mirror of
https://github.com/DarkFlippers/unleashed-firmware.git
synced 2024-12-31 17:24:56 +03:00
274c12fc56
* Streams: string stream * String stream: updated insert/delete api * Streams: generic stream interface and string stream implementation * Streams: helpers for insert and delete_and_insert * FFF: now compatible with streams * MinUnit: introduced tests with arguments * FFF: stream access violation * Streams: copy data between streams * Streams: file stream * FFF: documentation * FFStream: documentation * FFF: alloc as file * MinUnit: support for nested tests * Streams: changed delete_and_insert, now it returns success flag. Added ability dump stream inner parameters and data to cout. * FFF: simplified file open function * Streams: unit tests * FFF: tests * Streams: declare cache_size constant as define, to allow variable modified arrays * FFF: lib moved to a separate folder * iButton: new FFF * RFID: new FFF * Animations: new FFF * IR: new FFF * NFC: new FFF * Flipper file format: delete lib * U2F: new FFF * Subghz: new FFF and streams * Streams: read line * Streams: split * FuriCore: implement memset with extra asserts * FuriCore: implement extra heap asserts without inventing memset * Scene manager: protected access to the scene id stack with a size check * NFC worker: dirty fix for issue where hal_nfc was busy on app start * Furi: update allocator to erase memory on allocation. Replace furi_alloc with malloc. * FuriCore: cleanup memmgr code. * Furi HAL: furi_hal_init is split into critical and non-critical parts. The critical part is currently clock and console. * Memmgr: added ability to track allocations and deallocations through console. * FFStream: some speedup * Streams, FF: minor fixes * Tests: restore * File stream: a slightly more thread-safe version of file_stream_delete_and_insert Co-authored-by: Aleksandr Kutuzov <alleteam@gmail.com>
666 lines
26 KiB
C
666 lines
26 KiB
C
#include "furi_hal_irda.h"
|
|
#include "furi_hal_delay.h"
|
|
#include "furi/check.h"
|
|
#include "stm32wbxx_ll_dma.h"
|
|
#include "sys/_stdint.h"
|
|
#include <cmsis_os2.h>
|
|
#include <furi_hal_interrupt.h>
|
|
#include <furi_hal_resources.h>
|
|
|
|
#include <stdint.h>
|
|
#include <stm32wbxx_ll_tim.h>
|
|
#include <stm32wbxx_ll_gpio.h>
|
|
|
|
#include <stdio.h>
|
|
#include <furi.h>
|
|
#include <math.h>
|
|
#include <main.h>
|
|
#include <furi_hal_pwm.h>
|
|
|
|
#define IRDA_TX_DEBUG 0
|
|
|
|
#if IRDA_TX_DEBUG == 1
|
|
#define gpio_irda_tx gpio_irda_tx_debug
|
|
const GpioPin gpio_irda_tx_debug = {.port = GPIOA, .pin = GPIO_PIN_7};
|
|
#endif
|
|
|
|
#define IRDA_TIM_TX_DMA_BUFFER_SIZE 200
|
|
#define IRDA_POLARITY_SHIFT 1
|
|
|
|
#define IRDA_TX_CCMR_HIGH (TIM_CCMR2_OC3PE | LL_TIM_OCMODE_PWM2) /* Mark time - enable PWM2 mode */
|
|
#define IRDA_TX_CCMR_LOW \
|
|
(TIM_CCMR2_OC3PE | LL_TIM_OCMODE_FORCED_INACTIVE) /* Space time - force low */
|
|
|
|
typedef struct {
|
|
FuriHalIrdaRxCaptureCallback capture_callback;
|
|
void* capture_context;
|
|
FuriHalIrdaRxTimeoutCallback timeout_callback;
|
|
void* timeout_context;
|
|
} IrdaTimRx;
|
|
|
|
typedef struct {
|
|
uint8_t* polarity;
|
|
uint16_t* data;
|
|
size_t size;
|
|
bool packet_end;
|
|
bool last_packet_end;
|
|
} IrdaTxBuf;
|
|
|
|
typedef struct {
|
|
float cycle_duration;
|
|
FuriHalIrdaTxGetDataISRCallback data_callback;
|
|
FuriHalIrdaTxSignalSentISRCallback signal_sent_callback;
|
|
void* data_context;
|
|
void* signal_sent_context;
|
|
IrdaTxBuf buffer[2];
|
|
osSemaphoreId_t stop_semaphore;
|
|
uint32_t
|
|
tx_timing_rest_duration; /** if timing is too long (> 0xFFFF), send it in few iterations */
|
|
bool tx_timing_rest_level;
|
|
FuriHalIrdaTxGetDataState tx_timing_rest_status;
|
|
} IrdaTimTx;
|
|
|
|
typedef enum {
|
|
IrdaStateIdle, /** Furi Hal Irda is ready to start RX or TX */
|
|
IrdaStateAsyncRx, /** Async RX started */
|
|
IrdaStateAsyncTx, /** Async TX started, DMA and timer is on */
|
|
IrdaStateAsyncTxStopReq, /** Async TX started, async stop request received */
|
|
IrdaStateAsyncTxStopInProgress, /** Async TX started, stop request is processed and we wait for last data to be sent */
|
|
IrdaStateAsyncTxStopped, /** Async TX complete, cleanup needed */
|
|
IrdaStateMAX,
|
|
} IrdaState;
|
|
|
|
static volatile IrdaState furi_hal_irda_state = IrdaStateIdle;
|
|
static IrdaTimTx irda_tim_tx;
|
|
static IrdaTimRx irda_tim_rx;
|
|
|
|
static void furi_hal_irda_tx_fill_buffer(uint8_t buf_num, uint8_t polarity_shift);
|
|
static void furi_hal_irda_async_tx_free_resources(void);
|
|
static void furi_hal_irda_tx_dma_set_polarity(uint8_t buf_num, uint8_t polarity_shift);
|
|
static void furi_hal_irda_tx_dma_set_buffer(uint8_t buf_num);
|
|
static void furi_hal_irda_tx_fill_buffer_last(uint8_t buf_num);
|
|
static uint8_t furi_hal_irda_get_current_dma_tx_buffer(void);
|
|
static void furi_hal_irda_tx_dma_polarity_isr();
|
|
static void furi_hal_irda_tx_dma_isr();
|
|
|
|
static void furi_hal_irda_tim_rx_isr() {
|
|
static uint32_t previous_captured_ch2 = 0;
|
|
|
|
/* Timeout */
|
|
if(LL_TIM_IsActiveFlag_CC3(TIM2)) {
|
|
LL_TIM_ClearFlag_CC3(TIM2);
|
|
furi_assert(furi_hal_irda_state == IrdaStateAsyncRx);
|
|
|
|
/* Timers CNT register starts to counting from 0 to ARR, but it is
|
|
* reseted when Channel 1 catches interrupt. It is not reseted by
|
|
* channel 2, though, so we have to distract it's values (see TimerIRQSourceCCI1 ISR).
|
|
* This can cause false timeout: when time is over, but we started
|
|
* receiving new signal few microseconds ago, because CNT register
|
|
* is reseted once per period, not per sample. */
|
|
if(LL_GPIO_IsInputPinSet(gpio_irda_rx.port, gpio_irda_rx.pin) != 0) {
|
|
if(irda_tim_rx.timeout_callback)
|
|
irda_tim_rx.timeout_callback(irda_tim_rx.timeout_context);
|
|
}
|
|
}
|
|
|
|
/* Rising Edge */
|
|
if(LL_TIM_IsActiveFlag_CC1(TIM2)) {
|
|
LL_TIM_ClearFlag_CC1(TIM2);
|
|
furi_assert(furi_hal_irda_state == IrdaStateAsyncRx);
|
|
|
|
if(READ_BIT(TIM2->CCMR1, TIM_CCMR1_CC1S)) {
|
|
/* Low pin level is a Mark state of IRDA signal. Invert level for further processing. */
|
|
uint32_t duration = LL_TIM_IC_GetCaptureCH1(TIM2) - previous_captured_ch2;
|
|
if(irda_tim_rx.capture_callback)
|
|
irda_tim_rx.capture_callback(irda_tim_rx.capture_context, 1, duration);
|
|
} else {
|
|
furi_assert(0);
|
|
}
|
|
}
|
|
|
|
/* Falling Edge */
|
|
if(LL_TIM_IsActiveFlag_CC2(TIM2)) {
|
|
LL_TIM_ClearFlag_CC2(TIM2);
|
|
furi_assert(furi_hal_irda_state == IrdaStateAsyncRx);
|
|
|
|
if(READ_BIT(TIM2->CCMR1, TIM_CCMR1_CC2S)) {
|
|
/* High pin level is a Space state of IRDA signal. Invert level for further processing. */
|
|
uint32_t duration = LL_TIM_IC_GetCaptureCH2(TIM2);
|
|
previous_captured_ch2 = duration;
|
|
if(irda_tim_rx.capture_callback)
|
|
irda_tim_rx.capture_callback(irda_tim_rx.capture_context, 0, duration);
|
|
} else {
|
|
furi_assert(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
void furi_hal_irda_async_rx_start(void) {
|
|
furi_assert(furi_hal_irda_state == IrdaStateIdle);
|
|
|
|
FURI_CRITICAL_ENTER();
|
|
LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM2);
|
|
LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOA);
|
|
FURI_CRITICAL_EXIT();
|
|
|
|
hal_gpio_init_ex(
|
|
&gpio_irda_rx, GpioModeAltFunctionPushPull, GpioPullNo, GpioSpeedLow, GpioAltFn1TIM2);
|
|
|
|
LL_TIM_InitTypeDef TIM_InitStruct = {0};
|
|
TIM_InitStruct.Prescaler = 64 - 1;
|
|
TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
|
|
TIM_InitStruct.Autoreload = 0x7FFFFFFE;
|
|
TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
|
|
LL_TIM_Init(TIM2, &TIM_InitStruct);
|
|
|
|
LL_TIM_SetClockSource(TIM2, LL_TIM_CLOCKSOURCE_INTERNAL);
|
|
LL_TIM_DisableARRPreload(TIM2);
|
|
LL_TIM_SetTriggerInput(TIM2, LL_TIM_TS_TI1FP1);
|
|
LL_TIM_SetSlaveMode(TIM2, LL_TIM_SLAVEMODE_RESET);
|
|
LL_TIM_CC_DisableChannel(TIM2, LL_TIM_CHANNEL_CH2);
|
|
LL_TIM_IC_SetFilter(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_IC_FILTER_FDIV1);
|
|
LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_IC_POLARITY_FALLING);
|
|
LL_TIM_DisableIT_TRIG(TIM2);
|
|
LL_TIM_DisableDMAReq_TRIG(TIM2);
|
|
LL_TIM_SetTriggerOutput(TIM2, LL_TIM_TRGO_RESET);
|
|
LL_TIM_EnableMasterSlaveMode(TIM2);
|
|
LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ACTIVEINPUT_DIRECTTI);
|
|
LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ICPSC_DIV1);
|
|
LL_TIM_IC_SetFilter(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_FILTER_FDIV1);
|
|
LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_POLARITY_RISING);
|
|
LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ACTIVEINPUT_INDIRECTTI);
|
|
LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ICPSC_DIV1);
|
|
|
|
furi_hal_interrupt_set_timer_isr(TIM2, furi_hal_irda_tim_rx_isr);
|
|
furi_hal_irda_state = IrdaStateAsyncRx;
|
|
|
|
LL_TIM_EnableIT_CC1(TIM2);
|
|
LL_TIM_EnableIT_CC2(TIM2);
|
|
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH1);
|
|
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH2);
|
|
|
|
LL_TIM_SetCounter(TIM2, 0);
|
|
LL_TIM_EnableCounter(TIM2);
|
|
|
|
NVIC_SetPriority(TIM2_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 5, 0));
|
|
NVIC_EnableIRQ(TIM2_IRQn);
|
|
}
|
|
|
|
void furi_hal_irda_async_rx_stop(void) {
|
|
furi_assert(furi_hal_irda_state == IrdaStateAsyncRx);
|
|
LL_TIM_DeInit(TIM2);
|
|
furi_hal_interrupt_set_timer_isr(TIM2, NULL);
|
|
LL_APB1_GRP1_DisableClock(LL_APB1_GRP1_PERIPH_TIM2);
|
|
furi_hal_irda_state = IrdaStateIdle;
|
|
}
|
|
|
|
void furi_hal_irda_async_rx_set_timeout(uint32_t timeout_us) {
|
|
furi_assert(LL_APB1_GRP1_IsEnabledClock(LL_APB1_GRP1_PERIPH_TIM2));
|
|
|
|
LL_TIM_OC_SetCompareCH3(TIM2, timeout_us);
|
|
LL_TIM_OC_SetMode(TIM2, LL_TIM_CHANNEL_CH3, LL_TIM_OCMODE_ACTIVE);
|
|
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH3);
|
|
LL_TIM_EnableIT_CC3(TIM2);
|
|
}
|
|
|
|
bool furi_hal_irda_is_busy(void) {
|
|
return furi_hal_irda_state != IrdaStateIdle;
|
|
}
|
|
|
|
void furi_hal_irda_async_rx_set_capture_isr_callback(
|
|
FuriHalIrdaRxCaptureCallback callback,
|
|
void* ctx) {
|
|
irda_tim_rx.capture_callback = callback;
|
|
irda_tim_rx.capture_context = ctx;
|
|
}
|
|
|
|
void furi_hal_irda_async_rx_set_timeout_isr_callback(
|
|
FuriHalIrdaRxTimeoutCallback callback,
|
|
void* ctx) {
|
|
irda_tim_rx.timeout_callback = callback;
|
|
irda_tim_rx.timeout_context = ctx;
|
|
}
|
|
|
|
static void furi_hal_irda_tx_dma_terminate(void) {
|
|
LL_DMA_DisableIT_TC(DMA1, LL_DMA_CHANNEL_1);
|
|
LL_DMA_DisableIT_HT(DMA1, LL_DMA_CHANNEL_2);
|
|
LL_DMA_DisableIT_TC(DMA1, LL_DMA_CHANNEL_2);
|
|
|
|
furi_assert(furi_hal_irda_state == IrdaStateAsyncTxStopInProgress);
|
|
|
|
LL_DMA_DisableIT_TC(DMA1, LL_DMA_CHANNEL_1);
|
|
LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_2);
|
|
LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_1);
|
|
LL_TIM_DisableCounter(TIM1);
|
|
osStatus_t status = osSemaphoreRelease(irda_tim_tx.stop_semaphore);
|
|
furi_check(status == osOK);
|
|
furi_hal_irda_state = IrdaStateAsyncTxStopped;
|
|
}
|
|
|
|
static uint8_t furi_hal_irda_get_current_dma_tx_buffer(void) {
|
|
uint8_t buf_num = 0;
|
|
uint32_t buffer_adr = LL_DMA_GetMemoryAddress(DMA1, LL_DMA_CHANNEL_2);
|
|
if(buffer_adr == (uint32_t)irda_tim_tx.buffer[0].data) {
|
|
buf_num = 0;
|
|
} else if(buffer_adr == (uint32_t)irda_tim_tx.buffer[1].data) {
|
|
buf_num = 1;
|
|
} else {
|
|
furi_assert(0);
|
|
}
|
|
return buf_num;
|
|
}
|
|
|
|
static void furi_hal_irda_tx_dma_polarity_isr() {
|
|
if(LL_DMA_IsActiveFlag_TE1(DMA1)) {
|
|
LL_DMA_ClearFlag_TE1(DMA1);
|
|
furi_crash(NULL);
|
|
}
|
|
if(LL_DMA_IsActiveFlag_TC1(DMA1) && LL_DMA_IsEnabledIT_TC(DMA1, LL_DMA_CHANNEL_1)) {
|
|
LL_DMA_ClearFlag_TC1(DMA1);
|
|
|
|
furi_check(
|
|
(furi_hal_irda_state == IrdaStateAsyncTx) ||
|
|
(furi_hal_irda_state == IrdaStateAsyncTxStopReq) ||
|
|
(furi_hal_irda_state == IrdaStateAsyncTxStopInProgress));
|
|
/* actually TC2 is processed and buffer is next buffer */
|
|
uint8_t next_buf_num = furi_hal_irda_get_current_dma_tx_buffer();
|
|
furi_hal_irda_tx_dma_set_polarity(next_buf_num, 0);
|
|
}
|
|
}
|
|
|
|
static void furi_hal_irda_tx_dma_isr() {
|
|
if(LL_DMA_IsActiveFlag_TE2(DMA1)) {
|
|
LL_DMA_ClearFlag_TE2(DMA1);
|
|
furi_crash(NULL);
|
|
}
|
|
if(LL_DMA_IsActiveFlag_HT2(DMA1) && LL_DMA_IsEnabledIT_HT(DMA1, LL_DMA_CHANNEL_2)) {
|
|
LL_DMA_ClearFlag_HT2(DMA1);
|
|
uint8_t buf_num = furi_hal_irda_get_current_dma_tx_buffer();
|
|
uint8_t next_buf_num = !buf_num;
|
|
if(irda_tim_tx.buffer[buf_num].last_packet_end) {
|
|
LL_DMA_DisableIT_HT(DMA1, LL_DMA_CHANNEL_2);
|
|
} else if(
|
|
!irda_tim_tx.buffer[buf_num].packet_end || (furi_hal_irda_state == IrdaStateAsyncTx)) {
|
|
furi_hal_irda_tx_fill_buffer(next_buf_num, 0);
|
|
if(irda_tim_tx.buffer[next_buf_num].last_packet_end) {
|
|
LL_DMA_DisableIT_HT(DMA1, LL_DMA_CHANNEL_2);
|
|
}
|
|
} else if(furi_hal_irda_state == IrdaStateAsyncTxStopReq) {
|
|
/* fallthrough */
|
|
} else {
|
|
furi_crash(NULL);
|
|
}
|
|
}
|
|
if(LL_DMA_IsActiveFlag_TC2(DMA1) && LL_DMA_IsEnabledIT_TC(DMA1, LL_DMA_CHANNEL_2)) {
|
|
LL_DMA_ClearFlag_TC2(DMA1);
|
|
furi_check(
|
|
(furi_hal_irda_state == IrdaStateAsyncTxStopInProgress) ||
|
|
(furi_hal_irda_state == IrdaStateAsyncTxStopReq) ||
|
|
(furi_hal_irda_state == IrdaStateAsyncTx));
|
|
|
|
uint8_t buf_num = furi_hal_irda_get_current_dma_tx_buffer();
|
|
uint8_t next_buf_num = !buf_num;
|
|
if(furi_hal_irda_state == IrdaStateAsyncTxStopInProgress) {
|
|
furi_hal_irda_tx_dma_terminate();
|
|
} else if(
|
|
irda_tim_tx.buffer[buf_num].last_packet_end ||
|
|
(irda_tim_tx.buffer[buf_num].packet_end &&
|
|
(furi_hal_irda_state == IrdaStateAsyncTxStopReq))) {
|
|
furi_hal_irda_state = IrdaStateAsyncTxStopInProgress;
|
|
furi_hal_irda_tx_fill_buffer_last(next_buf_num);
|
|
furi_hal_irda_tx_dma_set_buffer(next_buf_num);
|
|
} else {
|
|
/* if it's not end of the packet - continue receiving */
|
|
furi_hal_irda_tx_dma_set_buffer(next_buf_num);
|
|
}
|
|
if(irda_tim_tx.signal_sent_callback && irda_tim_tx.buffer[buf_num].packet_end &&
|
|
(furi_hal_irda_state != IrdaStateAsyncTxStopped)) {
|
|
irda_tim_tx.signal_sent_callback(irda_tim_tx.signal_sent_context);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void furi_hal_irda_configure_tim_pwm_tx(uint32_t freq, float duty_cycle) {
|
|
LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_TIM1);
|
|
/* LL_DBGMCU_APB2_GRP1_FreezePeriph(LL_DBGMCU_APB2_GRP1_TIM1_STOP); */
|
|
|
|
LL_TIM_DisableCounter(TIM1);
|
|
LL_TIM_SetRepetitionCounter(TIM1, 0);
|
|
LL_TIM_SetCounter(TIM1, 0);
|
|
LL_TIM_SetPrescaler(TIM1, 0);
|
|
LL_TIM_SetCounterMode(TIM1, LL_TIM_COUNTERMODE_UP);
|
|
LL_TIM_EnableARRPreload(TIM1);
|
|
LL_TIM_SetAutoReload(
|
|
TIM1, __LL_TIM_CALC_ARR(SystemCoreClock, LL_TIM_GetPrescaler(TIM1), freq));
|
|
#if IRDA_TX_DEBUG == 1
|
|
LL_TIM_OC_SetCompareCH1(TIM1, ((LL_TIM_GetAutoReload(TIM1) + 1) * (1 - duty_cycle)));
|
|
LL_TIM_OC_EnablePreload(TIM1, LL_TIM_CHANNEL_CH1);
|
|
/* LL_TIM_OCMODE_PWM2 set by DMA */
|
|
LL_TIM_OC_SetMode(TIM1, LL_TIM_CHANNEL_CH1, LL_TIM_OCMODE_FORCED_INACTIVE);
|
|
LL_TIM_OC_SetPolarity(TIM1, LL_TIM_CHANNEL_CH1N, LL_TIM_OCPOLARITY_HIGH);
|
|
LL_TIM_OC_DisableFast(TIM1, LL_TIM_CHANNEL_CH1);
|
|
LL_TIM_CC_EnableChannel(TIM1, LL_TIM_CHANNEL_CH1N);
|
|
LL_TIM_DisableIT_CC1(TIM1);
|
|
#else
|
|
LL_TIM_OC_SetCompareCH3(TIM1, ((LL_TIM_GetAutoReload(TIM1) + 1) * (1 - duty_cycle)));
|
|
LL_TIM_OC_EnablePreload(TIM1, LL_TIM_CHANNEL_CH3);
|
|
/* LL_TIM_OCMODE_PWM2 set by DMA */
|
|
LL_TIM_OC_SetMode(TIM1, LL_TIM_CHANNEL_CH3, LL_TIM_OCMODE_FORCED_INACTIVE);
|
|
LL_TIM_OC_SetPolarity(TIM1, LL_TIM_CHANNEL_CH3N, LL_TIM_OCPOLARITY_HIGH);
|
|
LL_TIM_OC_DisableFast(TIM1, LL_TIM_CHANNEL_CH3);
|
|
LL_TIM_CC_EnableChannel(TIM1, LL_TIM_CHANNEL_CH3N);
|
|
LL_TIM_DisableIT_CC3(TIM1);
|
|
#endif
|
|
LL_TIM_DisableMasterSlaveMode(TIM1);
|
|
LL_TIM_EnableAllOutputs(TIM1);
|
|
LL_TIM_DisableIT_UPDATE(TIM1);
|
|
LL_TIM_EnableDMAReq_UPDATE(TIM1);
|
|
|
|
NVIC_SetPriority(TIM1_UP_TIM16_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 5, 0));
|
|
NVIC_EnableIRQ(TIM1_UP_TIM16_IRQn);
|
|
}
|
|
|
|
static void furi_hal_irda_configure_tim_cmgr2_dma_tx(void) {
|
|
LL_C2_AHB1_GRP1_EnableClock(LL_C2_AHB1_GRP1_PERIPH_DMA1);
|
|
|
|
LL_DMA_InitTypeDef dma_config = {0};
|
|
#if IRDA_TX_DEBUG == 1
|
|
dma_config.PeriphOrM2MSrcAddress = (uint32_t) & (TIM1->CCMR1);
|
|
#else
|
|
dma_config.PeriphOrM2MSrcAddress = (uint32_t) & (TIM1->CCMR2);
|
|
#endif
|
|
dma_config.MemoryOrM2MDstAddress = (uint32_t)NULL;
|
|
dma_config.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
|
|
dma_config.Mode = LL_DMA_MODE_NORMAL;
|
|
dma_config.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
|
|
dma_config.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
|
|
/* fill word to have other bits set to 0 */
|
|
dma_config.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
|
|
dma_config.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_BYTE;
|
|
dma_config.NbData = 0;
|
|
dma_config.PeriphRequest = LL_DMAMUX_REQ_TIM1_UP;
|
|
dma_config.Priority = LL_DMA_PRIORITY_VERYHIGH;
|
|
LL_DMA_Init(DMA1, LL_DMA_CHANNEL_1, &dma_config);
|
|
furi_hal_interrupt_set_dma_channel_isr(
|
|
DMA1, LL_DMA_CHANNEL_1, furi_hal_irda_tx_dma_polarity_isr);
|
|
LL_DMA_ClearFlag_TE1(DMA1);
|
|
LL_DMA_ClearFlag_TC1(DMA1);
|
|
LL_DMA_EnableIT_TE(DMA1, LL_DMA_CHANNEL_1);
|
|
LL_DMA_EnableIT_TC(DMA1, LL_DMA_CHANNEL_1);
|
|
|
|
NVIC_SetPriority(DMA1_Channel1_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 4, 0));
|
|
NVIC_EnableIRQ(DMA1_Channel1_IRQn);
|
|
}
|
|
|
|
static void furi_hal_irda_configure_tim_rcr_dma_tx(void) {
|
|
LL_C2_AHB1_GRP1_EnableClock(LL_C2_AHB1_GRP1_PERIPH_DMA1);
|
|
|
|
LL_DMA_InitTypeDef dma_config = {0};
|
|
dma_config.PeriphOrM2MSrcAddress = (uint32_t) & (TIM1->RCR);
|
|
dma_config.MemoryOrM2MDstAddress = (uint32_t)NULL;
|
|
dma_config.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH;
|
|
dma_config.Mode = LL_DMA_MODE_NORMAL;
|
|
dma_config.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
|
|
dma_config.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
|
|
dma_config.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_HALFWORD;
|
|
dma_config.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_HALFWORD;
|
|
dma_config.NbData = 0;
|
|
dma_config.PeriphRequest = LL_DMAMUX_REQ_TIM1_UP;
|
|
dma_config.Priority = LL_DMA_PRIORITY_MEDIUM;
|
|
LL_DMA_Init(DMA1, LL_DMA_CHANNEL_2, &dma_config);
|
|
furi_hal_interrupt_set_dma_channel_isr(DMA1, LL_DMA_CHANNEL_2, furi_hal_irda_tx_dma_isr);
|
|
LL_DMA_ClearFlag_TC2(DMA1);
|
|
LL_DMA_ClearFlag_HT2(DMA1);
|
|
LL_DMA_ClearFlag_TE2(DMA1);
|
|
LL_DMA_EnableIT_TC(DMA1, LL_DMA_CHANNEL_2);
|
|
LL_DMA_EnableIT_HT(DMA1, LL_DMA_CHANNEL_2);
|
|
LL_DMA_EnableIT_TE(DMA1, LL_DMA_CHANNEL_2);
|
|
|
|
NVIC_SetPriority(DMA1_Channel2_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 5, 0));
|
|
NVIC_EnableIRQ(DMA1_Channel2_IRQn);
|
|
}
|
|
|
|
static void furi_hal_irda_tx_fill_buffer_last(uint8_t buf_num) {
|
|
furi_assert(buf_num < 2);
|
|
furi_assert(furi_hal_irda_state != IrdaStateAsyncRx);
|
|
furi_assert(furi_hal_irda_state < IrdaStateMAX);
|
|
furi_assert(irda_tim_tx.data_callback);
|
|
IrdaTxBuf* buffer = &irda_tim_tx.buffer[buf_num];
|
|
furi_assert(buffer->data != NULL);
|
|
(void)buffer->data;
|
|
furi_assert(buffer->polarity != NULL);
|
|
(void)buffer->polarity;
|
|
|
|
irda_tim_tx.buffer[buf_num].data[0] = 0; // 1 pulse
|
|
irda_tim_tx.buffer[buf_num].polarity[0] = IRDA_TX_CCMR_LOW;
|
|
irda_tim_tx.buffer[buf_num].data[1] = 0; // 1 pulse
|
|
irda_tim_tx.buffer[buf_num].polarity[1] = IRDA_TX_CCMR_LOW;
|
|
irda_tim_tx.buffer[buf_num].size = 2;
|
|
irda_tim_tx.buffer[buf_num].last_packet_end = true;
|
|
irda_tim_tx.buffer[buf_num].packet_end = true;
|
|
}
|
|
|
|
static void furi_hal_irda_tx_fill_buffer(uint8_t buf_num, uint8_t polarity_shift) {
|
|
furi_assert(buf_num < 2);
|
|
furi_assert(furi_hal_irda_state != IrdaStateAsyncRx);
|
|
furi_assert(furi_hal_irda_state < IrdaStateMAX);
|
|
furi_assert(irda_tim_tx.data_callback);
|
|
IrdaTxBuf* buffer = &irda_tim_tx.buffer[buf_num];
|
|
furi_assert(buffer->data != NULL);
|
|
furi_assert(buffer->polarity != NULL);
|
|
|
|
FuriHalIrdaTxGetDataState status = FuriHalIrdaTxGetDataStateOk;
|
|
uint32_t duration = 0;
|
|
bool level = 0;
|
|
size_t* size = &buffer->size;
|
|
size_t polarity_counter = 0;
|
|
while(polarity_shift--) {
|
|
buffer->polarity[polarity_counter++] = IRDA_TX_CCMR_LOW;
|
|
}
|
|
|
|
for(*size = 0;
|
|
(*size < IRDA_TIM_TX_DMA_BUFFER_SIZE) && (status == FuriHalIrdaTxGetDataStateOk);) {
|
|
if(irda_tim_tx.tx_timing_rest_duration > 0) {
|
|
if(irda_tim_tx.tx_timing_rest_duration > 0xFFFF) {
|
|
buffer->data[*size] = 0xFFFF;
|
|
status = FuriHalIrdaTxGetDataStateOk;
|
|
} else {
|
|
buffer->data[*size] = irda_tim_tx.tx_timing_rest_duration;
|
|
status = irda_tim_tx.tx_timing_rest_status;
|
|
}
|
|
irda_tim_tx.tx_timing_rest_duration -= buffer->data[*size];
|
|
buffer->polarity[polarity_counter] =
|
|
irda_tim_tx.tx_timing_rest_level ? IRDA_TX_CCMR_HIGH : IRDA_TX_CCMR_LOW;
|
|
++(*size);
|
|
++polarity_counter;
|
|
continue;
|
|
}
|
|
|
|
status = irda_tim_tx.data_callback(irda_tim_tx.data_context, &duration, &level);
|
|
|
|
uint32_t num_of_impulses = roundf(duration / irda_tim_tx.cycle_duration);
|
|
|
|
if(num_of_impulses == 0) {
|
|
if((*size == 0) && (status == FuriHalIrdaTxGetDataStateDone)) {
|
|
/* if this is one sample in current buffer, but we
|
|
* have more to send - continue
|
|
*/
|
|
status = FuriHalIrdaTxGetDataStateOk;
|
|
}
|
|
} else if((num_of_impulses - 1) > 0xFFFF) {
|
|
irda_tim_tx.tx_timing_rest_duration = num_of_impulses - 1;
|
|
irda_tim_tx.tx_timing_rest_status = status;
|
|
irda_tim_tx.tx_timing_rest_level = level;
|
|
status = FuriHalIrdaTxGetDataStateOk;
|
|
} else {
|
|
buffer->polarity[polarity_counter] = level ? IRDA_TX_CCMR_HIGH : IRDA_TX_CCMR_LOW;
|
|
buffer->data[*size] = num_of_impulses - 1;
|
|
++(*size);
|
|
++polarity_counter;
|
|
}
|
|
}
|
|
|
|
buffer->last_packet_end = (status == FuriHalIrdaTxGetDataStateLastDone);
|
|
buffer->packet_end = buffer->last_packet_end || (status == FuriHalIrdaTxGetDataStateDone);
|
|
|
|
if(*size == 0) {
|
|
buffer->data[0] = 0; // 1 pulse
|
|
buffer->polarity[0] = IRDA_TX_CCMR_LOW;
|
|
buffer->size = 1;
|
|
}
|
|
}
|
|
|
|
static void furi_hal_irda_tx_dma_set_polarity(uint8_t buf_num, uint8_t polarity_shift) {
|
|
furi_assert(buf_num < 2);
|
|
furi_assert(furi_hal_irda_state < IrdaStateMAX);
|
|
IrdaTxBuf* buffer = &irda_tim_tx.buffer[buf_num];
|
|
furi_assert(buffer->polarity != NULL);
|
|
|
|
FURI_CRITICAL_ENTER();
|
|
bool channel_enabled = LL_DMA_IsEnabledChannel(DMA1, LL_DMA_CHANNEL_1);
|
|
if(channel_enabled) {
|
|
LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_1);
|
|
}
|
|
LL_DMA_SetMemoryAddress(DMA1, LL_DMA_CHANNEL_1, (uint32_t)buffer->polarity);
|
|
LL_DMA_SetDataLength(DMA1, LL_DMA_CHANNEL_1, buffer->size + polarity_shift);
|
|
if(channel_enabled) {
|
|
LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1);
|
|
}
|
|
FURI_CRITICAL_EXIT();
|
|
}
|
|
|
|
static void furi_hal_irda_tx_dma_set_buffer(uint8_t buf_num) {
|
|
furi_assert(buf_num < 2);
|
|
furi_assert(furi_hal_irda_state < IrdaStateMAX);
|
|
IrdaTxBuf* buffer = &irda_tim_tx.buffer[buf_num];
|
|
furi_assert(buffer->data != NULL);
|
|
|
|
/* non-circular mode requires disabled channel before setup */
|
|
FURI_CRITICAL_ENTER();
|
|
bool channel_enabled = LL_DMA_IsEnabledChannel(DMA1, LL_DMA_CHANNEL_2);
|
|
if(channel_enabled) {
|
|
LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_2);
|
|
}
|
|
LL_DMA_SetMemoryAddress(DMA1, LL_DMA_CHANNEL_2, (uint32_t)buffer->data);
|
|
LL_DMA_SetDataLength(DMA1, LL_DMA_CHANNEL_2, buffer->size);
|
|
if(channel_enabled) {
|
|
LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_2);
|
|
}
|
|
FURI_CRITICAL_EXIT();
|
|
}
|
|
|
|
static void furi_hal_irda_async_tx_free_resources(void) {
|
|
furi_assert(
|
|
(furi_hal_irda_state == IrdaStateIdle) ||
|
|
(furi_hal_irda_state == IrdaStateAsyncTxStopped));
|
|
osStatus_t status;
|
|
|
|
hal_gpio_init(&gpio_irda_tx, GpioModeOutputOpenDrain, GpioPullDown, GpioSpeedLow);
|
|
furi_hal_interrupt_set_dma_channel_isr(DMA1, LL_DMA_CHANNEL_1, NULL);
|
|
furi_hal_interrupt_set_dma_channel_isr(DMA1, LL_DMA_CHANNEL_2, NULL);
|
|
LL_TIM_DeInit(TIM1);
|
|
LL_APB2_GRP1_DisableClock(LL_APB2_GRP1_PERIPH_TIM1);
|
|
LL_C2_AHB1_GRP1_DisableClock(LL_C2_AHB1_GRP1_PERIPH_DMA1);
|
|
|
|
status = osSemaphoreDelete(irda_tim_tx.stop_semaphore);
|
|
furi_check(status == osOK);
|
|
free(irda_tim_tx.buffer[0].data);
|
|
free(irda_tim_tx.buffer[1].data);
|
|
free(irda_tim_tx.buffer[0].polarity);
|
|
free(irda_tim_tx.buffer[1].polarity);
|
|
|
|
irda_tim_tx.buffer[0].data = NULL;
|
|
irda_tim_tx.buffer[1].data = NULL;
|
|
irda_tim_tx.buffer[0].polarity = NULL;
|
|
irda_tim_tx.buffer[1].polarity = NULL;
|
|
}
|
|
|
|
void furi_hal_irda_async_tx_start(uint32_t freq, float duty_cycle) {
|
|
if((duty_cycle > 1) || (duty_cycle <= 0) || (freq > IRDA_MAX_FREQUENCY) ||
|
|
(freq < IRDA_MIN_FREQUENCY) || (irda_tim_tx.data_callback == NULL)) {
|
|
furi_crash(NULL);
|
|
}
|
|
|
|
furi_assert(furi_hal_irda_state == IrdaStateIdle);
|
|
furi_assert(irda_tim_tx.buffer[0].data == NULL);
|
|
furi_assert(irda_tim_tx.buffer[1].data == NULL);
|
|
furi_assert(irda_tim_tx.buffer[0].polarity == NULL);
|
|
furi_assert(irda_tim_tx.buffer[1].polarity == NULL);
|
|
|
|
size_t alloc_size_data = IRDA_TIM_TX_DMA_BUFFER_SIZE * sizeof(uint16_t);
|
|
irda_tim_tx.buffer[0].data = malloc(alloc_size_data);
|
|
irda_tim_tx.buffer[1].data = malloc(alloc_size_data);
|
|
|
|
size_t alloc_size_polarity =
|
|
(IRDA_TIM_TX_DMA_BUFFER_SIZE + IRDA_POLARITY_SHIFT) * sizeof(uint8_t);
|
|
irda_tim_tx.buffer[0].polarity = malloc(alloc_size_polarity);
|
|
irda_tim_tx.buffer[1].polarity = malloc(alloc_size_polarity);
|
|
|
|
irda_tim_tx.stop_semaphore = osSemaphoreNew(1, 0, NULL);
|
|
irda_tim_tx.cycle_duration = 1000000.0 / freq;
|
|
irda_tim_tx.tx_timing_rest_duration = 0;
|
|
|
|
furi_hal_irda_tx_fill_buffer(0, IRDA_POLARITY_SHIFT);
|
|
|
|
furi_hal_irda_configure_tim_pwm_tx(freq, duty_cycle);
|
|
furi_hal_irda_configure_tim_cmgr2_dma_tx();
|
|
furi_hal_irda_configure_tim_rcr_dma_tx();
|
|
furi_hal_irda_tx_dma_set_polarity(0, IRDA_POLARITY_SHIFT);
|
|
furi_hal_irda_tx_dma_set_buffer(0);
|
|
|
|
furi_hal_irda_state = IrdaStateAsyncTx;
|
|
|
|
LL_TIM_ClearFlag_UPDATE(TIM1);
|
|
LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1);
|
|
LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_2);
|
|
delay_us(5);
|
|
LL_TIM_GenerateEvent_UPDATE(TIM1); /* DMA -> TIMx_RCR */
|
|
delay_us(5);
|
|
LL_GPIO_ResetOutputPin(
|
|
gpio_irda_tx.port, gpio_irda_tx.pin); /* when disable it prevents false pulse */
|
|
hal_gpio_init_ex(
|
|
&gpio_irda_tx, GpioModeAltFunctionPushPull, GpioPullUp, GpioSpeedHigh, GpioAltFn1TIM1);
|
|
|
|
FURI_CRITICAL_ENTER();
|
|
LL_TIM_GenerateEvent_UPDATE(TIM1); /* TIMx_RCR -> Repetition counter */
|
|
LL_TIM_EnableCounter(TIM1);
|
|
FURI_CRITICAL_EXIT();
|
|
}
|
|
|
|
void furi_hal_irda_async_tx_wait_termination(void) {
|
|
furi_assert(furi_hal_irda_state >= IrdaStateAsyncTx);
|
|
furi_assert(furi_hal_irda_state < IrdaStateMAX);
|
|
|
|
osStatus_t status;
|
|
status = osSemaphoreAcquire(irda_tim_tx.stop_semaphore, osWaitForever);
|
|
furi_check(status == osOK);
|
|
furi_hal_irda_async_tx_free_resources();
|
|
furi_hal_irda_state = IrdaStateIdle;
|
|
}
|
|
|
|
void furi_hal_irda_async_tx_stop(void) {
|
|
furi_assert(furi_hal_irda_state >= IrdaStateAsyncTx);
|
|
furi_assert(furi_hal_irda_state < IrdaStateMAX);
|
|
|
|
FURI_CRITICAL_ENTER();
|
|
if(furi_hal_irda_state == IrdaStateAsyncTx) furi_hal_irda_state = IrdaStateAsyncTxStopReq;
|
|
FURI_CRITICAL_EXIT();
|
|
|
|
furi_hal_irda_async_tx_wait_termination();
|
|
}
|
|
|
|
void furi_hal_irda_async_tx_set_data_isr_callback(
|
|
FuriHalIrdaTxGetDataISRCallback callback,
|
|
void* context) {
|
|
furi_assert(furi_hal_irda_state == IrdaStateIdle);
|
|
irda_tim_tx.data_callback = callback;
|
|
irda_tim_tx.data_context = context;
|
|
}
|
|
|
|
void furi_hal_irda_async_tx_set_signal_sent_isr_callback(
|
|
FuriHalIrdaTxSignalSentISRCallback callback,
|
|
void* context) {
|
|
irda_tim_tx.signal_sent_callback = callback;
|
|
irda_tim_tx.signal_sent_context = context;
|
|
}
|