unleashed-firmware/applications/plugins/unitemp/sensors/BMP180.c

173 lines
6.1 KiB
C

/*
Unitemp - Universal temperature reader
Copyright (C) 2022 Victor Nikitchuk (https://github.com/quen0n)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include "BMP180.h"
#include "../interfaces/I2CSensor.h"
typedef struct {
int16_t AC1;
int16_t AC2;
int16_t AC3;
uint16_t AC4;
uint16_t AC5;
uint16_t AC6;
int16_t B1;
int16_t B2;
int16_t MB;
int16_t MC;
int16_t MD;
} BMP180_cal;
typedef struct {
//Калибровочные значения
BMP180_cal bmp180_cal;
} BMP180_instance;
const SensorType BMP180 = {
.typename = "BMP180",
.interface = &I2C,
.datatype = UT_TEMPERATURE | UT_PRESSURE,
.pollingInterval = 1000,
.allocator = unitemp_BMP180_I2C_alloc,
.mem_releaser = unitemp_BMP180_I2C_free,
.initializer = unitemp_BMP180_init,
.deinitializer = unitemp_BMP180_I2C_deinit,
.updater = unitemp_BMP180_I2C_update};
bool unitemp_BMP180_I2C_alloc(Sensor* sensor, char* args) {
UNUSED(args);
I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
//Адреса на шине I2C (7 бит)
i2c_sensor->minI2CAdr = 0x77 << 1;
i2c_sensor->maxI2CAdr = 0x77 << 1;
BMP180_instance* bmx280_instance = malloc(sizeof(BMP180_instance));
i2c_sensor->sensorInstance = bmx280_instance;
return true;
}
bool unitemp_BMP180_I2C_free(Sensor* sensor) {
UNUSED(sensor);
I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
free(i2c_sensor->sensorInstance);
return true;
}
bool unitemp_BMP180_init(Sensor* sensor) {
I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
//Перезагрузка
if(!unitemp_i2c_writeReg(i2c_sensor, 0xE0, 0xB6)) return false;
furi_delay_ms(100);
//Проверка ID
uint8_t id = unitemp_i2c_readReg(i2c_sensor, 0xD0);
if(id != 0x55) {
FURI_LOG_E(
APP_NAME, "Sensor %s returned wrong ID 0x%02X, expected 0x55", sensor->name, id);
return false;
}
BMP180_instance* bmp180_instance = i2c_sensor->sensorInstance;
uint8_t buff[22] = {0};
//Чтение калибровочных значений
if(!unitemp_i2c_readRegArray(i2c_sensor, 0xAA, 22, buff)) return false;
bmp180_instance->bmp180_cal.AC1 = (buff[0] << 8) | buff[1];
bmp180_instance->bmp180_cal.AC2 = (buff[2] << 8) | buff[3];
bmp180_instance->bmp180_cal.AC3 = (buff[4] << 8) | buff[5];
bmp180_instance->bmp180_cal.AC4 = (buff[6] << 8) | buff[7];
bmp180_instance->bmp180_cal.AC5 = (buff[8] << 8) | buff[9];
bmp180_instance->bmp180_cal.AC6 = (buff[10] << 8) | buff[11];
bmp180_instance->bmp180_cal.B1 = (buff[12] << 8) | buff[13];
bmp180_instance->bmp180_cal.B2 = (buff[14] << 8) | buff[15];
bmp180_instance->bmp180_cal.MB = (buff[16] << 8) | buff[17];
bmp180_instance->bmp180_cal.MC = (buff[18] << 8) | buff[19];
bmp180_instance->bmp180_cal.MD = (buff[20] << 8) | buff[21];
UNITEMP_DEBUG(
"Sensor BMP180 (0x%02X) calibration values: %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d",
i2c_sensor->currentI2CAdr,
bmp180_instance->bmp180_cal.AC1,
bmp180_instance->bmp180_cal.AC2,
bmp180_instance->bmp180_cal.AC3,
bmp180_instance->bmp180_cal.AC4,
bmp180_instance->bmp180_cal.AC5,
bmp180_instance->bmp180_cal.AC6,
bmp180_instance->bmp180_cal.B1,
bmp180_instance->bmp180_cal.B2,
bmp180_instance->bmp180_cal.MB,
bmp180_instance->bmp180_cal.MC,
bmp180_instance->bmp180_cal.MD);
return true;
}
bool unitemp_BMP180_I2C_deinit(Sensor* sensor) {
//Нечего деинициализировать
UNUSED(sensor);
return true;
}
UnitempStatus unitemp_BMP180_I2C_update(Sensor* sensor) {
I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
BMP180_instance* bmp180_instance = i2c_sensor->sensorInstance;
//Чтение температуры
if(!unitemp_i2c_writeReg(i2c_sensor, 0xF4, 0x2E)) return UT_SENSORSTATUS_TIMEOUT;
furi_delay_ms(5);
uint8_t buff[3] = {0};
if(!unitemp_i2c_readRegArray(i2c_sensor, 0xF6, 2, buff)) return UT_SENSORSTATUS_TIMEOUT;
int32_t UT = ((uint16_t)buff[0] << 8) + buff[1];
int32_t X1 = (UT - bmp180_instance->bmp180_cal.AC6) * bmp180_instance->bmp180_cal.AC5 >> 15;
int32_t X2 = (bmp180_instance->bmp180_cal.MC << 11) / (X1 + bmp180_instance->bmp180_cal.MD);
int32_t B5 = X1 + X2;
sensor->temp = ((B5 + 8) / 16) * 0.1f;
//Чтение давления
if(!unitemp_i2c_writeReg(i2c_sensor, 0xF4, 0x34 + (0b11 << 6))) return UT_SENSORSTATUS_TIMEOUT;
furi_delay_ms(26);
if(!unitemp_i2c_readRegArray(i2c_sensor, 0xF6, 3, buff)) return UT_SENSORSTATUS_TIMEOUT;
uint32_t UP = ((buff[0] << 16) + (buff[1] << 8) + buff[2]) >> (8 - 0b11);
int32_t B6, X3, B3, P;
uint32_t B4, B7;
B6 = B5 - 4000;
X1 = (bmp180_instance->bmp180_cal.B2 * ((B6 * B6) >> 12)) >> 11;
X2 = (bmp180_instance->bmp180_cal.AC2 * B6) >> 11;
X3 = X1 + X2;
B3 = (((bmp180_instance->bmp180_cal.AC1 * 4 + X3) << 0b11) + 2) >> 2;
X1 = (bmp180_instance->bmp180_cal.AC3 * B6) >> 13;
X2 = (bmp180_instance->bmp180_cal.B1 * ((B6 * B6) >> 12)) >> 16;
X3 = ((X1 + X2) + 2) >> 2;
B4 = (bmp180_instance->bmp180_cal.AC4 * (unsigned long)(X3 + 32768)) >> 15;
B7 = ((unsigned long)UP - B3) * (50000 >> 0b11);
if(B7 < 0x80000000)
P = (B7 * 2) / B4;
else
P = (B7 / B4) * 2;
X1 = (P >> 8) * (P >> 8);
X1 = (X1 * 3038) >> 16;
X2 = (-7357 * (P)) >> 16;
P = P + ((X1 + X2 + 3791) >> 4);
sensor->pressure = P;
return UT_SENSORSTATUS_OK;
}