bruteforce by scanning through hardcoded very common keys and previously found dictionary keys first?
// (a cache for napi_key_already_found_for_nonce)
#include <furi.h>
#include <furi_hal.h>
#include "time.h"
#include <gui/gui.h>
#include <gui/elements.h>
#include <input/input.h>
#include <stdlib.h>
#include "mfkey32_icons.h"
#include <inttypes.h>
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <unistd.h>
#include <storage/storage.h>
#include <lib/nfc/helpers/mf_classic_dict.h>
#include <lib/toolbox/args.h>
#include <lib/flipper_format/flipper_format.h>
#include <dolphin/dolphin.h>
#include <notification/notification_messages.h>
#define MF_CLASSIC_DICT_FLIPPER_PATH EXT_PATH("nfc/assets/mf_classic_dict.nfc")
#define MF_CLASSIC_DICT_USER_PATH EXT_PATH("nfc/assets/mf_classic_dict_user.nfc")
#define MF_CLASSIC_NONCE_PATH EXT_PATH("nfc/.mfkey32.log")
#define TAG "Mfkey32"
#define NFC_MF_CLASSIC_KEY_LEN (13)
#define MIN_RAM 115632
#define LF_POLY_ODD (0x29CE5C)
#define LF_POLY_EVEN (0x870804)
#define CONST_M1_1 (LF_POLY_EVEN << 1 | 1)
#define CONST_M2_1 (LF_POLY_ODD << 1)
#define CONST_M1_2 (LF_POLY_ODD)
#define CONST_M2_2 (LF_POLY_EVEN << 1 | 1)
#define BIT(x, n) ((x) >> (n)&1)
#define BEBIT(x, n) BIT(x, (n) ^ 24)
#define SWAPENDIAN(x) \
((x) = ((x) >> 8 & 0xff00ff) | ((x)&0xff00ff) << 8, (x) = (x) >> 16 | (x) << 16)
//#define SIZEOF(arr) sizeof(arr) / sizeof(*arr)
static int eta_round_time = 56;
static int eta_total_time = 900;
// MSB_LIMIT: Chunk size (out of 256)
static int MSB_LIMIT = 16;
struct Crypto1State {
uint32_t odd, even;
};
struct Crypto1Params {
uint64_t key;
uint32_t nr0_enc, uid_xor_nt0, uid_xor_nt1, nr1_enc, p64b, ar1_enc;
};
struct Msb {
int tail;
uint32_t states[768];
};
typedef enum {
EventTypeTick,
EventTypeKey,
} EventType;
typedef struct {
EventType type;
InputEvent input;
} PluginEvent;
typedef enum {
MissingNonces,
ZeroNonces,
} MfkeyError;
typedef enum {
Ready,
Initializing,
DictionaryAttack,
MfkeyAttack,
Complete,
Error,
Help,
} MfkeyState;
// TODO: Can we eliminate any of the members of this struct?
typedef struct {
FuriMutex* mutex;
MfkeyError err;
MfkeyState mfkey_state;
int cracked;
int unique_cracked;
int num_completed;
int total;
int dict_count;
int search;
int eta_timestamp;
int eta_total;
int eta_round;
bool is_thread_running;
bool close_thread_please;
FuriThread* mfkeythread;
} ProgramState;
// TODO: Merge this with Crypto1Params?
typedef struct {
uint32_t uid; // serial number
uint32_t nt0; // tag challenge first
uint32_t nt1; // tag challenge second
uint32_t nr0_enc; // first encrypted reader challenge
uint32_t ar0_enc; // first encrypted reader response
uint32_t nr1_enc; // second encrypted reader challenge
uint32_t ar1_enc; // second encrypted reader response
} MfClassicNonce;
typedef struct {
Stream* stream;
uint32_t total_nonces;
MfClassicNonce* remaining_nonce_array;
size_t remaining_nonces;
} MfClassicNonceArray;
struct MfClassicDict {
Stream* stream;
uint32_t total_keys;
};
static const uint8_t table[256] = {
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3,
4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4,
4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4,
5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5,
4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2,
3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5,
5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4,
5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6,
4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8};
static const uint8_t lookup1[256] = {
0, 0, 16, 16, 0, 16, 0, 0, 0, 16, 0, 0, 16, 16, 16, 16, 0, 0, 16, 16, 0, 16, 0, 0,
0, 16, 0, 0, 16, 16, 16, 16, 0, 0, 16, 16, 0, 16, 0, 0, 0, 16, 0, 0, 16, 16, 16, 16,
8, 8, 24, 24, 8, 24, 8, 8, 8, 24, 8, 8, 24, 24, 24, 24, 8, 8, 24, 24, 8, 24, 8, 8,
8, 24, 8, 8, 24, 24, 24, 24, 8, 8, 24, 24, 8, 24, 8, 8, 8, 24, 8, 8, 24, 24, 24, 24,
0, 0, 16, 16, 0, 16, 0, 0, 0, 16, 0, 0, 16, 16, 16, 16, 0, 0, 16, 16, 0, 16, 0, 0,
0, 16, 0, 0, 16, 16, 16, 16, 8, 8, 24, 24, 8, 24, 8, 8, 8, 24, 8, 8, 24, 24, 24, 24,
0, 0, 16, 16, 0, 16, 0, 0, 0, 16, 0, 0, 16, 16, 16, 16, 0, 0, 16, 16, 0, 16, 0, 0,
0, 16, 0, 0, 16, 16, 16, 16, 8, 8, 24, 24, 8, 24, 8, 8, 8, 24, 8, 8, 24, 24, 24, 24,
8, 8, 24, 24, 8, 24, 8, 8, 8, 24, 8, 8, 24, 24, 24, 24, 0, 0, 16, 16, 0, 16, 0, 0,
0, 16, 0, 0, 16, 16, 16, 16, 8, 8, 24, 24, 8, 24, 8, 8, 8, 24, 8, 8, 24, 24, 24, 24,
8, 8, 24, 24, 8, 24, 8, 8, 8, 24, 8, 8, 24, 24, 24, 24};
static const uint8_t lookup2[256] = {
0, 0, 4, 4, 0, 4, 0, 0, 0, 4, 0, 0, 4, 4, 4, 4, 0, 0, 4, 4, 0, 4, 0, 0, 0, 4, 0, 0, 4,
4, 4, 4, 2, 2, 6, 6, 2, 6, 2, 2, 2, 6, 2, 2, 6, 6, 6, 6, 2, 2, 6, 6, 2, 6, 2, 2, 2, 6,
2, 2, 6, 6, 6, 6, 0, 0, 4, 4, 0, 4, 0, 0, 0, 4, 0, 0, 4, 4, 4, 4, 2, 2, 6, 6, 2, 6, 2,
2, 2, 6, 2, 2, 6, 6, 6, 6, 0, 0, 4, 4, 0, 4, 0, 0, 0, 4, 0, 0, 4, 4, 4, 4, 0, 0, 4, 4,
0, 4, 0, 0, 0, 4, 0, 0, 4, 4, 4, 4, 0, 0, 4, 4, 0, 4, 0, 0, 0, 4, 0, 0, 4, 4, 4, 4, 2,
2, 6, 6, 2, 6, 2, 2, 2, 6, 2, 2, 6, 6, 6, 6, 0, 0, 4, 4, 0, 4, 0, 0, 0, 4, 0, 0, 4, 4,
4, 4, 0, 0, 4, 4, 0, 4, 0, 0, 0, 4, 0, 0, 4, 4, 4, 4, 2, 2, 6, 6, 2, 6, 2, 2, 2, 6, 2,
2, 6, 6, 6, 6, 2, 2, 6, 6, 2, 6, 2, 2, 2, 6, 2, 2, 6, 6, 6, 6, 2, 2, 6, 6, 2, 6, 2, 2,
2, 6, 2, 2, 6, 6, 6, 6, 2, 2, 6, 6, 2, 6, 2, 2, 2, 6, 2, 2, 6, 6, 6, 6};
uint32_t prng_successor(uint32_t x, uint32_t n) {
SWAPENDIAN(x);
while(n--) x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31;
return SWAPENDIAN(x);
}
static inline int filter(uint32_t const x) {
uint32_t f;
f = lookup1[x & 0xff] | lookup2[(x >> 8) & 0xff];
f |= 0x0d938 >> (x >> 16 & 0xf) & 1;
return BIT(0xEC57E80A, f);
}
static inline uint8_t evenparity32(uint32_t x) {
if((table[x & 0xff] + table[(x >> 8) & 0xff] + table[(x >> 16) & 0xff] + table[x >> 24]) % 2 ==
0) {
return 0;
} else {
return 1;
}
//return ((table[x & 0xff] + table[(x >> 8) & 0xff] + table[(x >> 16) & 0xff] + table[x >> 24]) % 2) & 0xFF;
}
static inline void update_contribution(unsigned int data[], int item, int mask1, int mask2) {
int p = data[item] >> 25;
p = p << 1 | evenparity32(data[item] & mask1);
p = p << 1 | evenparity32(data[item] & mask2);
data[item] = p << 24 | (data[item] & 0xffffff);
}
void crypto1_get_lfsr(struct Crypto1State* state, uint64_t* lfsr) {
int i;
for(*lfsr = 0, i = 23; i >= 0; --i) {
*lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3);
*lfsr = *lfsr << 1 | BIT(state->even, i ^ 3);
}
}
static inline uint32_t crypt_word(struct Crypto1State* s) {
// "in" and "x" are always 0 (last iteration)
uint32_t res_ret = 0;
uint32_t feedin, t;
for(int i = 0; i <= 31; i++) {
res_ret |= (filter(s->odd) << (24 ^ i)); //-V629
feedin = LF_POLY_EVEN & s->even;
feedin ^= LF_POLY_ODD & s->odd;
s->even = s->even << 1 | (evenparity32(feedin));
t = s->odd, s->odd = s->even, s->even = t;
}
return res_ret;
}
static inline void crypt_word_noret(struct Crypto1State* s, uint32_t in, int x) {
uint8_t ret;
uint32_t feedin, t, next_in;
for(int i = 0; i <= 31; i++) {
next_in = BEBIT(in, i);
ret = filter(s->odd);
feedin = ret & (!!x);
feedin ^= LF_POLY_EVEN & s->even;
feedin ^= LF_POLY_ODD & s->odd;
feedin ^= !!next_in;
s->even = s->even << 1 | (evenparity32(feedin));
t = s->odd, s->odd = s->even, s->even = t;
}
return;
}
static inline void rollback_word_noret(struct Crypto1State* s, uint32_t in, int x) {
uint8_t ret;
uint32_t feedin, t, next_in;
for(int i = 31; i >= 0; i--) {
next_in = BEBIT(in, i);
s->odd &= 0xffffff;
t = s->odd, s->odd = s->even, s->even = t;
ret = filter(s->odd);
feedin = ret & (!!x);
feedin ^= s->even & 1;
feedin ^= LF_POLY_EVEN & (s->even >>= 1);
feedin ^= LF_POLY_ODD & s->odd;
feedin ^= !!next_in;
s->even |= (evenparity32(feedin)) << 23;
}
return;
}
int key_already_found_for_nonce(
uint64_t* keyarray,
int keyarray_size,
uint32_t uid_xor_nt1,
uint32_t nr1_enc,
uint32_t p64b,
uint32_t ar1_enc) {
for(int k = 0; k < keyarray_size; k++) {
struct Crypto1State temp = {0, 0};
for(int i = 0; i < 24; i++) {
(&temp)->odd |= (BIT(keyarray[k], 2 * i + 1) << (i ^ 3));
(&temp)->even |= (BIT(keyarray[k], 2 * i) << (i ^ 3));
}
crypt_word_noret(&temp, uid_xor_nt1, 0);
crypt_word_noret(&temp, nr1_enc, 1);
if(ar1_enc == (crypt_word(&temp) ^ p64b)) {
return 1;
}
}
return 0;
}
int check_state(struct Crypto1State* t, struct Crypto1Params* p) {
if(!(t->odd | t->even)) return 0;
rollback_word_noret(t, 0, 0);
rollback_word_noret(t, p->nr0_enc, 1);
rollback_word_noret(t, p->uid_xor_nt0, 0);
struct Crypto1State temp = {t->odd, t->even};
crypt_word_noret(t, p->uid_xor_nt1, 0);
crypt_word_noret(t, p->nr1_enc, 1);
if(p->ar1_enc == (crypt_word(t) ^ p->p64b)) {
crypto1_get_lfsr(&temp, &(p->key));
return 1;
}
return 0;
}
static inline int state_loop(unsigned int* states_buffer, int xks, int m1, int m2) {
int states_tail = 0;
int round = 0, s = 0, xks_bit = 0;
for(round = 1; round <= 12; round++) {
xks_bit = BIT(xks, round);
for(s = 0; s <= states_tail; s++) {
states_buffer[s] <<= 1;
if((filter(states_buffer[s]) ^ filter(states_buffer[s] | 1)) != 0) {
states_buffer[s] |= filter(states_buffer[s]) ^ xks_bit;
if(round > 4) {
update_contribution(states_buffer, s, m1, m2);
}
} else if(filter(states_buffer[s]) == xks_bit) {
// TODO: Refactor
if(round > 4) {
states_buffer[++states_tail] = states_buffer[s + 1];
states_buffer[s + 1] = states_buffer[s] | 1;
update_contribution(states_buffer, s, m1, m2);
s++;
update_contribution(states_buffer, s, m1, m2);
} else {
states_buffer[++states_tail] = states_buffer[++s];
states_buffer[s] = states_buffer[s - 1] | 1;
}
} else {
states_buffer[s--] = states_buffer[states_tail--];
}
}
}
return states_tail;
}
int binsearch(unsigned int data[], int start, int stop) {
int mid, val = data[stop] & 0xff000000;
while(start != stop) {
mid = (stop - start) >> 1;
if((data[start + mid] ^ 0x80000000) > (val ^ 0x80000000))
stop = start + mid;
else
start += mid + 1;
}
return start;
}
void quicksort(unsigned int array[], int low, int high) {
//if (SIZEOF(array) == 0)
// return;
if(low >= high) return;
int middle = low + (high - low) / 2;
unsigned int pivot = array[middle];
int i = low, j = high;
while(i <= j) {
while(array[i] < pivot) {
i++;
}
while(array[j] > pivot) {
j--;
}
if(i <= j) { // swap
int temp = array[i];
array[i] = array[j];
array[j] = temp;
i++;
j--;
}
}
if(low < j) {
quicksort(array, low, j);
}
if(high > i) {
quicksort(array, i, high);
}
}
int extend_table(unsigned int data[], int tbl, int end, int bit, int m1, int m2) {
for(data[tbl] <<= 1; tbl <= end; data[++tbl] <<= 1) {
if((filter(data[tbl]) ^ filter(data[tbl] | 1)) != 0) {
data[tbl] |= filter(data[tbl]) ^ bit;
update_contribution(data, tbl, m1, m2);
} else if(filter(data[tbl]) == bit) {
data[++end] = data[tbl + 1];
data[tbl + 1] = data[tbl] | 1;
update_contribution(data, tbl, m1, m2);
tbl++;
update_contribution(data, tbl, m1, m2);
} else {
data[tbl--] = data[end--];
}
}
return end;
}
int old_recover(
unsigned int odd[],
int o_head,
int o_tail,
int oks,
unsigned int even[],
int e_head,
int e_tail,
int eks,
int rem,
int s,
struct Crypto1Params* p,
int first_run) {
int o, e, i;
if(rem == -1) {
for(e = e_head; e <= e_tail; ++e) {
even[e] = (even[e] << 1) ^ evenparity32(even[e] & LF_POLY_EVEN);
for(o = o_head; o <= o_tail; ++o, ++s) {
struct Crypto1State temp = {0, 0};
temp.even = odd[o];
temp.odd = even[e] ^ evenparity32(odd[o] & LF_POLY_ODD);
if(check_state(&temp, p)) {
return -1;
}
}
}
return s;
}
if(first_run == 0) {
for(i = 0; (i < 4) && (rem-- != 0); i++) {
oks >>= 1;
eks >>= 1;
o_tail = extend_table(
odd, o_head, o_tail, oks & 1, LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1);
if(o_head > o_tail) return s;
e_tail =
extend_table(even, e_head, e_tail, eks & 1, LF_POLY_ODD, LF_POLY_EVEN << 1 | 1);
if(e_head > e_tail) return s;
}
}
first_run = 0;
quicksort(odd, o_head, o_tail);
quicksort(even, e_head, e_tail);
while(o_tail >= o_head && e_tail >= e_head) {
if(((odd[o_tail] ^ even[e_tail]) >> 24) == 0) {
o_tail = binsearch(odd, o_head, o = o_tail);
e_tail = binsearch(even, e_head, e = e_tail);
s = old_recover(odd, o_tail--, o, oks, even, e_tail--, e, eks, rem, s, p, first_run);
if(s == -1) {
break;
}
} else if((odd[o_tail] ^ 0x80000000) > (even[e_tail] ^ 0x80000000)) {
o_tail = binsearch(odd, o_head, o_tail) - 1;
} else {
e_tail = binsearch(even, e_head, e_tail) - 1;
}
}
return s;
}
static inline int sync_state(ProgramState* program_state) {
int ts = furi_hal_rtc_get_timestamp();
program_state->eta_round = program_state->eta_round - (ts - program_state->eta_timestamp);
program_state->eta_total = program_state->eta_total - (ts - program_state->eta_timestamp);
program_state->eta_timestamp = ts;
if(program_state->close_thread_please) {
return 1;
}
return 0;
}
int calculate_msb_tables(
int oks,
int eks,
int msb_round,
struct Crypto1Params* p,
unsigned int* states_buffer,
struct Msb* odd_msbs,
struct Msb* even_msbs,
unsigned int* temp_states_odd,
unsigned int* temp_states_even,
ProgramState* program_state) {
//FURI_LOG_I(TAG, "MSB GO %i", msb_iter); // DEBUG
unsigned int msb_head = (MSB_LIMIT * msb_round); // msb_iter ranges from 0 to (256/MSB_LIMIT)-1
unsigned int msb_tail = (MSB_LIMIT * (msb_round + 1));
int states_tail = 0, tail = 0;
int i = 0, j = 0, semi_state = 0, found = 0;
unsigned int msb = 0;
// TODO: Why is this necessary?
memset(odd_msbs, 0, MSB_LIMIT * sizeof(struct Msb));
memset(even_msbs, 0, MSB_LIMIT * sizeof(struct Msb));
for(semi_state = 1 << 20; semi_state >= 0; semi_state--) {
if(semi_state % 32768 == 0) {
if(sync_state(program_state) == 1) {
return 0;
}
}
if(filter(semi_state) == (oks & 1)) { //-V547
states_buffer[0] = semi_state;
states_tail = state_loop(states_buffer, oks, CONST_M1_1, CONST_M2_1);
for(i = states_tail; i >= 0; i--) {
msb = states_buffer[i] >> 24;
if((msb >= msb_head) && (msb < msb_tail)) {
found = 0;
for(j = 0; j < odd_msbs[msb - msb_head].tail - 1; j++) {
if(odd_msbs[msb - msb_head].states[j] == states_buffer[i]) {
found = 1;
break;
}
}
if(!found) {
tail = odd_msbs[msb - msb_head].tail++;
odd_msbs[msb - msb_head].states[tail] = states_buffer[i];
}
}
}
}
if(filter(semi_state) == (eks & 1)) { //-V547
states_buffer[0] = semi_state;
states_tail = state_loop(states_buffer, eks, CONST_M1_2, CONST_M2_2);
for(i = 0; i <= states_tail; i++) {
msb = states_buffer[i] >> 24;
if((msb >= msb_head) && (msb < msb_tail)) {
found = 0;
for(j = 0; j < even_msbs[msb - msb_head].tail; j++) {
if(even_msbs[msb - msb_head].states[j] == states_buffer[i]) {
found = 1;
break;
}
}
if(!found) {
tail = even_msbs[msb - msb_head].tail++;
even_msbs[msb - msb_head].states[tail] = states_buffer[i];
}
}
}
}
}
oks >>= 12;
eks >>= 12;
for(i = 0; i < MSB_LIMIT; i++) {
if(sync_state(program_state) == 1) {
return 0;
}
// TODO: Why is this necessary?
memset(temp_states_even, 0, sizeof(unsigned int) * (1280));
memset(temp_states_odd, 0, sizeof(unsigned int) * (1280));
memcpy(temp_states_odd, odd_msbs[i].states, odd_msbs[i].tail * sizeof(unsigned int));
memcpy(temp_states_even, even_msbs[i].states, even_msbs[i].tail * sizeof(unsigned int));
int res = old_recover(
temp_states_odd,
0,
odd_msbs[i].tail,
oks,
temp_states_even,
0,
even_msbs[i].tail,
eks,
3,
0,
p,
1);
if(res == -1) {
return 1;
}
//odd_msbs[i].tail = 0;
//even_msbs[i].tail = 0;
}
return 0;
}
bool recover(struct Crypto1Params* p, int ks2, ProgramState* program_state) {
bool found = false;
unsigned int* states_buffer = malloc(sizeof(unsigned int) * (2 << 9));
struct Msb* odd_msbs = (struct Msb*)malloc(MSB_LIMIT * sizeof(struct Msb));
struct Msb* even_msbs = (struct Msb*)malloc(MSB_LIMIT * sizeof(struct Msb));
unsigned int* temp_states_odd = malloc(sizeof(unsigned int) * (1280));
unsigned int* temp_states_even = malloc(sizeof(unsigned int) * (1280));
int oks = 0, eks = 0;
int i = 0, msb = 0;
for(i = 31; i >= 0; i -= 2) {
oks = oks << 1 | BEBIT(ks2, i);
}
for(i = 30; i >= 0; i -= 2) {
eks = eks << 1 | BEBIT(ks2, i);
}
int bench_start = furi_hal_rtc_get_timestamp();
program_state->eta_total = eta_total_time;
program_state->eta_timestamp = bench_start;
for(msb = 0; msb <= ((256 / MSB_LIMIT) - 1); msb++) {
program_state->search = msb;
program_state->eta_round = eta_round_time;
program_state->eta_total = eta_total_time - (eta_round_time * msb);
if(calculate_msb_tables(
oks,
eks,
msb,
p,
states_buffer,
odd_msbs,
even_msbs,
temp_states_odd,
temp_states_even,
program_state)) {
int bench_stop = furi_hal_rtc_get_timestamp();
FURI_LOG_I(TAG, "Cracked in %i seconds", bench_stop - bench_start);
found = true;
break;
}
if(program_state->close_thread_please) {
break;
}
}
free(states_buffer);
free(odd_msbs);
free(even_msbs);
free(temp_states_odd);
free(temp_states_even);
return found;
}
bool napi_mf_classic_dict_check_presence(MfClassicDictType dict_type) {
Storage* storage = furi_record_open(RECORD_STORAGE);
bool dict_present = false;
if(dict_type == MfClassicDictTypeSystem) {
dict_present = storage_common_stat(storage, MF_CLASSIC_DICT_FLIPPER_PATH, NULL) == FSE_OK;
} else if(dict_type == MfClassicDictTypeUser) {
dict_present = storage_common_stat(storage, MF_CLASSIC_DICT_USER_PATH, NULL) == FSE_OK;
}
furi_record_close(RECORD_STORAGE);
return dict_present;
}
MfClassicDict* napi_mf_classic_dict_alloc(MfClassicDictType dict_type) {
MfClassicDict* dict = malloc(sizeof(MfClassicDict));
Storage* storage = furi_record_open(RECORD_STORAGE);
dict->stream = buffered_file_stream_alloc(storage);
furi_record_close(RECORD_STORAGE);
bool dict_loaded = false;
do {
if(dict_type == MfClassicDictTypeSystem) {
if(!buffered_file_stream_open(
dict->stream,
MF_CLASSIC_DICT_FLIPPER_PATH,
FSAM_READ_WRITE,
FSOM_OPEN_EXISTING)) {
buffered_file_stream_close(dict->stream);
break;
}
} else if(dict_type == MfClassicDictTypeUser) {
if(!buffered_file_stream_open(
dict->stream, MF_CLASSIC_DICT_USER_PATH, FSAM_READ_WRITE, FSOM_OPEN_ALWAYS)) {
buffered_file_stream_close(dict->stream);
break;
}
}
// Check for newline ending
if(!stream_eof(dict->stream)) {
if(!stream_seek(dict->stream, -1, StreamOffsetFromEnd)) break;
uint8_t last_char = 0;
if(stream_read(dict->stream, &last_char, 1) != 1) break;
if(last_char != '\n') {
FURI_LOG_D(TAG, "Adding new line ending");
if(stream_write_char(dict->stream, '\n') != 1) break;
}
if(!stream_rewind(dict->stream)) break;
}
// Read total amount of keys
FuriString* next_line;
next_line = furi_string_alloc();
while(true) {
if(!stream_read_line(dict->stream, next_line)) {
FURI_LOG_T(TAG, "No keys left in dict");
break;
}
FURI_LOG_T(
TAG,
"Read line: %s, len: %zu",
furi_string_get_cstr(next_line),
furi_string_size(next_line));
if(furi_string_get_char(next_line, 0) == '#') continue;
if(furi_string_size(next_line) != NFC_MF_CLASSIC_KEY_LEN) continue;
dict->total_keys++;
}
furi_string_free(next_line);
stream_rewind(dict->stream);
dict_loaded = true;
FURI_LOG_I(TAG, "Loaded dictionary with %lu keys", dict->total_keys);
} while(false);
if(!dict_loaded) {
buffered_file_stream_close(dict->stream);
free(dict);
dict = NULL;
}
return dict;
}
bool napi_mf_classic_dict_add_key_str(MfClassicDict* dict, FuriString* key) {
furi_assert(dict);
furi_assert(dict->stream);
FURI_LOG_I(TAG, "Saving key: %s", furi_string_get_cstr(key));
furi_string_cat_printf(key, "\n");
bool key_added = false;
do {
if(!stream_seek(dict->stream, 0, StreamOffsetFromEnd)) break;
if(!stream_insert_string(dict->stream, key)) break;
dict->total_keys++;
key_added = true;
} while(false);
furi_string_left(key, 12);
return key_added;
}
void napi_mf_classic_dict_free(MfClassicDict* dict) {
furi_assert(dict);
furi_assert(dict->stream);
buffered_file_stream_close(dict->stream);
stream_free(dict->stream);
free(dict);
}
static void napi_mf_classic_dict_int_to_str(uint8_t* key_int, FuriString* key_str) {
furi_string_reset(key_str);
for(size_t i = 0; i < 6; i++) {
furi_string_cat_printf(key_str, "%02X", key_int[i]);
}
}
static void napi_mf_classic_dict_str_to_int(FuriString* key_str, uint64_t* key_int) {
uint8_t key_byte_tmp;
*key_int = 0ULL;
for(uint8_t i = 0; i < 12; i += 2) {
args_char_to_hex(
furi_string_get_char(key_str, i), furi_string_get_char(key_str, i + 1), &key_byte_tmp);
*key_int |= (uint64_t)key_byte_tmp << (8 * (5 - i / 2));
}
}
uint32_t napi_mf_classic_dict_get_total_keys(MfClassicDict* dict) {
furi_assert(dict);
return dict->total_keys;
}
bool napi_mf_classic_dict_rewind(MfClassicDict* dict) {
furi_assert(dict);
furi_assert(dict->stream);
return stream_rewind(dict->stream);
}
bool napi_mf_classic_dict_get_next_key_str(MfClassicDict* dict, FuriString* key) {
furi_assert(dict);
furi_assert(dict->stream);
bool key_read = false;
furi_string_reset(key);
while(!key_read) {
if(!stream_read_line(dict->stream, key)) break;
if(furi_string_get_char(key, 0) == '#') continue;
if(furi_string_size(key) != NFC_MF_CLASSIC_KEY_LEN) continue;
furi_string_left(key, 12);
key_read = true;
}
return key_read;
}
bool napi_mf_classic_dict_get_next_key(MfClassicDict* dict, uint64_t* key) {
furi_assert(dict);
furi_assert(dict->stream);
FuriString* temp_key;
temp_key = furi_string_alloc();
bool key_read = napi_mf_classic_dict_get_next_key_str(dict, temp_key);
if(key_read) {
napi_mf_classic_dict_str_to_int(temp_key, key);
}
furi_string_free(temp_key);
return key_read;
}
bool napi_mf_classic_dict_is_key_present_str(MfClassicDict* dict, FuriString* key) {
furi_assert(dict);
furi_assert(dict->stream);
FuriString* next_line;
next_line = furi_string_alloc();
bool key_found = false;
stream_rewind(dict->stream);
while(!key_found) { //-V654
if(!stream_read_line(dict->stream, next_line)) break;
if(furi_string_get_char(next_line, 0) == '#') continue;
if(furi_string_size(next_line) != NFC_MF_CLASSIC_KEY_LEN) continue;
furi_string_left(next_line, 12);
if(!furi_string_equal(key, next_line)) continue;
key_found = true;
}
furi_string_free(next_line);
return key_found;
}
bool napi_mf_classic_dict_is_key_present(MfClassicDict* dict, uint8_t* key) {
FuriString* temp_key;
temp_key = furi_string_alloc();
napi_mf_classic_dict_int_to_str(key, temp_key);
bool key_found = napi_mf_classic_dict_is_key_present_str(dict, temp_key);
furi_string_free(temp_key);
return key_found;
}
bool napi_key_already_found_for_nonce(
MfClassicDict* dict,
uint32_t uid_xor_nt1,
uint32_t nr1_enc,
uint32_t p64b,
uint32_t ar1_enc) {
bool found = false;
uint64_t k = 0;
napi_mf_classic_dict_rewind(dict);
while(napi_mf_classic_dict_get_next_key(dict, &k)) {
struct Crypto1State temp = {0, 0};
int i;
for(i = 0; i < 24; i++) {
(&temp)->odd |= (BIT(k, 2 * i + 1) << (i ^ 3));
(&temp)->even |= (BIT(k, 2 * i) << (i ^ 3));
}
crypt_word_noret(&temp, uid_xor_nt1, 0);
crypt_word_noret(&temp, nr1_enc, 1);
if(ar1_enc == (crypt_word(&temp) ^ p64b)) {
found = true;
break;
}
}
return found;
}
bool napi_mf_classic_nonces_check_presence() {
Storage* storage = furi_record_open(RECORD_STORAGE);
bool nonces_present = storage_common_stat(storage, MF_CLASSIC_NONCE_PATH, NULL) == FSE_OK;
furi_record_close(RECORD_STORAGE);
return nonces_present;
}
MfClassicNonceArray* napi_mf_classic_nonce_array_alloc(
MfClassicDict* system_dict,
bool system_dict_exists,
MfClassicDict* user_dict,
ProgramState* program_state) {
MfClassicNonceArray* nonce_array = malloc(sizeof(MfClassicNonceArray));
MfClassicNonce* remaining_nonce_array_init = malloc(sizeof(MfClassicNonce) * 1);
nonce_array->remaining_nonce_array = remaining_nonce_array_init;
Storage* storage = furi_record_open(RECORD_STORAGE);
nonce_array->stream = buffered_file_stream_alloc(storage);
furi_record_close(RECORD_STORAGE);
bool array_loaded = false;
do {
// https://github.com/flipperdevices/flipperzero-firmware/blob/5134f44c09d39344a8747655c0d59864bb574b96/applications/services/storage/filesystem_api_defines.h#L8-L22
if(!buffered_file_stream_open(
nonce_array->stream, MF_CLASSIC_NONCE_PATH, FSAM_READ_WRITE, FSOM_OPEN_EXISTING)) {
buffered_file_stream_close(nonce_array->stream);
break;
}
// Check for newline ending
if(!stream_eof(nonce_array->stream)) {
if(!stream_seek(nonce_array->stream, -1, StreamOffsetFromEnd)) break;
uint8_t last_char = 0;
if(stream_read(nonce_array->stream, &last_char, 1) != 1) break;
if(last_char != '\n') {
FURI_LOG_D(TAG, "Adding new line ending");
if(stream_write_char(nonce_array->stream, '\n') != 1) break;
}
if(!stream_rewind(nonce_array->stream)) break;
}
// Read total amount of nonces
FuriString* next_line;
next_line = furi_string_alloc();
while(!(program_state->close_thread_please)) {
if(!stream_read_line(nonce_array->stream, next_line)) {
FURI_LOG_T(TAG, "No nonces left");
break;
}
FURI_LOG_T(
TAG,
"Read line: %s, len: %zu",
furi_string_get_cstr(next_line),
furi_string_size(next_line));
if(!furi_string_start_with_str(next_line, "Sec")) continue;
const char* next_line_cstr = furi_string_get_cstr(next_line);
MfClassicNonce res = {0};
int i = 0;
char* endptr;
for(i = 0; i <= 17; i++) {
if(i != 0) {
next_line_cstr = strchr(next_line_cstr, ' ');
if(next_line_cstr) {
next_line_cstr++;
} else {
break;
}
}
unsigned long value = strtoul(next_line_cstr, &endptr, 16);
switch(i) {
case 5:
res.uid = value;
break;
case 7:
res.nt0 = value;
break;
case 9:
res.nr0_enc = value;
break;
case 11:
res.ar0_enc = value;
break;
case 13:
res.nt1 = value;
break;
case 15:
res.nr1_enc = value;
break;
case 17:
res.ar1_enc = value;
break;
default:
break; // Do nothing
}
next_line_cstr = endptr;
}
(program_state->total)++;
uint32_t p64b = prng_successor(res.nt1, 64);
if((system_dict_exists &&
napi_key_already_found_for_nonce(
system_dict, res.uid ^ res.nt1, res.nr1_enc, p64b, res.ar1_enc)) ||
(napi_key_already_found_for_nonce(
user_dict, res.uid ^ res.nt1, res.nr1_enc, p64b, res.ar1_enc))) {
(program_state->cracked)++;
(program_state->num_completed)++;
continue;
}
FURI_LOG_I(TAG, "No key found for %8lx %8lx", res.uid, res.ar1_enc);
// TODO: Refactor
nonce_array->remaining_nonce_array = realloc( //-V701
nonce_array->remaining_nonce_array,
sizeof(MfClassicNonce) * ((nonce_array->remaining_nonces) + 1));
nonce_array->remaining_nonces++;
nonce_array->remaining_nonce_array[(nonce_array->remaining_nonces) - 1] = res;
nonce_array->total_nonces++;
}
furi_string_free(next_line);
buffered_file_stream_close(nonce_array->stream);
array_loaded = true;
FURI_LOG_I(TAG, "Loaded %lu nonces", nonce_array->total_nonces);
} while(false);
if(!array_loaded) {
free(nonce_array);
nonce_array = NULL;
}
return nonce_array;
}
void napi_mf_classic_nonce_array_free(MfClassicNonceArray* nonce_array) {
furi_assert(nonce_array);
furi_assert(nonce_array->stream);
buffered_file_stream_close(nonce_array->stream);
stream_free(nonce_array->stream);
free(nonce_array);
}
static void finished_beep() {
// Beep to indicate completion
NotificationApp* notification = furi_record_open("notification");
notification_message(notification, &sequence_audiovisual_alert);
notification_message(notification, &sequence_display_backlight_on);
furi_record_close("notification");
}
void mfkey32(ProgramState* program_state) {
uint64_t found_key; // recovered key
size_t keyarray_size = 0;
uint64_t* keyarray = malloc(sizeof(uint64_t) * 1);
uint32_t i = 0, j = 0;
// Check for nonces
if(!napi_mf_classic_nonces_check_presence()) {
program_state->err = MissingNonces;
program_state->mfkey_state = Error;
free(keyarray);
return;
}
// Read dictionaries (optional)
MfClassicDict* system_dict = {0};
bool system_dict_exists = napi_mf_classic_dict_check_presence(MfClassicDictTypeSystem);
MfClassicDict* user_dict = {0};
bool user_dict_exists = napi_mf_classic_dict_check_presence(MfClassicDictTypeUser);
uint32_t total_dict_keys = 0;
if(system_dict_exists) {
system_dict = napi_mf_classic_dict_alloc(MfClassicDictTypeSystem);
total_dict_keys += napi_mf_classic_dict_get_total_keys(system_dict);
}
user_dict = napi_mf_classic_dict_alloc(MfClassicDictTypeUser);
if(user_dict_exists) {
total_dict_keys += napi_mf_classic_dict_get_total_keys(user_dict);
}
user_dict_exists = true;
program_state->dict_count = total_dict_keys;
program_state->mfkey_state = DictionaryAttack;
// Read nonces
MfClassicNonceArray* nonce_arr;
nonce_arr = napi_mf_classic_nonce_array_alloc(
system_dict, system_dict_exists, user_dict, program_state);
if(system_dict_exists) {
napi_mf_classic_dict_free(system_dict);
}
if(nonce_arr->total_nonces == 0) {
// Nothing to crack
program_state->err = ZeroNonces;
program_state->mfkey_state = Error;
napi_mf_classic_nonce_array_free(nonce_arr);
napi_mf_classic_dict_free(user_dict);
free(keyarray);
return;
}
if(memmgr_get_free_heap() < MIN_RAM) {
// System has less than the guaranteed amount of RAM (140 KB) - adjust some parameters to run anyway at half speed
eta_round_time *= 2;
eta_total_time *= 2;
MSB_LIMIT /= 2;
}
program_state->mfkey_state = MfkeyAttack;
// TODO: Work backwards on this array and free memory
for(i = 0; i < nonce_arr->total_nonces; i++) {
MfClassicNonce next_nonce = nonce_arr->remaining_nonce_array[i];
uint32_t p64 = prng_successor(next_nonce.nt0, 64);
uint32_t p64b = prng_successor(next_nonce.nt1, 64);
if(key_already_found_for_nonce(
keyarray,
keyarray_size,
next_nonce.uid ^ next_nonce.nt1,
next_nonce.nr1_enc,
p64b,
next_nonce.ar1_enc)) {
nonce_arr->remaining_nonces--;
(program_state->cracked)++;
(program_state->num_completed)++;
continue;
}
FURI_LOG_I(TAG, "Cracking %8lx %8lx", next_nonce.uid, next_nonce.ar1_enc);
struct Crypto1Params p = {
0,
next_nonce.nr0_enc,
next_nonce.uid ^ next_nonce.nt0,
next_nonce.uid ^ next_nonce.nt1,
next_nonce.nr1_enc,
p64b,
next_nonce.ar1_enc};
if(!recover(&p, next_nonce.ar0_enc ^ p64, program_state)) {
if(program_state->close_thread_please) {
break;
}
// No key found in recover()
(program_state->num_completed)++;
continue;
}
(program_state->cracked)++;
(program_state->num_completed)++;
found_key = p.key;
bool already_found = false;
for(j = 0; j < keyarray_size; j++) {
if(keyarray[j] == found_key) {
already_found = true;
break;
}
}
if(already_found == false) {
// New key
keyarray = realloc(keyarray, sizeof(uint64_t) * (keyarray_size + 1)); //-V701
keyarray_size += 1;
keyarray[keyarray_size - 1] = found_key;
(program_state->unique_cracked)++;
}
}
// TODO: Update display to show all keys were found
// TODO: Prepend found key(s) to user dictionary file
//FURI_LOG_I(TAG, "Unique keys found:");
for(i = 0; i < keyarray_size; i++) {
//FURI_LOG_I(TAG, "%012" PRIx64, keyarray[i]);
FuriString* temp_key = furi_string_alloc();
furi_string_cat_printf(temp_key, "%012" PRIX64, keyarray[i]);
napi_mf_classic_dict_add_key_str(user_dict, temp_key);
furi_string_free(temp_key);
}
if(keyarray_size > 0) {
// TODO: Should we use DolphinDeedNfcMfcAdd?
dolphin_deed(DolphinDeedNfcMfcAdd);
}
napi_mf_classic_nonce_array_free(nonce_arr);
napi_mf_classic_dict_free(user_dict);
free(keyarray);
//FURI_LOG_I(TAG, "mfkey32 function completed normally"); // DEBUG
program_state->mfkey_state = Complete;
// No need to alert the user if they asked it to stop
if(!(program_state->close_thread_please)) {
finished_beep();
}
return;
}
// Screen is 128x64 px
static void render_callback(Canvas* const canvas, void* ctx) {
furi_assert(ctx);
ProgramState* program_state = ctx;
furi_mutex_acquire(program_state->mutex, FuriWaitForever);
char draw_str[44] = {};
canvas_clear(canvas);
canvas_draw_frame(canvas, 0, 0, 128, 64);
canvas_draw_frame(canvas, 0, 15, 128, 64);
canvas_set_font(canvas, FontPrimary);
canvas_draw_str_aligned(canvas, 5, 4, AlignLeft, AlignTop, "Mfkey32");
canvas_draw_icon(canvas, 114, 4, &I_mfkey);
if(program_state->is_thread_running && program_state->mfkey_state == MfkeyAttack) {
float eta_round = (float)1 - ((float)program_state->eta_round / (float)eta_round_time);
float eta_total = (float)1 - ((float)program_state->eta_total / (float)eta_total_time);
float progress = (float)program_state->num_completed / (float)program_state->total;
if(eta_round < 0) {
// Round ETA miscalculated
eta_round = 1;
program_state->eta_round = 0;
}
if(eta_total < 0) {
// Total ETA miscalculated
eta_total = 1;
program_state->eta_total = 0;
}
canvas_set_font(canvas, FontSecondary);
snprintf(
draw_str,
sizeof(draw_str),
"Cracking: %d/%d - in prog.",
program_state->num_completed,
program_state->total);
elements_progress_bar_with_text(canvas, 5, 18, 118, progress, draw_str);
snprintf(
draw_str,
sizeof(draw_str),
"Round: %d/%d - ETA %02d Sec",
(program_state->search) + 1, // Zero indexed
256 / MSB_LIMIT,
program_state->eta_round);
elements_progress_bar_with_text(canvas, 5, 31, 118, eta_round, draw_str);
snprintf(draw_str, sizeof(draw_str), "Total ETA %03d Sec", program_state->eta_total);
elements_progress_bar_with_text(canvas, 5, 44, 118, eta_total, draw_str);
} else if(program_state->is_thread_running && program_state->mfkey_state == DictionaryAttack) {
canvas_set_font(canvas, FontSecondary);
snprintf(
draw_str, sizeof(draw_str), "Dict solves: %d (in progress)", program_state->cracked);
canvas_draw_str_aligned(canvas, 10, 18, AlignLeft, AlignTop, draw_str);
snprintf(draw_str, sizeof(draw_str), "Keys in dict: %d", program_state->dict_count);
canvas_draw_str_aligned(canvas, 26, 28, AlignLeft, AlignTop, draw_str);
} else if(program_state->mfkey_state == Complete) {
// TODO: Scrollable list view to see cracked keys if user presses down
elements_progress_bar_with_text(canvas, 5, 18, 118, 1, draw_str);
canvas_set_font(canvas, FontSecondary);
snprintf(draw_str, sizeof(draw_str), "Complete");
canvas_draw_str_aligned(canvas, 40, 31, AlignLeft, AlignTop, draw_str);
snprintf(
draw_str,
sizeof(draw_str),
"Keys added to user dict: %d",
program_state->unique_cracked);
canvas_draw_str_aligned(canvas, 10, 41, AlignLeft, AlignTop, draw_str);
} else if(program_state->mfkey_state == Ready) {
canvas_set_font(canvas, FontSecondary);
canvas_draw_str_aligned(canvas, 50, 30, AlignLeft, AlignTop, "Ready");
elements_button_center(canvas, "Start");
elements_button_right(canvas, "Help");
} else if(program_state->mfkey_state == Help) {
canvas_set_font(canvas, FontSecondary);
canvas_draw_str_aligned(canvas, 7, 20, AlignLeft, AlignTop, "Collect nonces using");
canvas_draw_str_aligned(canvas, 7, 30, AlignLeft, AlignTop, "Detect Reader.");
canvas_draw_str_aligned(canvas, 7, 40, AlignLeft, AlignTop, "Developers: noproto, AG");
canvas_draw_str_aligned(canvas, 7, 50, AlignLeft, AlignTop, "Thanks: bettse");
} else if(program_state->mfkey_state == Error) {
canvas_draw_str_aligned(canvas, 50, 25, AlignLeft, AlignTop, "Error");
canvas_set_font(canvas, FontSecondary);
if(program_state->err == MissingNonces) {
canvas_draw_str_aligned(canvas, 25, 36, AlignLeft, AlignTop, "No nonces found");
} else if(program_state->err == ZeroNonces) {
canvas_draw_str_aligned(canvas, 15, 36, AlignLeft, AlignTop, "Nonces already cracked");
} else {
// Unhandled error
}
} else {
// Unhandled program state
}
furi_mutex_release(program_state->mutex);
}
static void input_callback(InputEvent* input_event, FuriMessageQueue* event_queue) {
furi_assert(event_queue);
PluginEvent event = {.type = EventTypeKey, .input = *input_event};
furi_message_queue_put(event_queue, &event, FuriWaitForever);
}
static void mfkey32_state_init(ProgramState* program_state) {
program_state->is_thread_running = false;
program_state->mfkey_state = Ready;
program_state->cracked = 0;
program_state->unique_cracked = 0;
program_state->num_completed = 0;
program_state->total = 0;
program_state->dict_count = 0;
}
// Entrypoint for worker thread
static int32_t mfkey32_worker_thread(void* ctx) {
ProgramState* program_state = ctx;
program_state->is_thread_running = true;
program_state->mfkey_state = Initializing;
//FURI_LOG_I(TAG, "Hello from the mfkey32 worker thread"); // DEBUG
mfkey32(program_state);
program_state->is_thread_running = false;
return 0;
}
void start_mfkey32_thread(ProgramState* program_state) {
if(!program_state->is_thread_running) {
furi_thread_start(program_state->mfkeythread);
}
}
int32_t mfkey32_main() {
FuriMessageQueue* event_queue = furi_message_queue_alloc(8, sizeof(PluginEvent));
ProgramState* program_state = malloc(sizeof(ProgramState));
mfkey32_state_init(program_state);
program_state->mutex = furi_mutex_alloc(FuriMutexTypeNormal);
if(!program_state->mutex) {
FURI_LOG_E(TAG, "cannot create mutex\r\n");
free(program_state);
return 255;
}
// Set system callbacks
ViewPort* view_port = view_port_alloc();
view_port_draw_callback_set(view_port, render_callback, program_state);
view_port_input_callback_set(view_port, input_callback, event_queue);
// Open GUI and register view_port
Gui* gui = furi_record_open(RECORD_GUI);
gui_add_view_port(gui, view_port, GuiLayerFullscreen);
program_state->mfkeythread = furi_thread_alloc();
furi_thread_set_name(program_state->mfkeythread, "Mfkey32 Worker");
furi_thread_set_stack_size(program_state->mfkeythread, 2048);
furi_thread_set_context(program_state->mfkeythread, program_state);
furi_thread_set_callback(program_state->mfkeythread, mfkey32_worker_thread);
PluginEvent event;
for(bool main_loop = true; main_loop;) {
FuriStatus event_status = furi_message_queue_get(event_queue, &event, 100);
furi_mutex_acquire(program_state->mutex, FuriWaitForever);
if(event_status == FuriStatusOk) {
// press events
if(event.type == EventTypeKey) {
if(event.input.type == InputTypePress) {
switch(event.input.key) {
case InputKeyUp:
break;
case InputKeyDown:
break;
case InputKeyRight:
if(!program_state->is_thread_running &&
program_state->mfkey_state == Ready) {
program_state->mfkey_state = Help;
view_port_update(view_port);
}
break;
case InputKeyLeft:
break;
case InputKeyOk:
if(!program_state->is_thread_running &&
program_state->mfkey_state == Ready) {
start_mfkey32_thread(program_state);
view_port_update(view_port);
}
break;
case InputKeyBack:
if(!program_state->is_thread_running &&
program_state->mfkey_state == Help) {
program_state->mfkey_state = Ready;
view_port_update(view_port);
} else {
program_state->close_thread_please = true;
if(program_state->is_thread_running && program_state->mfkeythread) {
// Wait until thread is finished
furi_thread_join(program_state->mfkeythread);
}
program_state->close_thread_please = false;
main_loop = false;
}
break;
default:
break;
}
}
}
}
view_port_update(view_port);
furi_mutex_release(program_state->mutex);
}
furi_thread_free(program_state->mfkeythread);
view_port_enabled_set(view_port, false);
gui_remove_view_port(gui, view_port);
furi_record_close("gui");
view_port_free(view_port);
furi_message_queue_free(event_queue);
furi_mutex_free(program_state->mutex);
free(program_state);
return 0;
}