unleashed-firmware/lib/nfc_protocols/crypto1.c
gornekich d31578508a
[FL-2245] Introduce Mifare Classic Emulation (#1242)
* digital signal: introduce digital signal
* nfca: add nfca signal encoder
* nfc: add mifare classic emulation scene
* nfca: add classic emulation support to lib and hal
* mifare classic: support basic read commands
* nfc: add mifare classic menu scene
* mifare classic: start parsing commands in emulation
* mifare classic: add nested auth
* nfc: fix errors
* mifare classic: add encrypt function
* nfc: fix mifare classic save
* lib hex: add hex uint64_t ASCII parser
* flipper format: add uint64 hex format support
* nfc: add mifare classic key map
* nfc: hide mifare classic keys on emulation
* mifare classic: add NACK responce
* nfc: add partial bytes support in transparent mode
* nfc: mifare classic add shadow file support
* digital signal: move arr buffer from BSS to heap
* mifare classic: process access bits more careful
* nfca: fix memory leack
* nfc: format sources
* mifare classic: cleun up

Co-authored-by: あく <alleteam@gmail.com>
2022-05-24 17:00:15 +03:00

76 lines
2.1 KiB
C

#include "crypto1.h"
#include "nfc_util.h"
#include <furi.h>
// Algorithm from https://github.com/RfidResearchGroup/proxmark3.git
#define SWAPENDIAN(x) (x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
#define LF_POLY_ODD (0x29CE5C)
#define LF_POLY_EVEN (0x870804)
#define BEBIT(x, n) FURI_BIT(x, (n) ^ 24)
void crypto1_reset(Crypto1* crypto1) {
furi_assert(crypto1);
crypto1->even = 0;
crypto1->odd = 0;
}
void crypto1_init(Crypto1* crypto1, uint64_t key) {
furi_assert(crypto1);
crypto1->even = 0;
crypto1->odd = 0;
for(int8_t i = 47; i > 0; i -= 2) {
crypto1->odd = crypto1->odd << 1 | FURI_BIT(key, (i - 1) ^ 7);
crypto1->even = crypto1->even << 1 | FURI_BIT(key, i ^ 7);
}
}
uint32_t crypto1_filter(uint32_t in) {
uint32_t out = 0;
out = 0xf22c0 >> (in & 0xf) & 16;
out |= 0x6c9c0 >> (in >> 4 & 0xf) & 8;
out |= 0x3c8b0 >> (in >> 8 & 0xf) & 4;
out |= 0x1e458 >> (in >> 12 & 0xf) & 2;
out |= 0x0d938 >> (in >> 16 & 0xf) & 1;
return FURI_BIT(0xEC57E80A, out);
}
uint8_t crypto1_bit(Crypto1* crypto1, uint8_t in, int is_encrypted) {
furi_assert(crypto1);
uint8_t out = crypto1_filter(crypto1->odd);
uint32_t feed = out & (!!is_encrypted);
feed ^= !!in;
feed ^= LF_POLY_ODD & crypto1->odd;
feed ^= LF_POLY_EVEN & crypto1->even;
crypto1->even = crypto1->even << 1 | (nfc_util_even_parity32(feed));
FURI_SWAP(crypto1->odd, crypto1->even);
return out;
}
uint8_t crypto1_byte(Crypto1* crypto1, uint8_t in, int is_encrypted) {
furi_assert(crypto1);
uint8_t out = 0;
for(uint8_t i = 0; i < 8; i++) {
out |= crypto1_bit(crypto1, FURI_BIT(in, i), is_encrypted) << i;
}
return out;
}
uint32_t crypto1_word(Crypto1* crypto1, uint32_t in, int is_encrypted) {
furi_assert(crypto1);
uint32_t out = 0;
for(uint8_t i = 0; i < 32; i++) {
out |= crypto1_bit(crypto1, BEBIT(in, i), is_encrypted) << (24 ^ i);
}
return out;
}
uint32_t prng_successor(uint32_t x, uint32_t n) {
SWAPENDIAN(x);
while(n--) x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31;
return SWAPENDIAN(x);
}