unleashed-firmware/targets/f7/furi_hal/furi_hal_subghz.c

884 lines
31 KiB
C

#include <furi_hal_subghz.h>
#include <lib/subghz/devices/cc1101_configs.h>
#include <furi_hal_version.h>
#include <furi_hal_rtc.h>
#include <furi_hal_spi.h>
#include <furi_hal_cortex.h>
#include <furi_hal_interrupt.h>
#include <furi_hal_resources.h>
#include <furi_hal_bus.h>
#include <stm32wbxx_ll_dma.h>
#include <furi.h>
#include <cc1101.h>
#include <stdio.h>
#define TAG "FuriHalSubGhz"
static uint32_t furi_hal_subghz_debug_gpio_buff[2] = {0};
/* DMA Channels definition */
#define SUBGHZ_DMA (DMA2)
#define SUBGHZ_DMA_CH1_CHANNEL (LL_DMA_CHANNEL_1)
#define SUBGHZ_DMA_CH2_CHANNEL (LL_DMA_CHANNEL_2)
#define SUBGHZ_DMA_CH1_IRQ (FuriHalInterruptIdDma2Ch1)
#define SUBGHZ_DMA_CH1_DEF SUBGHZ_DMA, SUBGHZ_DMA_CH1_CHANNEL
#define SUBGHZ_DMA_CH2_DEF SUBGHZ_DMA, SUBGHZ_DMA_CH2_CHANNEL
/** SubGhz state */
typedef enum {
SubGhzStateInit, /**< Init pending */
SubGhzStateBroken, /**< Chip power-on self test failed */
SubGhzStateIdle, /**< Idle, energy save mode */
SubGhzStateAsyncRx, /**< Async RX started */
SubGhzStateAsyncTx, /**< Async TX started, DMA and timer is on */
} SubGhzState;
/** SubGhz regulation, receive transmission on the current frequency for the
* region */
typedef enum {
SubGhzRegulationOnlyRx, /**only Rx*/
SubGhzRegulationTxRx, /**TxRx*/
} SubGhzRegulation;
typedef struct {
volatile SubGhzState state;
volatile SubGhzRegulation regulation;
const GpioPin* async_mirror_pin;
int8_t rolling_counter_mult;
bool dangerous_frequency_i : 1;
} FuriHalSubGhz;
volatile FuriHalSubGhz furi_hal_subghz = {
.state = SubGhzStateInit,
.regulation = SubGhzRegulationTxRx,
.async_mirror_pin = NULL,
.rolling_counter_mult = 1,
.dangerous_frequency_i = false,
};
int8_t furi_hal_subghz_get_rolling_counter_mult(void) {
return furi_hal_subghz.rolling_counter_mult;
}
void furi_hal_subghz_set_rolling_counter_mult(int8_t mult) {
furi_hal_subghz.rolling_counter_mult = mult;
}
void furi_hal_subghz_set_dangerous_frequency(bool state_i) {
furi_hal_subghz.dangerous_frequency_i = state_i;
}
void furi_hal_subghz_set_async_mirror_pin(const GpioPin* pin) {
furi_hal_subghz.async_mirror_pin = pin;
}
const GpioPin* furi_hal_subghz_get_data_gpio(void) {
return &gpio_cc1101_g0;
}
void furi_hal_subghz_init(void) {
furi_check(furi_hal_subghz.state == SubGhzStateInit);
furi_hal_subghz.state = SubGhzStateBroken;
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
do {
#ifdef FURI_HAL_SUBGHZ_TX_GPIO
furi_hal_gpio_init(
&FURI_HAL_SUBGHZ_TX_GPIO, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
#endif
#ifdef FURI_HAL_SUBGHZ_ASYNC_MIRROR_GPIO
furi_hal_subghz_set_async_mirror_pin(&FURI_HAL_SUBGHZ_ASYNC_MIRROR_GPIO);
#endif
// Reset
furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
cc1101_reset(&furi_hal_spi_bus_handle_subghz);
cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, CC1101_IOCFG0, CC1101IocfgHighImpedance);
// Prepare GD0 for power on self test
furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeInput, GpioPullNo, GpioSpeedLow);
// GD0 low
FuriHalCortexTimer timeout = furi_hal_cortex_timer_get(10000);
cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, CC1101_IOCFG0, CC1101IocfgHW);
while(furi_hal_gpio_read(&gpio_cc1101_g0) != false &&
!furi_hal_cortex_timer_is_expired(timeout))
;
if(furi_hal_gpio_read(&gpio_cc1101_g0) != false) {
break;
}
// GD0 high
timeout = furi_hal_cortex_timer_get(10000);
cc1101_write_reg(
&furi_hal_spi_bus_handle_subghz, CC1101_IOCFG0, CC1101IocfgHW | CC1101_IOCFG_INV);
while(furi_hal_gpio_read(&gpio_cc1101_g0) != true &&
!furi_hal_cortex_timer_is_expired(timeout))
;
if(furi_hal_gpio_read(&gpio_cc1101_g0) != true) {
break;
}
// Reset GD0 to floating state
cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, CC1101_IOCFG0, CC1101IocfgHighImpedance);
furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
// RF switches
furi_hal_gpio_init(&gpio_rf_sw_0, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, CC1101_IOCFG2, CC1101IocfgHW);
// Go to sleep
cc1101_shutdown(&furi_hal_spi_bus_handle_subghz);
furi_hal_subghz.state = SubGhzStateIdle;
} while(false);
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
if(furi_hal_subghz.state == SubGhzStateIdle) {
FURI_LOG_I(TAG, "Init OK");
} else {
FURI_LOG_E(TAG, "Init Fail");
}
}
void furi_hal_subghz_sleep(void) {
furi_check(furi_hal_subghz.state == SubGhzStateIdle);
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
cc1101_switch_to_idle(&furi_hal_spi_bus_handle_subghz);
cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, CC1101_IOCFG0, CC1101IocfgHighImpedance);
furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
cc1101_shutdown(&furi_hal_spi_bus_handle_subghz);
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
}
void furi_hal_subghz_dump_state(void) {
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
printf(
"[furi_hal_subghz] cc1101 chip %d, version %d\r\n",
cc1101_get_partnumber(&furi_hal_spi_bus_handle_subghz),
cc1101_get_version(&furi_hal_spi_bus_handle_subghz));
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
}
void furi_hal_subghz_load_custom_preset(const uint8_t* preset_data) {
furi_check(preset_data);
//load config
furi_hal_subghz_reset();
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
uint32_t i = 0;
uint8_t pa[8] = {0};
while(preset_data[i]) {
cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, preset_data[i], preset_data[i + 1]);
i += 2;
}
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
//load pa table
memcpy(&pa[0], &preset_data[i + 2], 8);
furi_hal_subghz_load_patable(pa);
//show debug
if(furi_hal_rtc_is_flag_set(FuriHalRtcFlagDebug)) {
i = 0;
FURI_LOG_D(TAG, "Loading custom preset");
while(preset_data[i]) {
FURI_LOG_D(TAG, "Reg[%lu]: %02X=%02X", i, preset_data[i], preset_data[i + 1]);
i += 2;
}
for(uint8_t y = i; y < i + 10; y++) {
FURI_LOG_D(TAG, "PA[%u]: %02X", y, preset_data[y]);
}
}
}
void furi_hal_subghz_load_registers(const uint8_t* data) {
furi_check(data);
furi_hal_subghz_reset();
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
uint32_t i = 0;
while(data[i]) {
cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, data[i], data[i + 1]);
i += 2;
}
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
}
void furi_hal_subghz_load_patable(const uint8_t data[8]) {
furi_check(data);
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
cc1101_set_pa_table(&furi_hal_spi_bus_handle_subghz, data);
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
}
void furi_hal_subghz_write_packet(const uint8_t* data, uint8_t size) {
furi_check(data);
furi_check(size);
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
cc1101_flush_tx(&furi_hal_spi_bus_handle_subghz);
cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, CC1101_FIFO, size);
cc1101_write_fifo(&furi_hal_spi_bus_handle_subghz, data, size);
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
}
void furi_hal_subghz_flush_rx(void) {
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
cc1101_flush_rx(&furi_hal_spi_bus_handle_subghz);
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
}
void furi_hal_subghz_flush_tx(void) {
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
cc1101_flush_tx(&furi_hal_spi_bus_handle_subghz);
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
}
bool furi_hal_subghz_rx_pipe_not_empty(void) {
CC1101RxBytes status[1];
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
cc1101_read_reg(
&furi_hal_spi_bus_handle_subghz, (CC1101_STATUS_RXBYTES) | CC1101_BURST, (uint8_t*)status);
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
// TODO: Find reason why RXFIFO_OVERFLOW doesnt work correctly
if(status->NUM_RXBYTES > 0) {
return true;
} else {
return false;
}
}
bool furi_hal_subghz_is_rx_data_crc_valid(void) {
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
uint8_t data[1];
cc1101_read_reg(&furi_hal_spi_bus_handle_subghz, CC1101_STATUS_LQI | CC1101_BURST, data);
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
if(((data[0] >> 7) & 0x01)) {
return true;
} else {
return false;
}
}
void furi_hal_subghz_read_packet(uint8_t* data, uint8_t* size) {
furi_check(data);
furi_check(size);
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
cc1101_read_fifo(&furi_hal_spi_bus_handle_subghz, data, size);
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
}
void furi_hal_subghz_shutdown(void) {
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
// Reset and shutdown
cc1101_shutdown(&furi_hal_spi_bus_handle_subghz);
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
}
void furi_hal_subghz_reset(void) {
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
cc1101_switch_to_idle(&furi_hal_spi_bus_handle_subghz);
cc1101_reset(&furi_hal_spi_bus_handle_subghz);
// Warning: push pull cc1101 clock output on GD0
cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, CC1101_IOCFG0, CC1101IocfgHighImpedance);
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
}
void furi_hal_subghz_idle(void) {
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
cc1101_switch_to_idle(&furi_hal_spi_bus_handle_subghz);
//waiting for the chip to switch to IDLE mode
furi_check(cc1101_wait_status_state(&furi_hal_spi_bus_handle_subghz, CC1101StateIDLE, 10000));
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
}
void furi_hal_subghz_rx(void) {
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
cc1101_switch_to_rx(&furi_hal_spi_bus_handle_subghz);
//waiting for the chip to switch to Rx mode
furi_check(cc1101_wait_status_state(&furi_hal_spi_bus_handle_subghz, CC1101StateRX, 10000));
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
}
bool furi_hal_subghz_tx(void) {
if(furi_hal_subghz.regulation != SubGhzRegulationTxRx) return false;
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
cc1101_switch_to_tx(&furi_hal_spi_bus_handle_subghz);
//waiting for the chip to switch to Tx mode
furi_check(cc1101_wait_status_state(&furi_hal_spi_bus_handle_subghz, CC1101StateTX, 10000));
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
return true;
}
float furi_hal_subghz_get_rssi(void) {
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
int32_t rssi_dec = cc1101_get_rssi(&furi_hal_spi_bus_handle_subghz);
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
float rssi = rssi_dec;
if(rssi_dec >= 128) {
rssi = ((rssi - 256.0f) / 2.0f) - 74.0f;
} else {
rssi = (rssi / 2.0f) - 74.0f;
}
return rssi;
}
uint8_t furi_hal_subghz_get_lqi(void) {
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
uint8_t data[1];
cc1101_read_reg(&furi_hal_spi_bus_handle_subghz, CC1101_STATUS_LQI | CC1101_BURST, data);
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
return data[0] & 0x7F;
}
/*
Modified by @tkerby & MX to the full YARD Stick One extended range of 281-361 MHz, 378-481 MHz, and 749-962 MHz.
These changes are at your own risk. The PLL may not lock and FZ devs have warned of possible damage!
*/
bool furi_hal_subghz_is_frequency_valid(uint32_t value) {
if(!(value >= 281000000 && value <= 361000000) &&
!(value >= 378000000 && value <= 481000000) &&
!(value >= 749000000 && value <= 962000000)) {
return false;
}
return true;
}
uint32_t furi_hal_subghz_set_frequency_and_path(uint32_t value) {
// Set these values to the extended frequency range only. They dont define if you can transmit but do select the correct RF path
value = furi_hal_subghz_set_frequency(value);
if(value >= 281000000 && value <= 361000000) {
furi_hal_subghz_set_path(FuriHalSubGhzPath315);
} else if(value >= 378000000 && value <= 481000000) {
furi_hal_subghz_set_path(FuriHalSubGhzPath433);
} else if(value >= 749000000 && value <= 962000000) {
furi_hal_subghz_set_path(FuriHalSubGhzPath868);
} else {
furi_crash("SubGhz: Incorrect frequency during set.");
}
return value;
}
bool furi_hal_subghz_is_tx_allowed(uint32_t value) {
bool allow_extended_for_int = furi_hal_subghz.dangerous_frequency_i;
if(!(allow_extended_for_int) &&
!(value >= 299999755 && value <= 350000335) && // was increased from 348 to 350
!(value >= 386999938 && value <= 467750000) && // was increased from 464 to 467.75
!(value >= 778999847 && value <= 928000000)) {
FURI_LOG_I(TAG, "Frequency blocked - outside default range");
return false;
} else if(
(allow_extended_for_int) && //
!furi_hal_subghz_is_frequency_valid(value)) {
FURI_LOG_I(TAG, "Frequency blocked - outside dangerous range");
return false;
}
return true;
}
uint32_t furi_hal_subghz_set_frequency(uint32_t value) {
if(furi_hal_subghz_is_tx_allowed(value)) {
furi_hal_subghz.regulation = SubGhzRegulationTxRx;
} else {
furi_hal_subghz.regulation = SubGhzRegulationOnlyRx;
}
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
uint32_t real_frequency = cc1101_set_frequency(&furi_hal_spi_bus_handle_subghz, value);
cc1101_calibrate(&furi_hal_spi_bus_handle_subghz);
furi_check(cc1101_wait_status_state(&furi_hal_spi_bus_handle_subghz, CC1101StateIDLE, 10000));
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
return real_frequency;
}
void furi_hal_subghz_set_path(FuriHalSubGhzPath path) {
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
if(path == FuriHalSubGhzPath433) {
furi_hal_gpio_write(&gpio_rf_sw_0, 0);
cc1101_write_reg(
&furi_hal_spi_bus_handle_subghz, CC1101_IOCFG2, CC1101IocfgHW | CC1101_IOCFG_INV);
} else if(path == FuriHalSubGhzPath315) {
furi_hal_gpio_write(&gpio_rf_sw_0, 1);
cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, CC1101_IOCFG2, CC1101IocfgHW);
} else if(path == FuriHalSubGhzPath868) {
furi_hal_gpio_write(&gpio_rf_sw_0, 1);
cc1101_write_reg(
&furi_hal_spi_bus_handle_subghz, CC1101_IOCFG2, CC1101IocfgHW | CC1101_IOCFG_INV);
} else if(path == FuriHalSubGhzPathIsolate) {
furi_hal_gpio_write(&gpio_rf_sw_0, 0);
cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, CC1101_IOCFG2, CC1101IocfgHW);
} else {
furi_crash("SubGhz: Incorrect path during set.");
}
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
}
static bool furi_hal_subghz_start_debug(void) {
bool ret = false;
if(furi_hal_subghz.async_mirror_pin != NULL) {
furi_hal_gpio_write(furi_hal_subghz.async_mirror_pin, false);
furi_hal_gpio_init(
furi_hal_subghz.async_mirror_pin,
GpioModeOutputPushPull,
GpioPullNo,
GpioSpeedVeryHigh);
ret = true;
}
return ret;
}
static bool furi_hal_subghz_stop_debug(void) {
bool ret = false;
if(furi_hal_subghz.async_mirror_pin != NULL) {
furi_hal_gpio_init(
furi_hal_subghz.async_mirror_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
ret = true;
}
return ret;
}
volatile uint32_t furi_hal_subghz_capture_delta_duration = 0;
volatile FuriHalSubGhzCaptureCallback furi_hal_subghz_capture_callback = NULL;
volatile void* furi_hal_subghz_capture_callback_context = NULL;
static void furi_hal_subghz_capture_ISR(void* context) {
UNUSED(context);
// Channel 1
if(LL_TIM_IsActiveFlag_CC1(TIM2)) {
LL_TIM_ClearFlag_CC1(TIM2);
furi_hal_subghz_capture_delta_duration = LL_TIM_IC_GetCaptureCH1(TIM2);
if(furi_hal_subghz_capture_callback) {
if(furi_hal_subghz.async_mirror_pin != NULL)
furi_hal_gpio_write(furi_hal_subghz.async_mirror_pin, false);
furi_hal_subghz_capture_callback(
true,
furi_hal_subghz_capture_delta_duration,
(void*)furi_hal_subghz_capture_callback_context);
}
}
// Channel 2
if(LL_TIM_IsActiveFlag_CC2(TIM2)) {
LL_TIM_ClearFlag_CC2(TIM2);
if(furi_hal_subghz_capture_callback) {
if(furi_hal_subghz.async_mirror_pin != NULL)
furi_hal_gpio_write(furi_hal_subghz.async_mirror_pin, true);
furi_hal_subghz_capture_callback(
false,
LL_TIM_IC_GetCaptureCH2(TIM2) - furi_hal_subghz_capture_delta_duration,
(void*)furi_hal_subghz_capture_callback_context);
}
}
}
void furi_hal_subghz_start_async_rx(FuriHalSubGhzCaptureCallback callback, void* context) {
furi_check(furi_hal_subghz.state == SubGhzStateIdle);
furi_check(callback);
furi_hal_subghz.state = SubGhzStateAsyncRx;
furi_hal_subghz_capture_callback = callback;
furi_hal_subghz_capture_callback_context = context;
furi_hal_gpio_init_ex(
&gpio_cc1101_g0, GpioModeAltFunctionPushPull, GpioPullNo, GpioSpeedLow, GpioAltFn1TIM2);
furi_hal_bus_enable(FuriHalBusTIM2);
// Timer: base
LL_TIM_InitTypeDef TIM_InitStruct = {0};
TIM_InitStruct.Prescaler = 64 - 1;
TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
TIM_InitStruct.Autoreload = 0x7FFFFFFE;
// Clock division for capture filter
TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV4;
LL_TIM_Init(TIM2, &TIM_InitStruct);
// Timer: advanced
LL_TIM_SetClockSource(TIM2, LL_TIM_CLOCKSOURCE_INTERNAL);
LL_TIM_DisableARRPreload(TIM2);
LL_TIM_SetTriggerInput(TIM2, LL_TIM_TS_TI2FP2);
LL_TIM_SetSlaveMode(TIM2, LL_TIM_SLAVEMODE_RESET);
LL_TIM_SetTriggerOutput(TIM2, LL_TIM_TRGO_RESET);
LL_TIM_EnableMasterSlaveMode(TIM2);
LL_TIM_DisableDMAReq_TRIG(TIM2);
LL_TIM_DisableIT_TRIG(TIM2);
// Timer: channel 1 indirect
LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ACTIVEINPUT_INDIRECTTI);
LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ICPSC_DIV1);
LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_POLARITY_FALLING);
// Timer: channel 2 direct
LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ACTIVEINPUT_DIRECTTI);
LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ICPSC_DIV1);
LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_IC_POLARITY_RISING);
LL_TIM_IC_SetFilter(
TIM2,
LL_TIM_CHANNEL_CH2,
LL_TIM_IC_FILTER_FDIV32_N8); // Capture filter: 1/(64000000/64/4/32*8) = 16us
// ISR setup
furi_hal_interrupt_set_isr(FuriHalInterruptIdTIM2, furi_hal_subghz_capture_ISR, NULL);
// Interrupts and channels
LL_TIM_EnableIT_CC1(TIM2);
LL_TIM_EnableIT_CC2(TIM2);
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH1);
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH2);
// Start timer
LL_TIM_SetCounter(TIM2, 0);
LL_TIM_EnableCounter(TIM2);
// Start debug
furi_hal_subghz_start_debug();
// Switch to RX
furi_hal_subghz_rx();
// Clear the variable after the end of the session
furi_hal_subghz_capture_delta_duration = 0;
}
void furi_hal_subghz_stop_async_rx(void) {
furi_check(furi_hal_subghz.state == SubGhzStateAsyncRx);
furi_hal_subghz.state = SubGhzStateIdle;
// Shutdown radio
furi_hal_subghz_idle();
FURI_CRITICAL_ENTER();
furi_hal_bus_disable(FuriHalBusTIM2);
// Stop debug
furi_hal_subghz_stop_debug();
FURI_CRITICAL_EXIT();
furi_hal_interrupt_set_isr(FuriHalInterruptIdTIM2, NULL, NULL);
furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
}
typedef enum {
FuriHalSubGhzAsyncTxMiddlewareStateIdle,
FuriHalSubGhzAsyncTxMiddlewareStateReset,
FuriHalSubGhzAsyncTxMiddlewareStateRun,
} FuriHalSubGhzAsyncTxMiddlewareState;
typedef struct {
FuriHalSubGhzAsyncTxMiddlewareState state;
bool is_odd_level;
uint32_t adder_duration;
} FuriHalSubGhzAsyncTxMiddleware;
typedef struct {
uint32_t* buffer;
FuriHalSubGhzAsyncTxCallback callback;
void* callback_context;
uint64_t duty_high;
uint64_t duty_low;
FuriHalSubGhzAsyncTxMiddleware middleware;
} FuriHalSubGhzAsyncTx;
static FuriHalSubGhzAsyncTx furi_hal_subghz_async_tx = {0};
void furi_hal_subghz_async_tx_middleware_idle(FuriHalSubGhzAsyncTxMiddleware* middleware) {
middleware->state = FuriHalSubGhzAsyncTxMiddlewareStateIdle;
middleware->is_odd_level = false;
middleware->adder_duration = 0;
}
static inline uint32_t furi_hal_subghz_async_tx_middleware_get_duration(
FuriHalSubGhzAsyncTxMiddleware* middleware,
FuriHalSubGhzAsyncTxCallback callback) {
uint32_t ret = 0;
bool is_level = false;
if(middleware->state == FuriHalSubGhzAsyncTxMiddlewareStateReset) return 0;
while(1) {
LevelDuration ld = callback(furi_hal_subghz_async_tx.callback_context);
if(level_duration_is_reset(ld)) {
middleware->state = FuriHalSubGhzAsyncTxMiddlewareStateReset;
if(!middleware->is_odd_level) {
return 0;
} else {
return middleware->adder_duration;
}
} else if(level_duration_is_wait(ld)) {
middleware->is_odd_level = !middleware->is_odd_level;
ret = middleware->adder_duration + FURI_HAL_SUBGHZ_ASYNC_TX_GUARD_TIME;
middleware->adder_duration = 0;
return ret;
}
is_level = level_duration_get_level(ld);
if(middleware->state == FuriHalSubGhzAsyncTxMiddlewareStateIdle) {
if(is_level != middleware->is_odd_level) {
middleware->state = FuriHalSubGhzAsyncTxMiddlewareStateRun;
middleware->is_odd_level = is_level;
middleware->adder_duration = 0;
} else {
continue;
}
}
if(middleware->state == FuriHalSubGhzAsyncTxMiddlewareStateRun) {
if(is_level == middleware->is_odd_level) {
middleware->adder_duration += level_duration_get_duration(ld);
continue;
} else {
middleware->is_odd_level = is_level;
ret = middleware->adder_duration;
middleware->adder_duration = level_duration_get_duration(ld);
return ret;
}
}
}
}
static void furi_hal_subghz_async_tx_refill(uint32_t* buffer, size_t samples) {
furi_check(furi_hal_subghz.state == SubGhzStateAsyncTx);
while(samples > 0) {
volatile uint32_t duration = furi_hal_subghz_async_tx_middleware_get_duration(
&furi_hal_subghz_async_tx.middleware, furi_hal_subghz_async_tx.callback);
if(duration == 0) {
*buffer = 0;
buffer++;
samples--;
LL_DMA_DisableIT_HT(SUBGHZ_DMA_CH1_DEF);
LL_DMA_DisableIT_TC(SUBGHZ_DMA_CH1_DEF);
if(LL_DMA_IsActiveFlag_HT1(SUBGHZ_DMA)) {
LL_DMA_ClearFlag_HT1(SUBGHZ_DMA);
}
if(LL_DMA_IsActiveFlag_TC1(SUBGHZ_DMA)) {
LL_DMA_ClearFlag_TC1(SUBGHZ_DMA);
}
break;
} else {
// Lowest possible value is 2us
if(duration > 2) {
// Subtract 1 since we counting from 0
*buffer = duration - 1;
} else {
*buffer = 1;
}
buffer++;
samples--;
}
if(samples % 2) {
furi_hal_subghz_async_tx.duty_high += duration;
} else {
furi_hal_subghz_async_tx.duty_low += duration;
}
}
}
static void furi_hal_subghz_async_tx_dma_isr(void* context) {
UNUSED(context);
furi_check(furi_hal_subghz.state == SubGhzStateAsyncTx);
#if SUBGHZ_DMA_CH1_CHANNEL == LL_DMA_CHANNEL_1
if(LL_DMA_IsActiveFlag_HT1(SUBGHZ_DMA)) {
LL_DMA_ClearFlag_HT1(SUBGHZ_DMA);
furi_hal_subghz_async_tx_refill(
furi_hal_subghz_async_tx.buffer, FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF);
}
if(LL_DMA_IsActiveFlag_TC1(SUBGHZ_DMA)) {
LL_DMA_ClearFlag_TC1(SUBGHZ_DMA);
furi_hal_subghz_async_tx_refill(
furi_hal_subghz_async_tx.buffer + FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF,
FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF);
}
#else
#error Update this code. Would you kindly?
#endif
}
bool furi_hal_subghz_start_async_tx(FuriHalSubGhzAsyncTxCallback callback, void* context) {
furi_check(furi_hal_subghz.state == SubGhzStateIdle);
furi_check(callback);
//If transmission is prohibited by regional settings
if(furi_hal_subghz.regulation != SubGhzRegulationTxRx) return false;
furi_hal_subghz_async_tx.callback = callback;
furi_hal_subghz_async_tx.callback_context = context;
furi_hal_subghz.state = SubGhzStateAsyncTx;
furi_hal_subghz_async_tx.duty_low = 0;
furi_hal_subghz_async_tx.duty_high = 0;
furi_hal_subghz_async_tx.buffer =
malloc(FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL * sizeof(uint32_t));
// Connect CC1101_GD0 to TIM2 as output
furi_hal_gpio_init_ex(
&gpio_cc1101_g0, GpioModeAltFunctionPushPull, GpioPullNo, GpioSpeedLow, GpioAltFn1TIM2);
// Configure DMA
LL_DMA_InitTypeDef dma_config = {0};
dma_config.PeriphOrM2MSrcAddress = (uint32_t) & (TIM2->ARR);
dma_config.MemoryOrM2MDstAddress = (uint32_t)furi_hal_subghz_async_tx.buffer;
dma_config.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
dma_config.Mode = LL_DMA_MODE_CIRCULAR;
dma_config.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
dma_config.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
dma_config.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
dma_config.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD;
dma_config.NbData = FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL;
dma_config.PeriphRequest = LL_DMAMUX_REQ_TIM2_UP;
dma_config.Priority =
LL_DMA_PRIORITY_VERYHIGH; // Ensure that ARR is updated before anyone else try to check it
LL_DMA_Init(SUBGHZ_DMA_CH1_DEF, &dma_config);
furi_hal_interrupt_set_isr(SUBGHZ_DMA_CH1_IRQ, furi_hal_subghz_async_tx_dma_isr, NULL);
LL_DMA_EnableIT_TC(SUBGHZ_DMA_CH1_DEF);
LL_DMA_EnableIT_HT(SUBGHZ_DMA_CH1_DEF);
LL_DMA_EnableChannel(SUBGHZ_DMA_CH1_DEF);
furi_hal_bus_enable(FuriHalBusTIM2);
// Configure TIM2
LL_TIM_SetCounterMode(TIM2, LL_TIM_COUNTERMODE_UP);
LL_TIM_SetClockDivision(TIM2, LL_TIM_CLOCKDIVISION_DIV1);
LL_TIM_SetAutoReload(TIM2, 1000);
LL_TIM_SetPrescaler(TIM2, 64 - 1);
LL_TIM_SetClockSource(TIM2, LL_TIM_CLOCKSOURCE_INTERNAL);
LL_TIM_DisableARRPreload(TIM2);
// Configure TIM2 CH2
LL_TIM_OC_InitTypeDef TIM_OC_InitStruct = {0};
TIM_OC_InitStruct.OCMode = LL_TIM_OCMODE_TOGGLE;
TIM_OC_InitStruct.OCState = LL_TIM_OCSTATE_DISABLE;
TIM_OC_InitStruct.OCNState = LL_TIM_OCSTATE_DISABLE;
TIM_OC_InitStruct.CompareValue = 0;
TIM_OC_InitStruct.OCPolarity = LL_TIM_OCPOLARITY_HIGH;
LL_TIM_OC_Init(TIM2, LL_TIM_CHANNEL_CH2, &TIM_OC_InitStruct);
LL_TIM_OC_DisableFast(TIM2, LL_TIM_CHANNEL_CH2);
LL_TIM_DisableMasterSlaveMode(TIM2);
furi_hal_subghz_async_tx_middleware_idle(&furi_hal_subghz_async_tx.middleware);
furi_hal_subghz_async_tx_refill(
furi_hal_subghz_async_tx.buffer, FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL);
LL_TIM_EnableDMAReq_UPDATE(TIM2);
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH2);
// Start debug
if(furi_hal_subghz_start_debug()) {
const GpioPin* gpio = furi_hal_subghz.async_mirror_pin;
// //Preparing bit mask
// //Debug pin is may be only PORTB! (PB0, PB1, .., PB15)
// furi_hal_subghz_debug_gpio_buff[0] = 0;
// furi_hal_subghz_debug_gpio_buff[1] = 0;
furi_hal_subghz_debug_gpio_buff[0] = gpio->pin;
furi_hal_subghz_debug_gpio_buff[1] = (uint32_t)gpio->pin << GPIO_NUMBER;
dma_config.MemoryOrM2MDstAddress = (uint32_t)furi_hal_subghz_debug_gpio_buff;
dma_config.PeriphOrM2MSrcAddress = (uint32_t) & (gpio->port->BSRR);
dma_config.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
dma_config.Mode = LL_DMA_MODE_CIRCULAR;
dma_config.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
dma_config.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
dma_config.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
dma_config.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD;
dma_config.NbData = 2;
dma_config.PeriphRequest = LL_DMAMUX_REQ_TIM2_UP;
dma_config.Priority = LL_DMA_PRIORITY_HIGH; // Ensure that it's updated after ARR
LL_DMA_Init(SUBGHZ_DMA_CH2_DEF, &dma_config);
LL_DMA_SetDataLength(SUBGHZ_DMA_CH2_DEF, 2);
LL_DMA_EnableChannel(SUBGHZ_DMA_CH2_DEF);
}
// Start counter
#ifdef FURI_HAL_SUBGHZ_TX_GPIO
furi_hal_gpio_write(&FURI_HAL_SUBGHZ_TX_GPIO, true);
#endif
furi_hal_subghz_tx();
LL_TIM_SetCounter(TIM2, 0);
LL_TIM_EnableCounter(TIM2);
return true;
}
bool furi_hal_subghz_is_async_tx_complete(void) {
return (furi_hal_subghz.state == SubGhzStateAsyncTx) && (LL_TIM_GetAutoReload(TIM2) == 0);
}
void furi_hal_subghz_stop_async_tx(void) {
furi_check(furi_hal_subghz.state == SubGhzStateAsyncTx);
// Shutdown radio
furi_hal_subghz_idle();
// Deinitialize GPIO
furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
#ifdef FURI_HAL_SUBGHZ_TX_GPIO
furi_hal_gpio_write(&FURI_HAL_SUBGHZ_TX_GPIO, false);
#endif
// Deinitialize Timer
furi_hal_bus_disable(FuriHalBusTIM2);
furi_hal_interrupt_set_isr(FuriHalInterruptIdTIM2, NULL, NULL);
// Deinitialize DMA
LL_DMA_DeInit(SUBGHZ_DMA_CH1_DEF);
furi_hal_interrupt_set_isr(SUBGHZ_DMA_CH1_IRQ, NULL, NULL);
// Stop debug
if(furi_hal_subghz_stop_debug()) {
LL_DMA_DisableChannel(SUBGHZ_DMA_CH2_DEF);
}
free(furi_hal_subghz_async_tx.buffer);
float duty_cycle =
100.0f * (float)furi_hal_subghz_async_tx.duty_high /
((float)furi_hal_subghz_async_tx.duty_low + (float)furi_hal_subghz_async_tx.duty_high);
FURI_LOG_D(
TAG,
"Async TX Radio stats: on %0.0fus, off %0.0fus, DutyCycle: %0.0f%%",
(double)furi_hal_subghz_async_tx.duty_high,
(double)furi_hal_subghz_async_tx.duty_low,
(double)duty_cycle);
furi_hal_subghz.state = SubGhzStateIdle;
}