unleashed-firmware/applications/main/subghz/helpers/subghz_frequency_analyzer_worker.c
2023-06-19 12:51:02 +03:00

342 lines
12 KiB
C

#include "subghz_frequency_analyzer_worker.h"
#include <lib/drivers/cc1101.h>
#include <furi.h>
#include <float_tools.h>
// TODO add external module
#define TAG "SubghzFrequencyAnalyzerWorker"
#define SUBGHZ_FREQUENCY_ANALYZER_THRESHOLD -97.0f
static const uint8_t subghz_preset_ook_58khz[][2] = {
{CC1101_MDMCFG4, 0b11110111}, // Rx BW filter is 58.035714kHz
/* End */
{0, 0},
};
static const uint8_t subghz_preset_ook_650khz[][2] = {
{CC1101_MDMCFG4, 0b00010111}, // Rx BW filter is 650.000kHz
/* End */
{0, 0},
};
struct SubGhzFrequencyAnalyzerWorker {
FuriThread* thread;
volatile bool worker_running;
uint8_t sample_hold_counter;
FrequencyRSSI frequency_rssi_buf;
SubGhzSetting* setting;
float filVal;
float trigger_level;
SubGhzFrequencyAnalyzerWorkerPairCallback pair_callback;
void* context;
};
static void subghz_frequency_analyzer_worker_load_registers(const uint8_t data[][2]) {
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
size_t i = 0;
while(data[i][0]) {
cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, data[i][0], data[i][1]);
i++;
}
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
}
// running average with adaptive coefficient
static uint32_t subghz_frequency_analyzer_worker_expRunningAverageAdaptive(
SubGhzFrequencyAnalyzerWorker* instance,
uint32_t newVal) {
float k;
float newValFloat = newVal;
// the sharpness of the filter depends on the absolute value of the difference
if(fabs(newValFloat - instance->filVal) > 500000)
k = 0.9;
else
k = 0.03;
instance->filVal += (newValFloat - instance->filVal) * k;
return (uint32_t)instance->filVal;
}
/** Worker thread
*
* @param context
* @return exit code
*/
static int32_t subghz_frequency_analyzer_worker_thread(void* context) {
SubGhzFrequencyAnalyzerWorker* instance = context;
FrequencyRSSI frequency_rssi = {
.frequency_coarse = 0, .rssi_coarse = 0, .frequency_fine = 0, .rssi_fine = 0};
float rssi = 0;
uint32_t frequency = 0;
float rssi_temp = 0;
uint32_t frequency_temp = 0;
CC1101Status status;
//Start CC1101
furi_hal_subghz_reset();
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
cc1101_flush_rx(&furi_hal_spi_bus_handle_subghz);
cc1101_flush_tx(&furi_hal_spi_bus_handle_subghz);
// TODO probably can be used device.load_preset(FuriHalSubGhzPresetCustom, ...) for external cc1101
cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, CC1101_IOCFG0, CC1101IocfgHW);
cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, CC1101_MDMCFG3,
0b01111111); // symbol rate
cc1101_write_reg(
&furi_hal_spi_bus_handle_subghz,
CC1101_AGCCTRL2,
0b00000111); // 00 - DVGA all; 000 - MAX LNA+LNA2; 111 - MAGN_TARGET 42 dB
cc1101_write_reg(
&furi_hal_spi_bus_handle_subghz,
CC1101_AGCCTRL1,
0b00001000); // 0; 0 - LNA 2 gain is decreased to minimum before decreasing LNA gain; 00 - Relative carrier sense threshold disabled; 1000 - Absolute carrier sense threshold disabled
cc1101_write_reg(
&furi_hal_spi_bus_handle_subghz,
CC1101_AGCCTRL0,
0b00110000); // 00 - No hysteresis, medium asymmetric dead zone, medium gain ; 11 - 64 samples agc; 00 - Normal AGC, 00 - 4dB boundary
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
furi_hal_subghz_set_path(FuriHalSubGhzPathIsolate);
while(instance->worker_running) {
furi_delay_ms(10);
float rssi_min = 26.0f;
float rssi_avg = 0;
size_t rssi_avg_samples = 0;
frequency_rssi.rssi_coarse = -127.0f;
frequency_rssi.rssi_fine = -127.0f;
furi_hal_subghz_idle();
subghz_frequency_analyzer_worker_load_registers(subghz_preset_ook_650khz);
// First stage: coarse scan
for(size_t i = 0; i < subghz_setting_get_frequency_count(instance->setting); i++) {
uint32_t current_frequency = subghz_setting_get_frequency(instance->setting, i);
if(furi_hal_subghz_is_frequency_valid(current_frequency) &&
(current_frequency != 467750000) && (current_frequency != 464000000)
// &&
// !((furi_hal_subghz.radio_type == SubGhzRadioExternal) &&
// ((current_frequency == 390000000) || (current_frequency == 312000000) ||
// (current_frequency == 312100000) || (current_frequency == 312200000) ||
// (current_frequency == 440175000)))
) {
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
cc1101_switch_to_idle(&furi_hal_spi_bus_handle_subghz);
frequency =
cc1101_set_frequency(&furi_hal_spi_bus_handle_subghz, current_frequency);
cc1101_calibrate(&furi_hal_spi_bus_handle_subghz);
do {
status = cc1101_get_status(&furi_hal_spi_bus_handle_subghz);
} while(status.STATE != CC1101StateIDLE);
cc1101_switch_to_rx(&furi_hal_spi_bus_handle_subghz);
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
furi_delay_ms(2);
rssi = furi_hal_subghz_get_rssi();
rssi_avg += rssi;
rssi_avg_samples++;
if(rssi < rssi_min) rssi_min = rssi;
if(frequency_rssi.rssi_coarse < rssi) {
frequency_rssi.rssi_coarse = rssi;
frequency_rssi.frequency_coarse = frequency;
}
}
}
FURI_LOG_T(
TAG,
"RSSI: avg %f, max %f at %lu, min %f",
(double)(rssi_avg / rssi_avg_samples),
(double)frequency_rssi.rssi_coarse,
frequency_rssi.frequency_coarse,
(double)rssi_min);
// Second stage: fine scan
if(frequency_rssi.rssi_coarse > instance->trigger_level) {
furi_hal_subghz_idle();
subghz_frequency_analyzer_worker_load_registers(subghz_preset_ook_58khz);
//for example -0.3 ... 433.92 ... +0.3 step 20KHz
for(uint32_t i = frequency_rssi.frequency_coarse - 300000;
i < frequency_rssi.frequency_coarse + 300000;
i += 20000) {
if(furi_hal_subghz_is_frequency_valid(i)) {
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
cc1101_switch_to_idle(&furi_hal_spi_bus_handle_subghz);
frequency = cc1101_set_frequency(&furi_hal_spi_bus_handle_subghz, i);
cc1101_calibrate(&furi_hal_spi_bus_handle_subghz);
do {
status = cc1101_get_status(&furi_hal_spi_bus_handle_subghz);
} while(status.STATE != CC1101StateIDLE);
cc1101_switch_to_rx(&furi_hal_spi_bus_handle_subghz);
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
furi_delay_ms(2);
rssi = furi_hal_subghz_get_rssi();
FURI_LOG_T(TAG, "#:%lu:%f", frequency, (double)rssi);
if(frequency_rssi.rssi_fine < rssi) {
frequency_rssi.rssi_fine = rssi;
frequency_rssi.frequency_fine = frequency;
}
}
}
}
// Deliver results fine
if(frequency_rssi.rssi_fine > instance->trigger_level) {
FURI_LOG_D(
TAG, "=:%lu:%f", frequency_rssi.frequency_fine, (double)frequency_rssi.rssi_fine);
instance->sample_hold_counter = 20;
rssi_temp = frequency_rssi.rssi_fine;
frequency_temp = frequency_rssi.frequency_fine;
if(!float_is_equal(instance->filVal, 0.f)) {
frequency_rssi.frequency_fine =
subghz_frequency_analyzer_worker_expRunningAverageAdaptive(
instance, frequency_rssi.frequency_fine);
}
// Deliver callback
if(instance->pair_callback) {
instance->pair_callback(
instance->context,
frequency_rssi.frequency_fine,
frequency_rssi.rssi_fine,
true);
}
} else if( // Deliver results coarse
(frequency_rssi.rssi_coarse > instance->trigger_level) &&
(instance->sample_hold_counter < 10)) {
FURI_LOG_D(
TAG,
"~:%lu:%f",
frequency_rssi.frequency_coarse,
(double)frequency_rssi.rssi_coarse);
instance->sample_hold_counter = 20;
rssi_temp = frequency_rssi.rssi_coarse;
frequency_temp = frequency_rssi.frequency_coarse;
if(!float_is_equal(instance->filVal, 0.f)) {
frequency_rssi.frequency_coarse =
subghz_frequency_analyzer_worker_expRunningAverageAdaptive(
instance, frequency_rssi.frequency_coarse);
}
// Deliver callback
if(instance->pair_callback) {
instance->pair_callback(
instance->context,
frequency_rssi.frequency_coarse,
frequency_rssi.rssi_coarse,
true);
}
} else {
if(instance->sample_hold_counter > 0) {
instance->sample_hold_counter--;
if(instance->sample_hold_counter == 18) {
if(instance->pair_callback) {
instance->pair_callback(
instance->context, frequency_temp, rssi_temp, false);
}
}
} else {
instance->filVal = 0;
if(instance->pair_callback)
instance->pair_callback(instance->context, 0, 0, false);
}
}
}
//Stop CC1101
furi_hal_subghz_idle();
furi_hal_subghz_sleep();
return 0;
}
SubGhzFrequencyAnalyzerWorker* subghz_frequency_analyzer_worker_alloc(void* context) {
furi_assert(context);
SubGhzFrequencyAnalyzerWorker* instance = malloc(sizeof(SubGhzFrequencyAnalyzerWorker));
instance->thread = furi_thread_alloc();
furi_thread_set_name(instance->thread, "SubGhzFAWorker");
furi_thread_set_stack_size(instance->thread, 2048);
furi_thread_set_context(instance->thread, instance);
furi_thread_set_callback(instance->thread, subghz_frequency_analyzer_worker_thread);
SubGhz* subghz = context;
instance->setting = subghz_txrx_get_setting(subghz->txrx);
instance->trigger_level = subghz->last_settings->frequency_analyzer_trigger;
//instance->trigger_level = SUBGHZ_FREQUENCY_ANALYZER_THRESHOLD;
return instance;
}
void subghz_frequency_analyzer_worker_free(SubGhzFrequencyAnalyzerWorker* instance) {
furi_assert(instance);
furi_thread_free(instance->thread);
free(instance);
}
void subghz_frequency_analyzer_worker_set_pair_callback(
SubGhzFrequencyAnalyzerWorker* instance,
SubGhzFrequencyAnalyzerWorkerPairCallback callback,
void* context) {
furi_assert(instance);
furi_assert(context);
instance->pair_callback = callback;
instance->context = context;
}
void subghz_frequency_analyzer_worker_start(SubGhzFrequencyAnalyzerWorker* instance) {
furi_assert(instance);
furi_assert(!instance->worker_running);
instance->worker_running = true;
furi_thread_start(instance->thread);
}
void subghz_frequency_analyzer_worker_stop(SubGhzFrequencyAnalyzerWorker* instance) {
furi_assert(instance);
furi_assert(instance->worker_running);
instance->worker_running = false;
furi_thread_join(instance->thread);
}
bool subghz_frequency_analyzer_worker_is_running(SubGhzFrequencyAnalyzerWorker* instance) {
furi_assert(instance);
return instance->worker_running;
}
void subghz_frequency_analyzer_worker_set_trigger_level(
SubGhzFrequencyAnalyzerWorker* instance,
float value) {
instance->trigger_level = value;
}
float subghz_frequency_analyzer_worker_get_trigger_level(SubGhzFrequencyAnalyzerWorker* instance) {
return instance->trigger_level;
}