mirror of
https://github.com/DarkFlippers/unleashed-firmware.git
synced 2024-12-25 14:22:27 +03:00
363 lines
14 KiB
C
363 lines
14 KiB
C
/* Copyright (C) 2022-2023 Salvatore Sanfilippo -- All Rights Reserved
|
|
* See the LICENSE file for information about the license. */
|
|
|
|
#include "app.h"
|
|
|
|
/* If this define is enabled, ProtoView is going to mess with the
|
|
* otherwise opaque SubGhzWorker structure in order to disable
|
|
* its filter for samples shorter than a given amount (30us at the
|
|
* time I'm writing this comment).
|
|
*
|
|
* This structure must be taken in sync with the one of the firmware. */
|
|
#define PROTOVIEW_DISABLE_SUBGHZ_FILTER 0
|
|
|
|
#ifdef PROTOVIEW_DISABLE_SUBGHZ_FILTER
|
|
struct SubGhzWorker {
|
|
FuriThread* thread;
|
|
FuriStreamBuffer* stream;
|
|
|
|
volatile bool running;
|
|
volatile bool overrun;
|
|
|
|
LevelDuration filter_level_duration;
|
|
bool filter_running;
|
|
uint16_t filter_duration;
|
|
|
|
SubGhzWorkerOverrunCallback overrun_callback;
|
|
SubGhzWorkerPairCallback pair_callback;
|
|
void* context;
|
|
};
|
|
#endif
|
|
|
|
RawSamplesBuffer *RawSamples, *DetectedSamples;
|
|
extern const SubGhzProtocolRegistry protoview_protocol_registry;
|
|
|
|
/* Draw some text with a border. If the outside color is black and the inside
|
|
* color is white, it just writes the border of the text, but the function can
|
|
* also be used to write a bold variation of the font setting both the
|
|
* colors to black, or alternatively to write a black text with a white
|
|
* border so that it is visible if there are black stuff on the background. */
|
|
/* The callback actually just passes the control to the actual active
|
|
* view callback, after setting up basic stuff like cleaning the screen
|
|
* and setting color to black. */
|
|
static void render_callback(Canvas *const canvas, void *ctx) {
|
|
ProtoViewApp *app = ctx;
|
|
|
|
/* Clear screen. */
|
|
canvas_set_color(canvas, ColorWhite);
|
|
canvas_draw_box(canvas, 0, 0, 127, 63);
|
|
canvas_set_color(canvas, ColorBlack);
|
|
canvas_set_font(canvas, FontPrimary);
|
|
|
|
/* Call who is in charge right now. */
|
|
switch(app->current_view) {
|
|
case ViewRawPulses: render_view_raw_pulses(canvas,app); break;
|
|
case ViewInfo: render_view_info(canvas,app); break;
|
|
case ViewFrequencySettings:
|
|
case ViewModulationSettings:
|
|
render_view_settings(canvas,app); break;
|
|
case ViewDirectSampling: render_view_direct_sampling(canvas,app); break;
|
|
case ViewLast: furi_crash(TAG " ViewLast selected"); break;
|
|
}
|
|
}
|
|
|
|
/* Here all we do is putting the events into the queue that will be handled
|
|
* in the while() loop of the app entry point function. */
|
|
static void input_callback(InputEvent* input_event, void* ctx)
|
|
{
|
|
ProtoViewApp *app = ctx;
|
|
furi_message_queue_put(app->event_queue,input_event,FuriWaitForever);
|
|
}
|
|
|
|
|
|
/* Called to switch view (when left/right is pressed). Handles
|
|
* changing the current view ID and calling the enter/exit view
|
|
* callbacks if needed. */
|
|
static void app_switch_view(ProtoViewApp *app, SwitchViewDirection dir) {
|
|
ProtoViewCurrentView old = app->current_view;
|
|
if (dir == AppNextView) {
|
|
app->current_view++;
|
|
if (app->current_view == ViewLast) app->current_view = 0;
|
|
} else if (dir == AppPrevView) {
|
|
if (app->current_view == 0)
|
|
app->current_view = ViewLast-1;
|
|
else
|
|
app->current_view--;
|
|
}
|
|
ProtoViewCurrentView new = app->current_view;
|
|
|
|
/* Call the enter/exit view callbacks if needed. */
|
|
if (old == ViewDirectSampling) view_exit_direct_sampling(app);
|
|
if (new == ViewDirectSampling) view_enter_direct_sampling(app);
|
|
/* The frequency/modulation settings are actually a single view:
|
|
* as long as the user stays between the two modes of this view we
|
|
* don't need to call the exit-view callback. */
|
|
if ((old == ViewFrequencySettings && new != ViewModulationSettings) ||
|
|
(old == ViewModulationSettings && new != ViewFrequencySettings))
|
|
view_exit_settings(app);
|
|
|
|
/* Set the current subview of the view we just left to zero, that is
|
|
* the main subview of the view. When re re-enter it we want to see
|
|
* the main thing. */
|
|
app->current_subview[old] = 0;
|
|
memset(app->view_privdata,0,PROTOVIEW_VIEW_PRIVDATA_LEN);
|
|
}
|
|
|
|
/* Allocate the application state and initialize a number of stuff.
|
|
* This is called in the entry point to create the application state. */
|
|
ProtoViewApp* protoview_app_alloc() {
|
|
ProtoViewApp *app = malloc(sizeof(ProtoViewApp));
|
|
|
|
// Init shared data structures
|
|
RawSamples = raw_samples_alloc();
|
|
DetectedSamples = raw_samples_alloc();
|
|
|
|
//init setting
|
|
app->setting = subghz_setting_alloc();
|
|
subghz_setting_load(app->setting, EXT_PATH("subghz/assets/setting_user"));
|
|
|
|
// GUI
|
|
app->gui = furi_record_open(RECORD_GUI);
|
|
app->view_port = view_port_alloc();
|
|
view_port_draw_callback_set(app->view_port, render_callback, app);
|
|
view_port_input_callback_set(app->view_port, input_callback, app);
|
|
gui_add_view_port(app->gui, app->view_port, GuiLayerFullscreen);
|
|
app->event_queue = furi_message_queue_alloc(8, sizeof(InputEvent));
|
|
app->view_dispatcher = NULL;
|
|
app->text_input = NULL;
|
|
app->show_text_input = false;
|
|
app->current_view = ViewRawPulses;
|
|
for (int j = 0; j < ViewLast; j++) app->current_subview[j] = 0;
|
|
app->direct_sampling_enabled = false;
|
|
app->view_privdata = malloc(PROTOVIEW_VIEW_PRIVDATA_LEN);
|
|
memset(app->view_privdata,0,PROTOVIEW_VIEW_PRIVDATA_LEN);
|
|
|
|
// Signal found and visualization defaults
|
|
app->signal_bestlen = 0;
|
|
app->signal_last_scan_idx = 0;
|
|
app->signal_decoded = false;
|
|
app->us_scale = PROTOVIEW_RAW_VIEW_DEFAULT_SCALE;
|
|
app->signal_offset = 0;
|
|
app->msg_info = NULL;
|
|
|
|
// Init Worker & Protocol
|
|
app->txrx = malloc(sizeof(ProtoViewTxRx));
|
|
|
|
/* Setup rx worker and environment. */
|
|
app->txrx->freq_mod_changed = false;
|
|
app->txrx->debug_timer_sampling = false;
|
|
app->txrx->last_g0_change_time = DWT->CYCCNT;
|
|
app->txrx->last_g0_value = false;
|
|
app->txrx->worker = subghz_worker_alloc();
|
|
#ifdef PROTOVIEW_DISABLE_SUBGHZ_FILTER
|
|
app->txrx->worker->filter_running = 0;
|
|
#endif
|
|
app->txrx->environment = subghz_environment_alloc();
|
|
subghz_environment_set_protocol_registry(
|
|
app->txrx->environment, (void*)&protoview_protocol_registry);
|
|
app->txrx->receiver =
|
|
subghz_receiver_alloc_init(app->txrx->environment);
|
|
subghz_receiver_set_filter(app->txrx->receiver,
|
|
SubGhzProtocolFlag_Decodable);
|
|
subghz_worker_set_overrun_callback(
|
|
app->txrx->worker,
|
|
(SubGhzWorkerOverrunCallback)subghz_receiver_reset);
|
|
subghz_worker_set_pair_callback(
|
|
app->txrx->worker, (SubGhzWorkerPairCallback)subghz_receiver_decode);
|
|
subghz_worker_set_context(app->txrx->worker, app->txrx->receiver);
|
|
|
|
app->frequency = subghz_setting_get_default_frequency(app->setting);
|
|
app->modulation = 0; /* Defaults to ProtoViewModulations[0]. */
|
|
|
|
furi_hal_power_suppress_charge_enter();
|
|
app->running = 1;
|
|
|
|
return app;
|
|
}
|
|
|
|
/* Free what the application allocated. It is not clear to me if the
|
|
* Flipper OS, once the application exits, will be able to reclaim space
|
|
* even if we forget to free something here. */
|
|
void protoview_app_free(ProtoViewApp *app) {
|
|
furi_assert(app);
|
|
|
|
// Put CC1101 on sleep.
|
|
radio_sleep(app);
|
|
|
|
// View related.
|
|
view_port_enabled_set(app->view_port, false);
|
|
gui_remove_view_port(app->gui, app->view_port);
|
|
view_port_free(app->view_port);
|
|
furi_record_close(RECORD_GUI);
|
|
furi_message_queue_free(app->event_queue);
|
|
app->gui = NULL;
|
|
|
|
// Frequency setting.
|
|
subghz_setting_free(app->setting);
|
|
|
|
// Worker stuff.
|
|
if (!app->txrx->debug_timer_sampling) {
|
|
subghz_receiver_free(app->txrx->receiver);
|
|
subghz_environment_free(app->txrx->environment);
|
|
subghz_worker_free(app->txrx->worker);
|
|
}
|
|
free(app->txrx);
|
|
|
|
// Raw samples buffers.
|
|
raw_samples_free(RawSamples);
|
|
raw_samples_free(DetectedSamples);
|
|
furi_hal_power_suppress_charge_exit();
|
|
|
|
free(app);
|
|
}
|
|
|
|
/* Called periodically. Do signal processing here. Data we process here
|
|
* will be later displayed by the render callback. The side effect of this
|
|
* function is to scan for signals and set DetectedSamples. */
|
|
static void timer_callback(void *ctx) {
|
|
ProtoViewApp *app = ctx;
|
|
uint32_t delta, lastidx = app->signal_last_scan_idx;
|
|
|
|
/* scan_for_signal(), called by this function, deals with a
|
|
* circular buffer. To never miss anything, even if a signal spawns
|
|
* cross-boundaries, it is enough if we scan each time the buffer fills
|
|
* for 50% more compared to the last scan. Thanks to this check we
|
|
* can avoid scanning too many times to just find the same data. */
|
|
if (lastidx < RawSamples->idx) {
|
|
delta = RawSamples->idx - lastidx;
|
|
} else {
|
|
delta = RawSamples->total - lastidx + RawSamples->idx;
|
|
}
|
|
if (delta < RawSamples->total/2) return;
|
|
app->signal_last_scan_idx = RawSamples->idx;
|
|
scan_for_signal(app);
|
|
}
|
|
|
|
int32_t protoview_app_entry(void* p) {
|
|
UNUSED(p);
|
|
ProtoViewApp *app = protoview_app_alloc();
|
|
|
|
/* Create a timer. We do data analysis in the callback. */
|
|
FuriTimer *timer = furi_timer_alloc(timer_callback, FuriTimerTypePeriodic, app);
|
|
furi_timer_start(timer, furi_kernel_get_tick_frequency() / 8);
|
|
|
|
/* Start listening to signals immediately. */
|
|
radio_begin(app);
|
|
radio_rx(app);
|
|
|
|
/* This is the main event loop: here we get the events that are pushed
|
|
* in the queue by input_callback(), and process them one after the
|
|
* other. The timeout is 100 milliseconds, so if not input is received
|
|
* before such time, we exit the queue_get() function and call
|
|
* view_port_update() in order to refresh our screen content. */
|
|
InputEvent input;
|
|
while(app->running) {
|
|
FuriStatus qstat = furi_message_queue_get(app->event_queue, &input, 100);
|
|
if (qstat == FuriStatusOk) {
|
|
if (DEBUG_MSG) FURI_LOG_E(TAG, "Main Loop - Input: type %d key %u",
|
|
input.type, input.key);
|
|
|
|
/* Handle navigation here. Then handle view-specific inputs
|
|
* in the view specific handling function. */
|
|
if (input.type == InputTypeShort &&
|
|
input.key == InputKeyBack)
|
|
{
|
|
/* Exit the app. */
|
|
app->running = 0;
|
|
} else if (input.type == InputTypeShort &&
|
|
input.key == InputKeyRight &&
|
|
get_current_subview(app) == 0)
|
|
{
|
|
/* Go to the next view. */
|
|
app_switch_view(app,AppNextView);
|
|
} else if (input.type == InputTypeShort &&
|
|
input.key == InputKeyLeft &&
|
|
get_current_subview(app) == 0)
|
|
{
|
|
/* Go to the previous view. */
|
|
app_switch_view(app,AppPrevView);
|
|
} else {
|
|
/* This is where we pass the control to the currently
|
|
* active view input processing. */
|
|
switch(app->current_view) {
|
|
case ViewRawPulses:
|
|
process_input_raw_pulses(app,input);
|
|
break;
|
|
case ViewInfo:
|
|
process_input_info(app,input);
|
|
break;
|
|
case ViewFrequencySettings:
|
|
case ViewModulationSettings:
|
|
process_input_settings(app,input);
|
|
break;
|
|
case ViewDirectSampling:
|
|
process_input_direct_sampling(app,input);
|
|
break;
|
|
case ViewLast: furi_crash(TAG " ViewLast selected"); break;
|
|
}
|
|
}
|
|
} else {
|
|
/* Useful to understand if the app is still alive when it
|
|
* does not respond because of bugs. */
|
|
if (DEBUG_MSG) {
|
|
static int c = 0; c++;
|
|
if (!(c % 20)) FURI_LOG_E(TAG, "Loop timeout");
|
|
}
|
|
}
|
|
if (app->show_text_input) {
|
|
/* Remove our viewport: we need to use a view dispatcher
|
|
* in order to show the standard Flipper keyboard. */
|
|
gui_remove_view_port(app->gui, app->view_port);
|
|
|
|
/* Allocate a view dispatcher, add a text input view to it,
|
|
* and activate it. */
|
|
app->view_dispatcher = view_dispatcher_alloc();
|
|
view_dispatcher_enable_queue(app->view_dispatcher);
|
|
app->text_input = text_input_alloc();
|
|
view_dispatcher_set_event_callback_context(app->view_dispatcher,app);
|
|
view_dispatcher_add_view(app->view_dispatcher, 0, text_input_get_view(app->text_input));
|
|
view_dispatcher_switch_to_view(app->view_dispatcher, 0);
|
|
|
|
/* Setup the text input view. The different parameters are set
|
|
* in the app structure by the view that wanted to show the
|
|
* input text. The callback, buffer and buffer len must be set. */
|
|
text_input_set_header_text(app->text_input, "Save signal filename");
|
|
text_input_set_result_callback(
|
|
app->text_input,
|
|
app->text_input_done_callback,
|
|
app,
|
|
app->text_input_buffer,
|
|
app->text_input_buffer_len,
|
|
false);
|
|
|
|
/* Run the dispatcher with the keyboard. */
|
|
view_dispatcher_attach_to_gui(app->view_dispatcher, app->gui, ViewDispatcherTypeFullscreen);
|
|
view_dispatcher_run(app->view_dispatcher);
|
|
|
|
/* Undo all it: remove the view from the dispatcher, free it
|
|
* so that it removes itself from the current gui, finally
|
|
* restore our viewport. */
|
|
view_dispatcher_remove_view(app->view_dispatcher, 0);
|
|
text_input_free(app->text_input);
|
|
view_dispatcher_free(app->view_dispatcher);
|
|
app->view_dispatcher = NULL;
|
|
gui_add_view_port(app->gui, app->view_port, GuiLayerFullscreen);
|
|
app->show_text_input = false;
|
|
} else {
|
|
view_port_update(app->view_port);
|
|
}
|
|
}
|
|
|
|
/* App no longer running. Shut down and free. */
|
|
if (app->txrx->txrx_state == TxRxStateRx) {
|
|
FURI_LOG_E(TAG, "Putting CC1101 to sleep before exiting.");
|
|
radio_rx_end(app);
|
|
radio_sleep(app);
|
|
}
|
|
|
|
furi_timer_free(timer);
|
|
protoview_app_free(app);
|
|
return 0;
|
|
}
|
|
|