unleashed-firmware/applications/main/nfc/plugins/supported_cards/microel.c
hedger ffa3996a5e
[FL-3867] Code formatting update (#3765)
* clang-format: AllowShortEnumsOnASingleLine: false
* clang-format: InsertNewlineAtEOF: true
* clang-format: Standard:        c++20
* clang-format: AlignConsecutiveBitFields
* clang-format: AlignConsecutiveMacros
* clang-format: RemoveParentheses: ReturnStatement
* clang-format: RemoveSemicolon: true
* Restored RemoveParentheses: Leave, retained general changes for it
* formatting: fixed logging TAGs
* Formatting update for dev

Co-authored-by: あく <alleteam@gmail.com>
2024-07-15 13:38:49 +09:00

232 lines
7.9 KiB
C

#include "nfc_supported_card_plugin.h"
#include <flipper_application/flipper_application.h>
#include <nfc/nfc_device.h>
#include <bit_lib/bit_lib.h>
#include <nfc/protocols/mf_classic/mf_classic_poller_sync.h>
#define TAG "Microel"
#define KEY_LENGTH 6
#define UID_LENGTH 4
typedef struct {
uint64_t a;
uint64_t b;
} MfClassicKeyPair;
static MfClassicKeyPair microel_1k_keys[] = {
{.a = 0x000000000000, .b = 0x000000000000}, // 000
{.a = 0x000000000000, .b = 0x000000000000}, // 001
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 002
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 003
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 004
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 005
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 006
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 007
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 008
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 009
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 010
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 011
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 012
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 013
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 014
{.a = 0xffffffffffff, .b = 0xffffffffffff}, // 015
};
const uint8_t verify_sector = 1;
void calculateSumHex(const uint8_t* uid, size_t uidSize, uint8_t sumHex[]) {
const uint8_t xorKey[] = {0x01, 0x92, 0xA7, 0x75, 0x2B, 0xF9};
int sum = 0;
for(size_t i = 0; i < uidSize; i++) {
sum += uid[i];
}
int sumTwoDigits = sum % 256;
if(sumTwoDigits % 2 == 1) {
sumTwoDigits += 2;
}
for(size_t i = 0; i < sizeof(xorKey); i++) {
sumHex[i] = sumTwoDigits ^ xorKey[i];
}
}
void generateKeyA(const uint8_t* uid, uint8_t uidSize, uint8_t keyA[]) {
uint8_t sumHex[6];
calculateSumHex(uid, uidSize, sumHex);
uint8_t firstCharacter = (sumHex[0] >> 4) & 0xF;
if(firstCharacter == 0x2 || firstCharacter == 0x3 || firstCharacter == 0xA ||
firstCharacter == 0xB) {
// XOR WITH 0x40
for(size_t i = 0; i < sizeof(sumHex); i++) {
keyA[i] = 0x40 ^ sumHex[i];
}
} else if(
firstCharacter == 0x6 || firstCharacter == 0x7 || firstCharacter == 0xE ||
firstCharacter == 0xF) {
// XOR WITH 0xC0
for(size_t i = 0; i < sizeof(sumHex); i++) {
keyA[i] = 0xC0 ^ sumHex[i];
}
} else {
//Key a is the same as sumHex
for(size_t i = 0; i < sizeof(sumHex); i++) {
keyA[i] = sumHex[i];
}
}
}
void generateKeyB(uint8_t keyA[], size_t keyASize, uint8_t keyB[]) {
for(size_t i = 0; i < keyASize; i++) {
keyB[i] = 0xFF ^ keyA[i];
}
}
static bool microel_read(Nfc* nfc, NfcDevice* device) {
FURI_LOG_D(TAG, "Entering Microel KDF");
furi_assert(nfc);
furi_assert(device);
bool is_read = false;
MfClassicData* data = mf_classic_alloc();
nfc_device_copy_data(device, NfcProtocolMfClassic, data);
do {
MfClassicType type = MfClassicType1k;
MfClassicError error = mf_classic_poller_sync_detect_type(nfc, &type);
if(error != MfClassicErrorNone) break;
//Get UID and check if it is 4 bytes
size_t uid_len;
const uint8_t* uid = mf_classic_get_uid(data, &uid_len);
FURI_LOG_D(TAG, "UID identified: %02X%02X%02X%02X", uid[0], uid[1], uid[2], uid[3]);
if(uid_len != UID_LENGTH) break;
// Generate keys
uint8_t keyA[KEY_LENGTH];
uint8_t keyB[KEY_LENGTH];
generateKeyA(uid, UID_LENGTH, keyA);
generateKeyB(keyA, KEY_LENGTH, keyB);
// Check key 0a to verify if it is a microel card
MfClassicKey key = {0};
bit_lib_num_to_bytes_be(
bit_lib_bytes_to_num_be(keyA, KEY_LENGTH), COUNT_OF(key.data), key.data);
const uint8_t block_num = mf_classic_get_first_block_num_of_sector(0); // This is 0
MfClassicAuthContext auth_context;
error =
mf_classic_poller_sync_auth(nfc, block_num, &key, MfClassicKeyTypeA, &auth_context);
if(error != MfClassicErrorNone) {
break;
}
// Save keys generated to stucture
for(size_t i = 0; i < mf_classic_get_total_sectors_num(data->type); i++) {
if(microel_1k_keys[i].a == 0x000000000000) {
microel_1k_keys[i].a = bit_lib_bytes_to_num_be(keyA, KEY_LENGTH);
}
if(microel_1k_keys[i].b == 0x000000000000) {
microel_1k_keys[i].b = bit_lib_bytes_to_num_be(keyB, KEY_LENGTH);
}
}
MfClassicDeviceKeys keys = {};
for(size_t i = 0; i < mf_classic_get_total_sectors_num(data->type); i++) {
bit_lib_num_to_bytes_be(
microel_1k_keys[i].a, sizeof(MfClassicKey), keys.key_a[i].data);
FURI_BIT_SET(keys.key_a_mask, i);
bit_lib_num_to_bytes_be(
microel_1k_keys[i].b, sizeof(MfClassicKey), keys.key_b[i].data);
FURI_BIT_SET(keys.key_b_mask, i);
}
error = mf_classic_poller_sync_read(nfc, &keys, data);
if(error != MfClassicErrorNone) {
FURI_LOG_W(TAG, "Failed to read data");
break;
}
nfc_device_set_data(device, NfcProtocolMfClassic, data);
is_read = mf_classic_is_card_read(data);
} while(false);
mf_classic_free(data);
return is_read;
}
static bool microel_parse(const NfcDevice* device, FuriString* parsed_data) {
furi_assert(device);
furi_assert(parsed_data);
const MfClassicData* data = nfc_device_get_data(device, NfcProtocolMfClassic);
bool parsed = false;
do {
//Get UID
size_t uid_len;
const uint8_t* uid = mf_classic_get_uid(data, &uid_len);
if(uid_len != UID_LENGTH) break;
// Generate key from uid
uint8_t keyA[KEY_LENGTH];
generateKeyA(uid, UID_LENGTH, keyA);
// Verify key
MfClassicSectorTrailer* sec_tr =
mf_classic_get_sector_trailer_by_sector(data, verify_sector);
uint64_t key = bit_lib_bytes_to_num_be(sec_tr->key_a.data, 6);
uint64_t key_for_check_from_array = bit_lib_bytes_to_num_be(keyA, KEY_LENGTH);
if(key != key_for_check_from_array) break;
//Get credit in block number 8
const uint8_t* temp_ptr = data->block[4].data;
uint16_t balance = (temp_ptr[6] << 8) | (temp_ptr[5]);
uint16_t previus_balance = (data->block[5].data[6] << 8) | (data->block[5].data[5]);
furi_string_cat_printf(parsed_data, "\e#Microel Card\n");
furi_string_cat_printf(parsed_data, "UID:");
for(size_t i = 0; i < UID_LENGTH; i++) {
furi_string_cat_printf(parsed_data, " %02X", uid[i]);
}
furi_string_cat_printf(
parsed_data, "\nCurrent Credit: %d.%02d E \n", balance / 100, balance % 100);
furi_string_cat_printf(
parsed_data,
"Previus Credit: %d.%02d E \n",
previus_balance / 100,
previus_balance % 100);
parsed = true;
} while(false);
return parsed;
}
/* Actual implementation of app<>plugin interface */
static const NfcSupportedCardsPlugin microel_plugin = {
.protocol = NfcProtocolMfClassic,
.verify =
NULL, // the verification I need is based on verifying the keys generated via uid and try to authenticate not like on mizip that there is default b0 but added verify in read function
.read = microel_read,
.parse = microel_parse,
};
/* Plugin descriptor to comply with basic plugin specification */
static const FlipperAppPluginDescriptor microel_plugin_descriptor = {
.appid = NFC_SUPPORTED_CARD_PLUGIN_APP_ID,
.ep_api_version = NFC_SUPPORTED_CARD_PLUGIN_API_VERSION,
.entry_point = &microel_plugin,
};
/* Plugin entry point - must return a pointer to const descriptor */
const FlipperAppPluginDescriptor* microel_plugin_ep(void) {
return &microel_plugin_descriptor;
}