unleashed-firmware/lib/subghz/protocols/power_smart.c
Sergey Gavrilov 4bf29827f8
M*LIB: non-inlined strings, FuriString primitive (#1795)
* Quicksave 1
* Header stage complete
* Source stage complete
* Lint & merge fixes
* Includes
* Documentation step 1
* FBT: output free size considering BT STACK
* Documentation step 2
* py lint
* Fix music player plugin
* unit test stage 1: string allocator, mem, getters, setters, appends, compare, search.
* unit test: string equality
* unit test: string replace
* unit test: string start_with, end_with
* unit test: string trim
* unit test: utf-8
* Rename
* Revert fw_size changes
* Simplify CLI backspace handling
* Simplify CLI character insert
* Merge fixes
* Furi: correct filenaming and spelling
* Bt: remove furi string include

Co-authored-by: Aleksandr Kutuzov <alleteam@gmail.com>
2022-10-06 00:15:23 +09:00

396 lines
14 KiB
C

#include "power_smart.h"
#include <lib/toolbox/manchester_decoder.h>
#include <lib/toolbox/manchester_encoder.h>
#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/encoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"
#define TAG "SubGhzProtocolPowerSmart"
#define POWER_SMART_PACKET_HEADER 0xFD000000AA000000
#define POWER_SMART_PACKET_HEADER_MASK 0xFF000000FF000000
#define CHANNEL_PATTERN "%c%c%c%c%c%c"
#define CNT_TO_CHANNEL(dip) \
(dip & 0x0001 ? '*' : '-'), (dip & 0x0002 ? '*' : '-'), (dip & 0x0004 ? '*' : '-'), \
(dip & 0x0008 ? '*' : '-'), (dip & 0x0010 ? '*' : '-'), (dip & 0x0020 ? '*' : '-')
static const SubGhzBlockConst subghz_protocol_power_smart_const = {
.te_short = 225,
.te_long = 450,
.te_delta = 100,
.min_count_bit_for_found = 64,
};
struct SubGhzProtocolDecoderPowerSmart {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
SubGhzBlockGeneric generic;
ManchesterState manchester_saved_state;
uint16_t header_count;
};
struct SubGhzProtocolEncoderPowerSmart {
SubGhzProtocolEncoderBase base;
SubGhzProtocolBlockEncoder encoder;
SubGhzBlockGeneric generic;
};
typedef enum {
PowerSmartDecoderStepReset = 0,
PowerSmartDecoderFoundHeader,
PowerSmartDecoderStepDecoderData,
} PowerSmartDecoderStep;
const SubGhzProtocolDecoder subghz_protocol_power_smart_decoder = {
.alloc = subghz_protocol_decoder_power_smart_alloc,
.free = subghz_protocol_decoder_power_smart_free,
.feed = subghz_protocol_decoder_power_smart_feed,
.reset = subghz_protocol_decoder_power_smart_reset,
.get_hash_data = subghz_protocol_decoder_power_smart_get_hash_data,
.serialize = subghz_protocol_decoder_power_smart_serialize,
.deserialize = subghz_protocol_decoder_power_smart_deserialize,
.get_string = subghz_protocol_decoder_power_smart_get_string,
};
const SubGhzProtocolEncoder subghz_protocol_power_smart_encoder = {
.alloc = subghz_protocol_encoder_power_smart_alloc,
.free = subghz_protocol_encoder_power_smart_free,
.deserialize = subghz_protocol_encoder_power_smart_deserialize,
.stop = subghz_protocol_encoder_power_smart_stop,
.yield = subghz_protocol_encoder_power_smart_yield,
};
const SubGhzProtocol subghz_protocol_power_smart = {
.name = SUBGHZ_PROTOCOL_POWER_SMART_NAME,
.type = SubGhzProtocolTypeStatic,
.flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable |
SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send,
.decoder = &subghz_protocol_power_smart_decoder,
.encoder = &subghz_protocol_power_smart_encoder,
};
void* subghz_protocol_encoder_power_smart_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolEncoderPowerSmart* instance = malloc(sizeof(SubGhzProtocolEncoderPowerSmart));
instance->base.protocol = &subghz_protocol_power_smart;
instance->generic.protocol_name = instance->base.protocol->name;
instance->encoder.repeat = 10;
instance->encoder.size_upload = 1024;
instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
instance->encoder.is_running = false;
return instance;
}
void subghz_protocol_encoder_power_smart_free(void* context) {
furi_assert(context);
SubGhzProtocolEncoderPowerSmart* instance = context;
free(instance->encoder.upload);
free(instance);
}
static LevelDuration
subghz_protocol_encoder_power_smart_add_duration_to_upload(ManchesterEncoderResult result) {
LevelDuration data = {.duration = 0, .level = 0};
switch(result) {
case ManchesterEncoderResultShortLow:
data.duration = subghz_protocol_power_smart_const.te_short;
data.level = false;
break;
case ManchesterEncoderResultLongLow:
data.duration = subghz_protocol_power_smart_const.te_long;
data.level = false;
break;
case ManchesterEncoderResultLongHigh:
data.duration = subghz_protocol_power_smart_const.te_long;
data.level = true;
break;
case ManchesterEncoderResultShortHigh:
data.duration = subghz_protocol_power_smart_const.te_short;
data.level = true;
break;
default:
furi_crash("SubGhz: ManchesterEncoderResult is incorrect.");
break;
}
return level_duration_make(data.level, data.duration);
}
/**
* Generating an upload from data.
* @param instance Pointer to a SubGhzProtocolEncoderPowerSmart instance
*/
static void
subghz_protocol_encoder_power_smart_get_upload(SubGhzProtocolEncoderPowerSmart* instance) {
furi_assert(instance);
size_t index = 0;
ManchesterEncoderState enc_state;
manchester_encoder_reset(&enc_state);
ManchesterEncoderResult result;
for(int i = 8; i > 0; i--) {
for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) {
if(!manchester_encoder_advance(
&enc_state, !bit_read(instance->generic.data, i - 1), &result)) {
instance->encoder.upload[index++] =
subghz_protocol_encoder_power_smart_add_duration_to_upload(result);
manchester_encoder_advance(
&enc_state, !bit_read(instance->generic.data, i - 1), &result);
}
instance->encoder.upload[index++] =
subghz_protocol_encoder_power_smart_add_duration_to_upload(result);
}
}
instance->encoder.upload[index] = subghz_protocol_encoder_power_smart_add_duration_to_upload(
manchester_encoder_finish(&enc_state));
if(level_duration_get_level(instance->encoder.upload[index])) {
index++;
}
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_power_smart_const.te_long * 1111);
instance->encoder.size_upload = index;
}
/**
* Analysis of received data
* @param instance Pointer to a SubGhzBlockGeneric* instance
*/
static void subghz_protocol_power_smart_remote_controller(SubGhzBlockGeneric* instance) {
/*
* Protocol: Manchester encoding, symbol rate ~2222.
* Packet Format:
* 0xFDXXXXYYAAZZZZWW where 0xFD and 0xAA sync word
* XXXX = ~ZZZZ, YY=(~WW)-1
* Example:
* SYNC1 K1 CHANNEL DATA1 K2 DATA2 SYNC2 ~K1 ~CHANNEL ~DATA2 ~K2 (~DATA2)-1
* 0xFD2137ACAADEC852 => 11111101 0 010000 10011011 1 10101100 10101010 1 1011110 1100100 0 01010010
* 0xFDA137ACAA5EC852 => 11111101 1 010000 10011011 1 10101100 10101010 0 1011110 1100100 0 01010010
* 0xFDA136ACAA5EC952 => 11111101 1 010000 10011011 0 10101100 10101010 0 1011110 1100100 1 01010010
*
* Key:
* K1K2
* 0 0 - key_unknown
* 0 1 - key_down
* 1 0 - key_up
* 1 1 - key_stop
*
*/
instance->btn = ((instance->data >> 54) & 0x02) | ((instance->data >> 40) & 0x1);
instance->serial = ((instance->data >> 33) & 0x3FFF00) | ((instance->data >> 32) & 0xFF);
instance->cnt = ((instance->data >> 49) & 0x3F);
}
bool subghz_protocol_encoder_power_smart_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolEncoderPowerSmart* instance = context;
bool res = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
FURI_LOG_E(TAG, "Deserialize error");
break;
}
if(instance->generic.data_count_bit !=
subghz_protocol_power_smart_const.min_count_bit_for_found) {
FURI_LOG_E(TAG, "Wrong number of bits in key");
break;
}
//optional parameter parameter
flipper_format_read_uint32(
flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);
subghz_protocol_power_smart_remote_controller(&instance->generic);
subghz_protocol_encoder_power_smart_get_upload(instance);
instance->encoder.is_running = true;
res = true;
} while(false);
return res;
}
void subghz_protocol_encoder_power_smart_stop(void* context) {
SubGhzProtocolEncoderPowerSmart* instance = context;
instance->encoder.is_running = false;
}
LevelDuration subghz_protocol_encoder_power_smart_yield(void* context) {
SubGhzProtocolEncoderPowerSmart* instance = context;
if(instance->encoder.repeat == 0 || !instance->encoder.is_running) {
instance->encoder.is_running = false;
return level_duration_reset();
}
LevelDuration ret = instance->encoder.upload[instance->encoder.front];
if(++instance->encoder.front == instance->encoder.size_upload) {
instance->encoder.repeat--;
instance->encoder.front = 0;
}
return ret;
}
void* subghz_protocol_decoder_power_smart_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolDecoderPowerSmart* instance = malloc(sizeof(SubGhzProtocolDecoderPowerSmart));
instance->base.protocol = &subghz_protocol_power_smart;
instance->generic.protocol_name = instance->base.protocol->name;
return instance;
}
void subghz_protocol_decoder_power_smart_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderPowerSmart* instance = context;
free(instance);
}
void subghz_protocol_decoder_power_smart_reset(void* context) {
furi_assert(context);
SubGhzProtocolDecoderPowerSmart* instance = context;
manchester_advance(
instance->manchester_saved_state,
ManchesterEventReset,
&instance->manchester_saved_state,
NULL);
}
bool subghz_protocol_power_smart_chek_valid(uint64_t packet) {
uint32_t data_1 = (uint32_t)((packet >> 40) & 0xFFFF);
uint32_t data_2 = (uint32_t)((~packet >> 8) & 0xFFFF);
uint8_t data_3 = (uint8_t)(packet >> 32) & 0xFF;
uint8_t data_4 = (uint8_t)(((~packet) & 0xFF) - 1);
return (data_1 == data_2) && (data_3 == data_4);
}
void subghz_protocol_decoder_power_smart_feed(
void* context,
bool level,
volatile uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderPowerSmart* instance = context;
ManchesterEvent event = ManchesterEventReset;
if(!level) {
if(DURATION_DIFF(duration, subghz_protocol_power_smart_const.te_short) <
subghz_protocol_power_smart_const.te_delta) {
event = ManchesterEventShortLow;
} else if(
DURATION_DIFF(duration, subghz_protocol_power_smart_const.te_long) <
subghz_protocol_power_smart_const.te_delta * 2) {
event = ManchesterEventLongLow;
}
} else {
if(DURATION_DIFF(duration, subghz_protocol_power_smart_const.te_short) <
subghz_protocol_power_smart_const.te_delta) {
event = ManchesterEventShortHigh;
} else if(
DURATION_DIFF(duration, subghz_protocol_power_smart_const.te_long) <
subghz_protocol_power_smart_const.te_delta * 2) {
event = ManchesterEventLongHigh;
}
}
if(event != ManchesterEventReset) {
bool data;
bool data_ok = manchester_advance(
instance->manchester_saved_state, event, &instance->manchester_saved_state, &data);
if(data_ok) {
instance->decoder.decode_data = (instance->decoder.decode_data << 1) | !data;
}
if((instance->decoder.decode_data & POWER_SMART_PACKET_HEADER_MASK) ==
POWER_SMART_PACKET_HEADER) {
if(subghz_protocol_power_smart_chek_valid(instance->decoder.decode_data)) {
instance->decoder.decode_data = instance->decoder.decode_data;
instance->generic.data = instance->decoder.decode_data;
instance->generic.data_count_bit =
subghz_protocol_power_smart_const.min_count_bit_for_found;
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
}
}
} else {
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
manchester_advance(
instance->manchester_saved_state,
ManchesterEventReset,
&instance->manchester_saved_state,
NULL);
}
}
static const char* subghz_protocol_power_smart_get_name_button(uint8_t btn) {
btn &= 0x3;
const char* name_btn[0x4] = {"Unknown", "Down", "Up", "Stop"};
return name_btn[btn];
}
uint8_t subghz_protocol_decoder_power_smart_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderPowerSmart* instance = context;
return subghz_protocol_blocks_get_hash_data(
&instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}
bool subghz_protocol_decoder_power_smart_serialize(
void* context,
FlipperFormat* flipper_format,
SubGhzPresetDefinition* preset) {
furi_assert(context);
SubGhzProtocolDecoderPowerSmart* instance = context;
return subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
}
bool subghz_protocol_decoder_power_smart_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolDecoderPowerSmart* instance = context;
bool ret = false;
do {
if(!subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
break;
}
if(instance->generic.data_count_bit !=
subghz_protocol_power_smart_const.min_count_bit_for_found) {
FURI_LOG_E(TAG, "Wrong number of bits in key");
break;
}
ret = true;
} while(false);
return ret;
}
void subghz_protocol_decoder_power_smart_get_string(void* context, FuriString* output) {
furi_assert(context);
SubGhzProtocolDecoderPowerSmart* instance = context;
subghz_protocol_power_smart_remote_controller(&instance->generic);
furi_string_cat_printf(
output,
"%s %db\r\n"
"Key:0x%lX%08lX\r\n"
"Sn:0x%07lX \r\n"
"Btn:%s\r\n"
"Channel:" CHANNEL_PATTERN "\r\n",
instance->generic.protocol_name,
instance->generic.data_count_bit,
(uint32_t)(instance->generic.data >> 32),
(uint32_t)(instance->generic.data & 0xFFFFFFFF),
instance->generic.serial,
subghz_protocol_power_smart_get_name_button(instance->generic.btn),
CNT_TO_CHANNEL(instance->generic.cnt));
}