unleashed-firmware/applications/external/unitemp/sensors/BME680.c
2023-03-15 01:25:18 +03:00

431 lines
17 KiB
C

/*
Unitemp - Universal temperature reader
Copyright (C) 2022-2023 Victor Nikitchuk (https://github.com/quen0n)
Contributed by g0gg0 (https://github.com/g3gg0)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include "BME680.h"
const SensorType BME680 = {
.typename = "BME680",
.interface = &I2C,
.datatype = UT_TEMPERATURE | UT_HUMIDITY | UT_PRESSURE,
.pollingInterval = 500,
.allocator = unitemp_BME680_alloc,
.mem_releaser = unitemp_BME680_free,
.initializer = unitemp_BME680_init,
.deinitializer = unitemp_BME680_deinit,
.updater = unitemp_BME680_update};
//Интервал обновления калибровочных значений
#define BOSCH_CAL_UPDATE_INTERVAL 60000
#define BME680_ID 0x61
#define BME680_I2C_ADDR_MIN (0x76 << 1)
#define BME680_I2C_ADDR_MAX (0x77 << 1)
#define BME680_REG_STATUS 0x1D
#define BME680_REG_CTRL_MEAS 0x74
#define BME680_REG_CONFIG 0x75
#define BME680_REG_CTRL_HUM 0x72
//Преддескретизация температуры
#define BME680_TEMP_OVERSAMPLING_SKIP 0b00000000
#define BME680_TEMP_OVERSAMPLING_1 0b00100000
#define BME680_TEMP_OVERSAMPLING_2 0b01000000
#define BME680_TEMP_OVERSAMPLING_4 0b01100000
#define BME680_TEMP_OVERSAMPLING_8 0b10000000
#define BME680_TEMP_OVERSAMPLING_16 0b10100000
//Преддескретизация давления
#define BME680_PRESS_OVERSAMPLING_SKIP 0b00000000
#define BME680_PRESS_OVERSAMPLING_1 0b00000100
#define BME680_PRESS_OVERSAMPLING_2 0b00001000
#define BME680_PRESS_OVERSAMPLING_4 0b00001100
#define BME680_PRESS_OVERSAMPLING_8 0b00010000
#define BME680_PRESS_OVERSAMPLING_16 0b00010100
//Преддескретизация влажности
#define BME680_HUM_OVERSAMPLING_SKIP 0b00000000
#define BME680_HUM_OVERSAMPLING_1 0b00000001
#define BME680_HUM_OVERSAMPLING_2 0b00000010
#define BME680_HUM_OVERSAMPLING_4 0b00000011
#define BME680_HUM_OVERSAMPLING_8 0b00000100
#define BME680_HUM_OVERSAMPLING_16 0b00000101
//Режимы работы датчика
#define BME680_MODE_SLEEP 0b00000000 //Наелся и спит
#define BME680_MODE_FORCED 0b00000001 //Обновляет значения 1 раз, после чего уходит в сон
//Коэффициент фильтрации значений
#define BME680_FILTER_COEFF_1 0b00000000
#define BME680_FILTER_COEFF_2 0b00000100
#define BME680_FILTER_COEFF_4 0b00001000
#define BME680_FILTER_COEFF_8 0b00001100
#define BME680_FILTER_COEFF_16 0b00010000
//Разрешить работу по SPI
#define BME680_SPI_3W_ENABLE 0b00000001
#define BME680_SPI_3W_DISABLE 0b00000000
/* https://github.com/boschsensortec/BME680_driver/blob/master/bme680.c or
https://github.com/boschsensortec/BME68x-Sensor-API */
static float BME680_compensate_temperature(I2CSensor* i2c_sensor, int32_t temp_adc) {
BME680_instance* bme680_instance = (BME680_instance*)i2c_sensor->sensorInstance;
float var1 = 0;
float var2 = 0;
float calc_temp = 0;
/* calculate var1 data */
var1 =
((((float)temp_adc / 16384.0f) - ((float)bme680_instance->temp_cal.dig_T1 / 1024.0f)) *
((float)bme680_instance->temp_cal.dig_T2));
/* calculate var2 data */
var2 =
(((((float)temp_adc / 131072.0f) - ((float)bme680_instance->temp_cal.dig_T1 / 8192.0f)) *
(((float)temp_adc / 131072.0f) - ((float)bme680_instance->temp_cal.dig_T1 / 8192.0f))) *
((float)bme680_instance->temp_cal.dig_T3 * 16.0f));
/* t_fine value*/
bme680_instance->t_fine = (var1 + var2);
/* compensated temperature data*/
calc_temp = ((bme680_instance->t_fine) / 5120.0f);
return calc_temp;
}
static float BME680_compensate_pressure(I2CSensor* i2c_sensor, int32_t pres_adc) {
BME680_instance* bme680_instance = (BME680_instance*)i2c_sensor->sensorInstance;
float var1;
float var2;
float var3;
float calc_pres;
var1 = (((float)bme680_instance->t_fine / 2.0f) - 64000.0f);
var2 = var1 * var1 * (((float)bme680_instance->press_cal.dig_P6) / (131072.0f));
var2 = var2 + (var1 * ((float)bme680_instance->press_cal.dig_P5) * 2.0f);
var2 = (var2 / 4.0f) + (((float)bme680_instance->press_cal.dig_P4) * 65536.0f);
var1 =
(((((float)bme680_instance->press_cal.dig_P3 * var1 * var1) / 16384.0f) +
((float)bme680_instance->press_cal.dig_P2 * var1)) /
524288.0f);
var1 = ((1.0f + (var1 / 32768.0f)) * ((float)bme680_instance->press_cal.dig_P1));
calc_pres = (1048576.0f - ((float)pres_adc));
/* Avoid exception caused by division by zero */
if((int)var1 != 0) {
calc_pres = (((calc_pres - (var2 / 4096.0f)) * 6250.0f) / var1);
var1 =
(((float)bme680_instance->press_cal.dig_P9) * calc_pres * calc_pres) / 2147483648.0f;
var2 = calc_pres * (((float)bme680_instance->press_cal.dig_P8) / 32768.0f);
var3 =
((calc_pres / 256.0f) * (calc_pres / 256.0f) * (calc_pres / 256.0f) *
(bme680_instance->press_cal.dig_P10 / 131072.0f));
calc_pres =
(calc_pres +
(var1 + var2 + var3 + ((float)bme680_instance->press_cal.dig_P7 * 128.0f)) / 16.0f);
} else {
calc_pres = 0;
}
return calc_pres;
}
static float BME680_compensate_humidity(I2CSensor* i2c_sensor, int32_t hum_adc) {
BME680_instance* bme680_instance = (BME680_instance*)i2c_sensor->sensorInstance;
float calc_hum;
float var1;
float var2;
float var3;
float var4;
float temp_comp;
/* compensated temperature data*/
temp_comp = ((bme680_instance->t_fine) / 5120.0f);
var1 =
(float)((float)hum_adc) - (((float)bme680_instance->hum_cal.dig_H1 * 16.0f) +
(((float)bme680_instance->hum_cal.dig_H3 / 2.0f) * temp_comp));
var2 = var1 *
((float)(((float)bme680_instance->hum_cal.dig_H2 / 262144.0f) *
(1.0f + (((float)bme680_instance->hum_cal.dig_H4 / 16384.0f) * temp_comp) +
(((float)bme680_instance->hum_cal.dig_H5 / 1048576.0f) * temp_comp * temp_comp))));
var3 = (float)bme680_instance->hum_cal.dig_H6 / 16384.0f;
var4 = (float)bme680_instance->hum_cal.dig_H7 / 2097152.0f;
calc_hum = var2 + ((var3 + (var4 * temp_comp)) * var2 * var2);
if(calc_hum > 100.0f) {
calc_hum = 100.0f;
} else if(calc_hum < 0.0f) {
calc_hum = 0.0f;
}
return calc_hum;
}
/* https://github.com/boschsensortec/BME680_driver/blob/master/bme680_defs.h */
#define BME680_COEFF_SIZE UINT8_C(41)
#define BME680_COEFF_ADDR1_LEN UINT8_C(25)
#define BME680_COEFF_ADDR2_LEN UINT8_C(16)
#define BME680_COEFF_ADDR1 UINT8_C(0x89)
#define BME680_COEFF_ADDR2 UINT8_C(0xe1)
#define BME680_CONCAT_BYTES(msb, lsb) (((uint16_t)msb << 8) | (uint16_t)lsb)
#define BME680_T2_LSB_REG (1)
#define BME680_T2_MSB_REG (2)
#define BME680_T3_REG (3)
#define BME680_P1_LSB_REG (5)
#define BME680_P1_MSB_REG (6)
#define BME680_P2_LSB_REG (7)
#define BME680_P2_MSB_REG (8)
#define BME680_P3_REG (9)
#define BME680_P4_LSB_REG (11)
#define BME680_P4_MSB_REG (12)
#define BME680_P5_LSB_REG (13)
#define BME680_P5_MSB_REG (14)
#define BME680_P7_REG (15)
#define BME680_P6_REG (16)
#define BME680_P8_LSB_REG (19)
#define BME680_P8_MSB_REG (20)
#define BME680_P9_LSB_REG (21)
#define BME680_P9_MSB_REG (22)
#define BME680_P10_REG (23)
#define BME680_H2_MSB_REG (25)
#define BME680_H2_LSB_REG (26)
#define BME680_H1_LSB_REG (26)
#define BME680_H1_MSB_REG (27)
#define BME680_H3_REG (28)
#define BME680_H4_REG (29)
#define BME680_H5_REG (30)
#define BME680_H6_REG (31)
#define BME680_H7_REG (32)
#define BME680_T1_LSB_REG (33)
#define BME680_T1_MSB_REG (34)
#define BME680_GH2_LSB_REG (35)
#define BME680_GH2_MSB_REG (36)
#define BME680_GH1_REG (37)
#define BME680_GH3_REG (38)
#define BME680_HUM_REG_SHIFT_VAL UINT8_C(4)
#define BME680_BIT_H1_DATA_MSK UINT8_C(0x0F)
static bool BME680_readCalValues(I2CSensor* i2c_sensor) {
BME680_instance* bme680_instance = (BME680_instance*)i2c_sensor->sensorInstance;
uint8_t coeff_array[BME680_COEFF_SIZE] = {0};
if(!unitemp_i2c_readRegArray(
i2c_sensor, BME680_COEFF_ADDR1, BME680_COEFF_ADDR1_LEN, &coeff_array[0]))
return false;
if(!unitemp_i2c_readRegArray(
i2c_sensor,
BME680_COEFF_ADDR2,
BME680_COEFF_ADDR2_LEN,
&coeff_array[BME680_COEFF_ADDR1_LEN]))
return false;
/* Temperature related coefficients */
bme680_instance->temp_cal.dig_T1 = (uint16_t)(BME680_CONCAT_BYTES(
coeff_array[BME680_T1_MSB_REG], coeff_array[BME680_T1_LSB_REG]));
bme680_instance->temp_cal.dig_T2 = (int16_t)(BME680_CONCAT_BYTES(
coeff_array[BME680_T2_MSB_REG], coeff_array[BME680_T2_LSB_REG]));
bme680_instance->temp_cal.dig_T3 = (int8_t)(coeff_array[BME680_T3_REG]);
/* Pressure related coefficients */
bme680_instance->press_cal.dig_P1 = (uint16_t)(BME680_CONCAT_BYTES(
coeff_array[BME680_P1_MSB_REG], coeff_array[BME680_P1_LSB_REG]));
bme680_instance->press_cal.dig_P2 = (int16_t)(BME680_CONCAT_BYTES(
coeff_array[BME680_P2_MSB_REG], coeff_array[BME680_P2_LSB_REG]));
bme680_instance->press_cal.dig_P3 = (int8_t)coeff_array[BME680_P3_REG];
bme680_instance->press_cal.dig_P4 = (int16_t)(BME680_CONCAT_BYTES(
coeff_array[BME680_P4_MSB_REG], coeff_array[BME680_P4_LSB_REG]));
bme680_instance->press_cal.dig_P5 = (int16_t)(BME680_CONCAT_BYTES(
coeff_array[BME680_P5_MSB_REG], coeff_array[BME680_P5_LSB_REG]));
bme680_instance->press_cal.dig_P6 = (int8_t)(coeff_array[BME680_P6_REG]);
bme680_instance->press_cal.dig_P7 = (int8_t)(coeff_array[BME680_P7_REG]);
bme680_instance->press_cal.dig_P8 = (int16_t)(BME680_CONCAT_BYTES(
coeff_array[BME680_P8_MSB_REG], coeff_array[BME680_P8_LSB_REG]));
bme680_instance->press_cal.dig_P9 = (int16_t)(BME680_CONCAT_BYTES(
coeff_array[BME680_P9_MSB_REG], coeff_array[BME680_P9_LSB_REG]));
bme680_instance->press_cal.dig_P10 = (uint8_t)(coeff_array[BME680_P10_REG]);
/* Humidity related coefficients */
bme680_instance->hum_cal.dig_H1 =
(uint16_t)(((uint16_t)coeff_array[BME680_H1_MSB_REG] << BME680_HUM_REG_SHIFT_VAL) | (coeff_array[BME680_H1_LSB_REG] & BME680_BIT_H1_DATA_MSK));
bme680_instance->hum_cal.dig_H2 =
(uint16_t)(((uint16_t)coeff_array[BME680_H2_MSB_REG] << BME680_HUM_REG_SHIFT_VAL) | ((coeff_array[BME680_H2_LSB_REG]) >> BME680_HUM_REG_SHIFT_VAL));
bme680_instance->hum_cal.dig_H3 = (int8_t)coeff_array[BME680_H3_REG];
bme680_instance->hum_cal.dig_H4 = (int8_t)coeff_array[BME680_H4_REG];
bme680_instance->hum_cal.dig_H5 = (int8_t)coeff_array[BME680_H5_REG];
bme680_instance->hum_cal.dig_H6 = (uint8_t)coeff_array[BME680_H6_REG];
bme680_instance->hum_cal.dig_H7 = (int8_t)coeff_array[BME680_H7_REG];
/* Gas heater related coefficients */
bme680_instance->gas_cal.dig_GH1 = (int8_t)coeff_array[BME680_GH1_REG];
bme680_instance->gas_cal.dig_GH2 = (int16_t)(BME680_CONCAT_BYTES(
coeff_array[BME680_GH2_MSB_REG], coeff_array[BME680_GH2_LSB_REG]));
bme680_instance->gas_cal.dig_GH3 = (int8_t)coeff_array[BME680_GH3_REG];
#ifdef UNITEMP_DEBUG
FURI_LOG_D(
APP_NAME,
"Sensor BME680 T1-T3: %d, %d, %d",
bme680_instance->temp_cal.dig_T1,
bme680_instance->temp_cal.dig_T2,
bme680_instance->temp_cal.dig_T3);
FURI_LOG_D(
APP_NAME,
"Sensor BME680: P1-P10: %d, %d, %d, %d, %d, %d, %d, %d, %d, %d",
bme680_instance->press_cal.dig_P1,
bme680_instance->press_cal.dig_P2,
bme680_instance->press_cal.dig_P3,
bme680_instance->press_cal.dig_P4,
bme680_instance->press_cal.dig_P5,
bme680_instance->press_cal.dig_P6,
bme680_instance->press_cal.dig_P7,
bme680_instance->press_cal.dig_P8,
bme680_instance->press_cal.dig_P9,
bme680_instance->press_cal.dig_P10);
FURI_LOG_D(
APP_NAME,
"Sensor BME680: H1-H7: %d, %d, %d, %d, %d, %d, %d",
bme680_instance->hum_cal.dig_H1,
bme680_instance->hum_cal.dig_H2,
bme680_instance->hum_cal.dig_H3,
bme680_instance->hum_cal.dig_H4,
bme680_instance->hum_cal.dig_H5,
bme680_instance->hum_cal.dig_H6,
bme680_instance->hum_cal.dig_H7);
FURI_LOG_D(
APP_NAME,
"Sensor BME680 GH1-GH3: %d, %d, %d",
bme680_instance->gas_cal.dig_GH1,
bme680_instance->gas_cal.dig_GH2,
bme680_instance->gas_cal.dig_GH3);
#endif
bme680_instance->last_cal_update_time = furi_get_tick();
return true;
}
static bool BME680_isMeasuring(Sensor* sensor) {
I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
return (bool)(unitemp_i2c_readReg(i2c_sensor, BME680_REG_STATUS) & 0x20);
}
bool unitemp_BME680_alloc(Sensor* sensor, char* args) {
UNUSED(args);
I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
BME680_instance* bme680_instance = malloc(sizeof(BME680_instance));
if(bme680_instance == NULL) {
FURI_LOG_E(APP_NAME, "Failed to allocation sensor %s instance", sensor->name);
return false;
}
if(sensor->type == &BME680) bme680_instance->chip_id = BME680_ID;
i2c_sensor->sensorInstance = bme680_instance;
i2c_sensor->minI2CAdr = BME680_I2C_ADDR_MIN;
i2c_sensor->maxI2CAdr = BME680_I2C_ADDR_MAX;
return true;
}
bool unitemp_BME680_init(Sensor* sensor) {
I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
//Перезагрузка
unitemp_i2c_writeReg(i2c_sensor, 0xE0, 0xB6);
//Чтение ID датчика
uint8_t id = unitemp_i2c_readReg(i2c_sensor, 0xD0);
if(id != BME680_ID) {
FURI_LOG_E(
APP_NAME,
"Sensor %s returned wrong ID 0x%02X, expected 0x%02X",
sensor->name,
id,
BME680_ID);
return false;
}
unitemp_i2c_writeReg(
i2c_sensor,
BME680_REG_CTRL_HUM,
(unitemp_i2c_readReg(i2c_sensor, BME680_REG_CTRL_HUM) & ~7) | BME680_HUM_OVERSAMPLING_1);
unitemp_i2c_writeReg(
i2c_sensor,
BME680_REG_CTRL_MEAS,
BME680_TEMP_OVERSAMPLING_2 | BME680_PRESS_OVERSAMPLING_4 | BME680_MODE_FORCED);
//Настройка периода опроса и фильтрации значений
unitemp_i2c_writeReg(
i2c_sensor, BME680_REG_CONFIG, BME680_FILTER_COEFF_16 | BME680_SPI_3W_DISABLE);
//Чтение калибровочных значений
if(!BME680_readCalValues(i2c_sensor)) {
FURI_LOG_E(APP_NAME, "Failed to read calibration values sensor %s", sensor->name);
return false;
}
return true;
}
bool unitemp_BME680_deinit(Sensor* sensor) {
I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
//Перевод в сон
unitemp_i2c_writeReg(i2c_sensor, BME680_REG_CTRL_MEAS, BME680_MODE_SLEEP);
return true;
}
UnitempStatus unitemp_BME680_update(Sensor* sensor) {
I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
BME680_instance* instance = i2c_sensor->sensorInstance;
uint32_t t = furi_get_tick();
uint8_t buff[3];
//Проверка инициализированности датчика
unitemp_i2c_readRegArray(i2c_sensor, 0xF4, 2, buff);
if(buff[0] == 0) {
FURI_LOG_W(APP_NAME, "Sensor %s is not initialized!", sensor->name);
return UT_SENSORSTATUS_ERROR;
}
unitemp_i2c_writeReg(
i2c_sensor,
BME680_REG_CTRL_MEAS,
unitemp_i2c_readReg(i2c_sensor, BME680_REG_CTRL_MEAS) | 1);
while(BME680_isMeasuring(sensor)) {
if(furi_get_tick() - t > 100) {
return UT_SENSORSTATUS_TIMEOUT;
}
}
if(furi_get_tick() - instance->last_cal_update_time > BOSCH_CAL_UPDATE_INTERVAL) {
BME680_readCalValues(i2c_sensor);
}
if(!unitemp_i2c_readRegArray(i2c_sensor, 0x1F, 3, buff)) return UT_SENSORSTATUS_TIMEOUT;
int32_t adc_P = ((int32_t)buff[0] << 12) | ((int32_t)buff[1] << 4) | ((int32_t)buff[2] >> 4);
if(!unitemp_i2c_readRegArray(i2c_sensor, 0x22, 3, buff)) return UT_SENSORSTATUS_TIMEOUT;
int32_t adc_T = ((int32_t)buff[0] << 12) | ((int32_t)buff[1] << 4) | ((int32_t)buff[2] >> 4);
if(!unitemp_i2c_readRegArray(i2c_sensor, 0x25, 2, buff)) return UT_SENSORSTATUS_TIMEOUT;
int32_t adc_H = ((uint16_t)buff[0] << 8) | buff[1];
sensor->temp = BME680_compensate_temperature(i2c_sensor, adc_T);
sensor->pressure = BME680_compensate_pressure(i2c_sensor, adc_P);
sensor->hum = BME680_compensate_humidity(i2c_sensor, adc_H);
return UT_SENSORSTATUS_OK;
}
bool unitemp_BME680_free(Sensor* sensor) {
I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
free(i2c_sensor->sensorInstance);
return true;
}