unleashed-firmware/applications/main/infrared/infrared_signal.c

459 lines
14 KiB
C

#include "infrared_signal.h"
#include <stdlib.h>
#include <string.h>
#include <core/check.h>
#include <infrared_worker.h>
#include <infrared_transmit.h>
#define TAG "InfraredSignal"
// Common keys
#define INFRARED_SIGNAL_NAME_KEY "name"
#define INFRARED_SIGNAL_TYPE_KEY "type"
// Type key values
#define INFRARED_SIGNAL_TYPE_RAW "raw"
#define INFRARED_SIGNAL_TYPE_PARSED "parsed"
// Raw signal keys
#define INFRARED_SIGNAL_DATA_KEY "data"
#define INFRARED_SIGNAL_FREQUENCY_KEY "frequency"
#define INFRARED_SIGNAL_DUTY_CYCLE_KEY "duty_cycle"
// Parsed signal keys
#define INFRARED_SIGNAL_PROTOCOL_KEY "protocol"
#define INFRARED_SIGNAL_ADDRESS_KEY "address"
#define INFRARED_SIGNAL_COMMAND_KEY "command"
struct InfraredSignal {
bool is_raw;
union {
InfraredMessage message;
InfraredRawSignal raw;
} payload;
};
static void infrared_signal_clear_timings(InfraredSignal* signal) {
if(signal->is_raw) {
free(signal->payload.raw.timings);
signal->payload.raw.timings_size = 0;
signal->payload.raw.timings = NULL;
}
}
static bool infrared_signal_is_message_valid(const InfraredMessage* message) {
if(!infrared_is_protocol_valid(message->protocol)) {
FURI_LOG_E(TAG, "Unknown protocol");
return false;
}
uint32_t address_length = infrared_get_protocol_address_length(message->protocol);
uint32_t address_mask = (1UL << address_length) - 1;
if(message->address != (message->address & address_mask)) {
FURI_LOG_E(
TAG,
"Address is out of range (mask 0x%08lX): 0x%lX\r\n",
address_mask,
message->address);
return false;
}
uint32_t command_length = infrared_get_protocol_command_length(message->protocol);
uint32_t command_mask = (1UL << command_length) - 1;
if(message->command != (message->command & command_mask)) {
FURI_LOG_E(
TAG,
"Command is out of range (mask 0x%08lX): 0x%lX\r\n",
command_mask,
message->command);
return false;
}
return true;
}
static bool infrared_signal_is_raw_valid(const InfraredRawSignal* raw) {
if((raw->frequency > INFRARED_MAX_FREQUENCY) || (raw->frequency < INFRARED_MIN_FREQUENCY)) {
FURI_LOG_E(
TAG,
"Frequency is out of range (%X - %X): %lX",
INFRARED_MIN_FREQUENCY,
INFRARED_MAX_FREQUENCY,
raw->frequency);
return false;
} else if((raw->duty_cycle <= 0) || (raw->duty_cycle > 1)) {
FURI_LOG_E(TAG, "Duty cycle is out of range (0 - 1): %f", (double)raw->duty_cycle);
return false;
} else if((raw->timings_size <= 0) || (raw->timings_size > MAX_TIMINGS_AMOUNT)) {
FURI_LOG_E(
TAG,
"Timings amount is out of range (0 - %X): %zX",
MAX_TIMINGS_AMOUNT,
raw->timings_size);
return false;
}
return true;
}
static inline InfraredErrorCode
infrared_signal_save_message(const InfraredMessage* message, FlipperFormat* ff) {
const char* protocol_name = infrared_get_protocol_name(message->protocol);
InfraredErrorCode error = InfraredErrorCodeNone;
do {
if(!flipper_format_write_string_cstr(
ff, INFRARED_SIGNAL_TYPE_KEY, INFRARED_SIGNAL_TYPE_PARSED)) {
error = InfraredErrorCodeSignalUnableToWriteType;
break;
}
if(!flipper_format_write_string_cstr(ff, INFRARED_SIGNAL_PROTOCOL_KEY, protocol_name)) {
error = InfraredErrorCodeSignalMessageUnableToWriteProtocol;
break;
}
if(!flipper_format_write_hex(
ff, INFRARED_SIGNAL_ADDRESS_KEY, (uint8_t*)&message->address, 4)) {
error = InfraredErrorCodeSignalMessageUnableToWriteAddress;
break;
}
if(!flipper_format_write_hex(
ff, INFRARED_SIGNAL_COMMAND_KEY, (uint8_t*)&message->command, 4)) {
error = InfraredErrorCodeSignalMessageUnableToWriteCommand;
break;
}
} while(false);
return error;
}
static inline InfraredErrorCode
infrared_signal_save_raw(const InfraredRawSignal* raw, FlipperFormat* ff) {
furi_assert(raw->timings_size <= MAX_TIMINGS_AMOUNT);
InfraredErrorCode error = InfraredErrorCodeNone;
do {
if(!flipper_format_write_string_cstr(
ff, INFRARED_SIGNAL_TYPE_KEY, INFRARED_SIGNAL_TYPE_RAW)) {
error = InfraredErrorCodeSignalUnableToWriteType;
break;
}
if(!flipper_format_write_uint32(ff, INFRARED_SIGNAL_FREQUENCY_KEY, &raw->frequency, 1)) {
error = InfraredErrorCodeSignalRawUnableToWriteFrequency;
break;
}
if(!flipper_format_write_float(ff, INFRARED_SIGNAL_DUTY_CYCLE_KEY, &raw->duty_cycle, 1)) {
error = InfraredErrorCodeSignalRawUnableToWriteDutyCycle;
break;
}
if(!flipper_format_write_uint32(
ff, INFRARED_SIGNAL_DATA_KEY, raw->timings, raw->timings_size)) {
error = InfraredErrorCodeSignalRawUnableToWriteData;
break;
}
} while(false);
return error;
}
static inline InfraredErrorCode
infrared_signal_read_message(InfraredSignal* signal, FlipperFormat* ff) {
FuriString* buf;
buf = furi_string_alloc();
InfraredErrorCode error = InfraredErrorCodeNone;
do {
if(!flipper_format_read_string(ff, INFRARED_SIGNAL_PROTOCOL_KEY, buf)) {
error = InfraredErrorCodeSignalMessageUnableToReadProtocol;
break;
}
InfraredMessage message;
message.protocol = infrared_get_protocol_by_name(furi_string_get_cstr(buf));
if(!flipper_format_read_hex(
ff, INFRARED_SIGNAL_ADDRESS_KEY, (uint8_t*)&message.address, 4)) {
error = InfraredErrorCodeSignalMessageUnableToReadAddress;
break;
}
if(!flipper_format_read_hex(
ff, INFRARED_SIGNAL_COMMAND_KEY, (uint8_t*)&message.command, 4)) {
error = InfraredErrorCodeSignalMessageUnableToReadCommand;
break;
}
if(!infrared_signal_is_message_valid(&message)) {
error = InfraredErrorCodeSignalMessageIsInvalid;
break;
}
infrared_signal_set_message(signal, &message);
} while(false);
furi_string_free(buf);
return error;
}
static inline InfraredErrorCode
infrared_signal_read_raw(InfraredSignal* signal, FlipperFormat* ff) {
InfraredErrorCode error = InfraredErrorCodeNone;
do {
uint32_t frequency;
if(!flipper_format_read_uint32(ff, INFRARED_SIGNAL_FREQUENCY_KEY, &frequency, 1)) {
error = InfraredErrorCodeSignalRawUnableToReadFrequency;
break;
}
float duty_cycle;
if(!flipper_format_read_float(ff, INFRARED_SIGNAL_DUTY_CYCLE_KEY, &duty_cycle, 1)) {
error = InfraredErrorCodeSignalRawUnableToReadDutyCycle;
break;
}
uint32_t timings_size;
if(!flipper_format_get_value_count(ff, INFRARED_SIGNAL_DATA_KEY, &timings_size)) {
error = InfraredErrorCodeSignalRawUnableToReadTimingsSize;
break;
}
if(timings_size > MAX_TIMINGS_AMOUNT) {
error = InfraredErrorCodeSignalRawUnableToReadTooLongData;
break;
}
uint32_t* timings = malloc(sizeof(uint32_t) * timings_size);
if(!flipper_format_read_uint32(ff, INFRARED_SIGNAL_DATA_KEY, timings, timings_size)) {
error = InfraredErrorCodeSignalRawUnableToReadData;
free(timings);
break;
}
infrared_signal_set_raw_signal(signal, timings, timings_size, frequency, duty_cycle);
free(timings);
error = InfraredErrorCodeNone;
} while(false);
return error;
}
InfraredErrorCode infrared_signal_read_body(InfraredSignal* signal, FlipperFormat* ff) {
FuriString* tmp = furi_string_alloc();
InfraredErrorCode error = InfraredErrorCodeNone;
do {
if(!flipper_format_read_string(ff, INFRARED_SIGNAL_TYPE_KEY, tmp)) {
error = InfraredErrorCodeSignalUnableToReadType;
break;
}
if(furi_string_equal(tmp, INFRARED_SIGNAL_TYPE_RAW)) {
error = infrared_signal_read_raw(signal, ff);
} else if(furi_string_equal(tmp, INFRARED_SIGNAL_TYPE_PARSED)) {
error = infrared_signal_read_message(signal, ff);
} else {
FURI_LOG_E(TAG, "Unknown signal type: %s", furi_string_get_cstr(tmp));
error = InfraredErrorCodeSignalTypeUnknown;
break;
}
} while(false);
furi_string_free(tmp);
return error;
}
InfraredSignal* infrared_signal_alloc(void) {
InfraredSignal* signal = malloc(sizeof(InfraredSignal));
signal->is_raw = false;
signal->payload.message.protocol = InfraredProtocolUnknown;
return signal;
}
void infrared_signal_free(InfraredSignal* signal) {
infrared_signal_clear_timings(signal);
free(signal);
}
bool infrared_signal_is_raw(const InfraredSignal* signal) {
return signal->is_raw;
}
bool infrared_signal_is_valid(const InfraredSignal* signal) {
return signal->is_raw ? infrared_signal_is_raw_valid(&signal->payload.raw) :
infrared_signal_is_message_valid(&signal->payload.message);
}
void infrared_signal_set_signal(InfraredSignal* signal, const InfraredSignal* other) {
if(other->is_raw) {
const InfraredRawSignal* raw = &other->payload.raw;
infrared_signal_set_raw_signal(
signal, raw->timings, raw->timings_size, raw->frequency, raw->duty_cycle);
} else {
const InfraredMessage* message = &other->payload.message;
infrared_signal_set_message(signal, message);
}
}
void infrared_signal_set_raw_signal(
InfraredSignal* signal,
const uint32_t* timings,
size_t timings_size,
uint32_t frequency,
float duty_cycle) {
infrared_signal_clear_timings(signal);
// If the frequency is out of bounds, set it to the closest bound same for duty cycle
// TODO: Should we return error instead? Also infrared_signal_is_valid is used only in CLI for some reason?!
if(frequency > INFRARED_MAX_FREQUENCY) {
frequency = INFRARED_MAX_FREQUENCY;
} else if(frequency < INFRARED_MIN_FREQUENCY) {
frequency = INFRARED_MIN_FREQUENCY;
}
if((duty_cycle <= (float)0) || (duty_cycle > (float)1)) {
duty_cycle = (float)0.33;
}
// In case of timings out of bounds we just call return
if((timings_size <= 0) || (timings_size > MAX_TIMINGS_AMOUNT)) {
return;
}
signal->is_raw = true;
signal->payload.raw.timings_size = timings_size;
signal->payload.raw.frequency = frequency;
signal->payload.raw.duty_cycle = duty_cycle;
signal->payload.raw.timings = malloc(timings_size * sizeof(uint32_t));
memcpy(signal->payload.raw.timings, timings, timings_size * sizeof(uint32_t));
}
const InfraredRawSignal* infrared_signal_get_raw_signal(const InfraredSignal* signal) {
furi_assert(signal->is_raw);
return &signal->payload.raw;
}
void infrared_signal_set_message(InfraredSignal* signal, const InfraredMessage* message) {
infrared_signal_clear_timings(signal);
signal->is_raw = false;
signal->payload.message = *message;
}
const InfraredMessage* infrared_signal_get_message(const InfraredSignal* signal) {
furi_assert(!signal->is_raw);
return &signal->payload.message;
}
InfraredErrorCode
infrared_signal_save(const InfraredSignal* signal, FlipperFormat* ff, const char* name) {
InfraredErrorCode error = InfraredErrorCodeNone;
if(!flipper_format_write_comment_cstr(ff, "") ||
!flipper_format_write_string_cstr(ff, INFRARED_SIGNAL_NAME_KEY, name)) {
error = InfraredErrorCodeFileOperationFailed;
} else if(signal->is_raw) {
error = infrared_signal_save_raw(&signal->payload.raw, ff);
} else {
error = infrared_signal_save_message(&signal->payload.message, ff);
}
return error;
}
InfraredErrorCode
infrared_signal_read(InfraredSignal* signal, FlipperFormat* ff, FuriString* name) {
InfraredErrorCode error = InfraredErrorCodeNone;
do {
error = infrared_signal_read_name(ff, name);
if(INFRARED_ERROR_PRESENT(error)) break;
error = infrared_signal_read_body(signal, ff);
} while(false);
return error;
}
InfraredErrorCode infrared_signal_read_name(FlipperFormat* ff, FuriString* name) {
return flipper_format_read_string(ff, INFRARED_SIGNAL_NAME_KEY, name) ?
InfraredErrorCodeNone :
InfraredErrorCodeSignalNameNotFound;
}
InfraredErrorCode infrared_signal_search_by_name_and_read(
InfraredSignal* signal,
FlipperFormat* ff,
const char* name) {
InfraredErrorCode error = InfraredErrorCodeNone;
FuriString* tmp = furi_string_alloc();
do {
error = infrared_signal_read_name(ff, tmp);
if(INFRARED_ERROR_PRESENT(error)) break;
if(furi_string_equal(tmp, name)) {
error = infrared_signal_read_body(signal, ff);
break;
}
} while(true);
furi_string_free(tmp);
return error;
}
InfraredErrorCode infrared_signal_search_by_index_and_read(
InfraredSignal* signal,
FlipperFormat* ff,
size_t index) {
InfraredErrorCode error = InfraredErrorCodeNone;
FuriString* tmp = furi_string_alloc();
for(uint32_t i = 0;; ++i) {
error = infrared_signal_read_name(ff, tmp);
if(INFRARED_ERROR_PRESENT(error)) {
INFRARED_ERROR_SET_INDEX(error, i);
break;
}
if(i == index) {
error = infrared_signal_read_body(signal, ff);
if(INFRARED_ERROR_PRESENT(error)) {
INFRARED_ERROR_SET_INDEX(error, i);
}
break;
}
}
furi_string_free(tmp);
return error;
}
void infrared_signal_transmit(const InfraredSignal* signal) {
if(signal->is_raw) {
const InfraredRawSignal* raw_signal = &signal->payload.raw;
infrared_send_raw_ext(
raw_signal->timings,
raw_signal->timings_size,
true,
raw_signal->frequency,
raw_signal->duty_cycle);
} else {
const InfraredMessage* message = &signal->payload.message;
infrared_send(message, 1);
}
}