unleashed-firmware/lib/lfrfid/protocols/protocol_hid_generic.c
Sergey Gavrilov 4bf29827f8
M*LIB: non-inlined strings, FuriString primitive (#1795)
* Quicksave 1
* Header stage complete
* Source stage complete
* Lint & merge fixes
* Includes
* Documentation step 1
* FBT: output free size considering BT STACK
* Documentation step 2
* py lint
* Fix music player plugin
* unit test stage 1: string allocator, mem, getters, setters, appends, compare, search.
* unit test: string equality
* unit test: string replace
* unit test: string start_with, end_with
* unit test: string trim
* unit test: utf-8
* Rename
* Revert fw_size changes
* Simplify CLI backspace handling
* Simplify CLI character insert
* Merge fixes
* Furi: correct filenaming and spelling
* Bt: remove furi string include

Co-authored-by: Aleksandr Kutuzov <alleteam@gmail.com>
2022-10-06 00:15:23 +09:00

289 lines
9.7 KiB
C

#include <furi.h>
#include <toolbox/protocols/protocol.h>
#include <lfrfid/tools/fsk_demod.h>
#include <lfrfid/tools/fsk_osc.h>
#include "lfrfid_protocols.h"
#include <lfrfid/tools/bit_lib.h>
#define JITTER_TIME (20)
#define MIN_TIME (64 - JITTER_TIME)
#define MAX_TIME (80 + JITTER_TIME)
#define HID_DATA_SIZE 11
#define HID_PREAMBLE_SIZE 1
#define HID_PROTOCOL_SIZE_UNKNOWN 0
#define HID_ENCODED_DATA_SIZE (HID_PREAMBLE_SIZE + HID_DATA_SIZE + HID_PREAMBLE_SIZE)
#define HID_ENCODED_BIT_SIZE ((HID_PREAMBLE_SIZE + HID_DATA_SIZE) * 8)
#define HID_DECODED_DATA_SIZE (6)
#define HID_DECODED_BIT_SIZE ((HID_ENCODED_BIT_SIZE - HID_PREAMBLE_SIZE * 8) / 2)
#define HID_PREAMBLE 0x1D
typedef struct {
FSKDemod* fsk_demod;
} ProtocolHIDDecoder;
typedef struct {
FSKOsc* fsk_osc;
uint8_t encoded_index;
uint32_t pulse;
} ProtocolHIDEncoder;
typedef struct {
ProtocolHIDDecoder decoder;
ProtocolHIDEncoder encoder;
uint8_t encoded_data[HID_ENCODED_DATA_SIZE];
uint8_t data[HID_DECODED_DATA_SIZE];
} ProtocolHID;
ProtocolHID* protocol_hid_generic_alloc(void) {
ProtocolHID* protocol = malloc(sizeof(ProtocolHID));
protocol->decoder.fsk_demod = fsk_demod_alloc(MIN_TIME, 6, MAX_TIME, 5);
protocol->encoder.fsk_osc = fsk_osc_alloc(8, 10, 50);
return protocol;
};
void protocol_hid_generic_free(ProtocolHID* protocol) {
fsk_demod_free(protocol->decoder.fsk_demod);
fsk_osc_free(protocol->encoder.fsk_osc);
free(protocol);
};
uint8_t* protocol_hid_generic_get_data(ProtocolHID* protocol) {
return protocol->data;
};
void protocol_hid_generic_decoder_start(ProtocolHID* protocol) {
memset(protocol->encoded_data, 0, HID_ENCODED_DATA_SIZE);
};
static bool protocol_hid_generic_can_be_decoded(const uint8_t* data) {
// check preamble
if(data[0] != HID_PREAMBLE || data[HID_PREAMBLE_SIZE + HID_DATA_SIZE] != HID_PREAMBLE) {
return false;
}
// check for manchester encoding
for(size_t i = HID_PREAMBLE_SIZE; i < (HID_PREAMBLE_SIZE + HID_DATA_SIZE); i++) {
for(size_t n = 0; n < 4; n++) {
uint8_t bit_pair = (data[i] >> (n * 2)) & 0b11;
if(bit_pair == 0b11 || bit_pair == 0b00) {
return false;
}
}
}
return true;
}
static void protocol_hid_generic_decode(const uint8_t* from, uint8_t* to) {
size_t bit_index = 0;
for(size_t i = HID_PREAMBLE_SIZE; i < (HID_PREAMBLE_SIZE + HID_DATA_SIZE); i++) {
for(size_t n = 0; n < 4; n++) {
uint8_t bit_pair = (from[i] >> (6 - (n * 2))) & 0b11;
if(bit_pair == 0b01) {
bit_lib_set_bit(to, bit_index, 0);
} else if(bit_pair == 0b10) {
bit_lib_set_bit(to, bit_index, 1);
}
bit_index++;
}
}
}
/**
* Decodes size from the HID Proximity header:
* - If any of the first six bits is 1, the key is composed of the bits
* following the first 1
* - Otherwise, if the first six bits are 0:
* - If the seventh bit is 0, the key is composed of the remaining 37 bits.
* - If the seventh bit is 1, the size header continues until the next 1 bit,
* and the key is composed of however many bits remain.
*
* HID Proximity keys are 26 bits at minimum. If the header implies a key size
* under 26 bits, this function returns HID_PROTOCOL_SIZE_UNKNOWN.
*/
static uint8_t protocol_hid_generic_decode_protocol_size(ProtocolHID* protocol) {
for(size_t bit_index = 0; bit_index < 6; bit_index++) {
if(bit_lib_get_bit(protocol->data, bit_index)) {
return HID_DECODED_BIT_SIZE - bit_index - 1;
}
}
if(!bit_lib_get_bit(protocol->data, 6)) {
return 37;
}
size_t bit_index = 7;
uint8_t size = 36;
while(!bit_lib_get_bit(protocol->data, bit_index) && size >= 26) {
size--;
bit_index++;
}
return size < 26 ? HID_PROTOCOL_SIZE_UNKNOWN : size;
}
bool protocol_hid_generic_decoder_feed(ProtocolHID* protocol, bool level, uint32_t duration) {
bool value;
uint32_t count;
bool result = false;
fsk_demod_feed(protocol->decoder.fsk_demod, level, duration, &value, &count);
if(count > 0) {
for(size_t i = 0; i < count; i++) {
bit_lib_push_bit(protocol->encoded_data, HID_ENCODED_DATA_SIZE, value);
if(protocol_hid_generic_can_be_decoded(protocol->encoded_data)) {
protocol_hid_generic_decode(protocol->encoded_data, protocol->data);
result = true;
}
}
}
return result;
};
static void protocol_hid_generic_encode(ProtocolHID* protocol) {
protocol->encoded_data[0] = HID_PREAMBLE;
size_t bit_index = 0;
for(size_t i = 0; i < HID_DECODED_BIT_SIZE; i++) {
bool bit = bit_lib_get_bit(protocol->data, i);
if(bit) {
bit_lib_set_bit(protocol->encoded_data, 8 + bit_index, 1);
bit_lib_set_bit(protocol->encoded_data, 8 + bit_index + 1, 0);
} else {
bit_lib_set_bit(protocol->encoded_data, 8 + bit_index, 0);
bit_lib_set_bit(protocol->encoded_data, 8 + bit_index + 1, 1);
}
bit_index += 2;
}
}
bool protocol_hid_generic_encoder_start(ProtocolHID* protocol) {
protocol->encoder.encoded_index = 0;
protocol->encoder.pulse = 0;
protocol_hid_generic_encode(protocol);
return true;
};
LevelDuration protocol_hid_generic_encoder_yield(ProtocolHID* protocol) {
bool level = 0;
uint32_t duration = 0;
// if pulse is zero, we need to output high, otherwise we need to output low
if(protocol->encoder.pulse == 0) {
// get bit
uint8_t bit = bit_lib_get_bit(protocol->encoded_data, protocol->encoder.encoded_index);
// get pulse from oscillator
bool advance = fsk_osc_next(protocol->encoder.fsk_osc, bit, &duration);
if(advance) {
bit_lib_increment_index(protocol->encoder.encoded_index, HID_ENCODED_BIT_SIZE);
}
// duration diveded by 2 because we need to output high and low
duration = duration / 2;
protocol->encoder.pulse = duration;
level = true;
} else {
// output low half and reset pulse
duration = protocol->encoder.pulse;
protocol->encoder.pulse = 0;
level = false;
}
return level_duration_make(level, duration);
};
bool protocol_hid_generic_write_data(ProtocolHID* protocol, void* data) {
LFRFIDWriteRequest* request = (LFRFIDWriteRequest*)data;
bool result = false;
// Correct protocol data by redecoding
protocol_hid_generic_encoder_start(protocol);
protocol_hid_generic_decode(protocol->encoded_data, protocol->data);
protocol_hid_generic_encoder_start(protocol);
if(request->write_type == LFRFIDWriteTypeT5577) {
request->t5577.block[0] = LFRFID_T5577_MODULATION_FSK2a | LFRFID_T5577_BITRATE_RF_50 |
(3 << LFRFID_T5577_MAXBLOCK_SHIFT);
request->t5577.block[1] = bit_lib_get_bits_32(protocol->encoded_data, 0, 32);
request->t5577.block[2] = bit_lib_get_bits_32(protocol->encoded_data, 32, 32);
request->t5577.block[3] = bit_lib_get_bits_32(protocol->encoded_data, 64, 32);
request->t5577.blocks_to_write = 4;
result = true;
}
return result;
};
static void protocol_hid_generic_string_cat_protocol_bits(
ProtocolHID* protocol,
uint8_t protocol_size,
FuriString* result) {
// round up to the nearest nibble
const uint8_t hex_character_count = (protocol_size + 3) / 4;
const uint8_t protocol_bit_index = HID_DECODED_BIT_SIZE - protocol_size;
for(size_t i = 0; i < hex_character_count; i++) {
uint8_t nibble = i == 0 ? bit_lib_get_bits(
protocol->data,
protocol_bit_index,
protocol_size % 4 == 0 ? 4 : protocol_size % 4) :
bit_lib_get_bits(protocol->data, protocol_bit_index + i * 4, 4);
furi_string_cat_printf(result, "%X", nibble & 0xF);
}
}
void protocol_hid_generic_render_data(ProtocolHID* protocol, FuriString* result) {
const uint8_t protocol_size = protocol_hid_generic_decode_protocol_size(protocol);
if(protocol_size == HID_PROTOCOL_SIZE_UNKNOWN) {
furi_string_printf(
result,
"Generic HID Proximity\r\n"
"Data: %02X%02X%02X%02X%02X%X",
protocol->data[0],
protocol->data[1],
protocol->data[2],
protocol->data[3],
protocol->data[4],
protocol->data[5] >> 4);
} else {
furi_string_printf(
result,
"%hhu-bit HID Proximity\r\n"
"Data: ",
protocol_size);
protocol_hid_generic_string_cat_protocol_bits(protocol, protocol_size, result);
}
};
const ProtocolBase protocol_hid_generic = {
.name = "HIDProx",
.manufacturer = "Generic",
.data_size = HID_DECODED_DATA_SIZE,
.features = LFRFIDFeatureASK,
.validate_count = 6,
.alloc = (ProtocolAlloc)protocol_hid_generic_alloc,
.free = (ProtocolFree)protocol_hid_generic_free,
.get_data = (ProtocolGetData)protocol_hid_generic_get_data,
.decoder =
{
.start = (ProtocolDecoderStart)protocol_hid_generic_decoder_start,
.feed = (ProtocolDecoderFeed)protocol_hid_generic_decoder_feed,
},
.encoder =
{
.start = (ProtocolEncoderStart)protocol_hid_generic_encoder_start,
.yield = (ProtocolEncoderYield)protocol_hid_generic_encoder_yield,
},
.render_data = (ProtocolRenderData)protocol_hid_generic_render_data,
.render_brief_data = (ProtocolRenderData)protocol_hid_generic_render_data,
.write_data = (ProtocolWriteData)protocol_hid_generic_write_data,
};