unleashed-firmware/lib/nfc/protocols/emv/emv_poller_i.c
2024-02-15 21:53:06 +09:00

794 lines
26 KiB
C

#include "emv_poller_i.h"
#include "protocols/emv/emv.h"
#define TAG "EMVPoller"
// "Terminal" parameters, which could be requested by card
const PDOLValue pdol_term_info = {0x9F59, {0xC8, 0x80, 0x00}}; // Terminal transaction information
const PDOLValue pdol_term_type = {0x9F5A, {0x00}}; // Terminal transaction type
const PDOLValue pdol_merchant_type = {0x9F58, {0x01}}; // Merchant type indicator
const PDOLValue pdol_term_trans_qualifies = {
0x9F66,
{0x79, 0x00, 0x40, 0x80}}; // Terminal transaction qualifiers
const PDOLValue pdol_addtnl_term_qualifies = {
0x9F40,
{0x79, 0x00, 0x40, 0x80}}; // Terminal transaction qualifiers
const PDOLValue pdol_amount_authorise = {
0x9F02,
{0x00, 0x00, 0x00, 0x10, 0x00, 0x00}}; // Amount, authorised
const PDOLValue pdol_amount = {0x9F03, {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}}; // Amount
const PDOLValue pdol_country_code = {0x9F1A, {0x01, 0x24}}; // Terminal country code
const PDOLValue pdol_currency_code = {0x5F2A, {0x01, 0x24}}; // Transaction currency code
const PDOLValue pdol_term_verification = {
0x95,
{0x00, 0x00, 0x00, 0x00, 0x00}}; // Terminal verification results
const PDOLValue pdol_transaction_date = {0x9A, {0x19, 0x01, 0x01}}; // Transaction date
const PDOLValue pdol_transaction_type = {0x9C, {0x00}}; // Transaction type
const PDOLValue pdol_transaction_cert = {0x98, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}; // Transaction cert
const PDOLValue pdol_unpredict_number = {0x9F37, {0x82, 0x3D, 0xDE, 0x7A}}; // Unpredictable number
const PDOLValue* const pdol_values[] = {
&pdol_term_info,
&pdol_term_type,
&pdol_merchant_type,
&pdol_term_trans_qualifies,
&pdol_addtnl_term_qualifies,
&pdol_amount_authorise,
&pdol_amount,
&pdol_country_code,
&pdol_currency_code,
&pdol_term_verification,
&pdol_transaction_date,
&pdol_transaction_type,
&pdol_transaction_cert,
&pdol_unpredict_number,
};
EmvError emv_process_error(Iso14443_4aError error) {
switch(error) {
case Iso14443_4aErrorNone:
return EmvErrorNone;
case Iso14443_4aErrorNotPresent:
return EmvErrorNotPresent;
case Iso14443_4aErrorTimeout:
return EmvErrorTimeout;
default:
return EmvErrorProtocol;
}
}
static void emv_trace(EmvPoller* instance, const char* message) {
if(furi_log_get_level() == FuriLogLevelTrace) {
FURI_LOG_T(TAG, "%s", message);
printf("TX: ");
size_t size = bit_buffer_get_size_bytes(instance->tx_buffer);
for(size_t i = 0; i < size; i++) {
printf("%02X ", bit_buffer_get_byte(instance->tx_buffer, i));
}
printf("\r\nRX: ");
size = bit_buffer_get_size_bytes(instance->rx_buffer);
for(size_t i = 0; i < size; i++) {
printf("%02X ", bit_buffer_get_byte(instance->rx_buffer, i));
}
printf("\r\n");
}
}
static bool
emv_decode_tlv_tag(const uint8_t* buff, uint16_t tag, uint8_t tlen, EmvApplication* app) {
uint8_t i = 0;
bool success = false;
switch(tag) {
case EMV_TAG_LOG_FMT:
furi_check(tlen < sizeof(app->log_fmt));
memcpy(app->log_fmt, &buff[i], tlen);
app->log_fmt_len = tlen;
success = true;
FURI_LOG_T(TAG, "found EMV_TAG_LOG_FMT %X: len %d", tag, tlen);
break;
case EMV_TAG_GPO_FMT1:
// skip AIP
i += 2;
tlen -= 2;
furi_check(tlen < sizeof(app->afl.data));
memcpy(app->afl.data, &buff[i], tlen);
app->afl.size = tlen;
success = true;
FURI_LOG_T(TAG, "found EMV_TAG_GPO_FMT1 %X: ", tag);
break;
case EMV_TAG_AID:
app->aid_len = tlen;
memcpy(app->aid, &buff[i], tlen);
success = true;
FURI_LOG_T(TAG, "found EMV_TAG_AID %X: ", tag);
for(size_t x = 0; x < tlen; x++) {
FURI_LOG_RAW_T("%02X ", app->aid[x]);
}
FURI_LOG_RAW_T("\r\n");
break;
case EMV_TAG_PRIORITY:
memcpy(&app->priority, &buff[i], tlen);
success = true;
FURI_LOG_T(TAG, "found EMV_TAG_APP_PRIORITY %X: %d", tag, app->priority);
break;
case EMV_TAG_APPL_INTERCHANGE_PROFILE:
furi_check(tlen == 2);
memcpy(app->application_interchange_profile, &buff[i], tlen);
success = true;
FURI_LOG_T(TAG, "found EMV_TAG_APPL_INTERCHANGE_PROFILE %x: ", tag);
for(size_t x = 0; x < tlen; x++) {
FURI_LOG_RAW_T("%02X ", app->application_interchange_profile[x]);
}
FURI_LOG_RAW_T("\r\n");
break;
case EMV_TAG_APPL_LABEL:
memcpy(app->application_label, &buff[i], tlen);
app->application_label[tlen] = '\0';
success = true;
FURI_LOG_T(TAG, "found EMV_TAG_APPL_LABEL %x: %s", tag, app->application_label);
break;
case EMV_TAG_APPL_NAME:
furi_check(tlen < sizeof(app->application_name));
memcpy(app->application_name, &buff[i], tlen);
app->application_name[tlen] = '\0';
success = true;
FURI_LOG_T(TAG, "found EMV_TAG_APPL_NAME %x: %s", tag, app->application_name);
break;
case EMV_TAG_APPL_EFFECTIVE:
app->effective_year = buff[i];
app->effective_month = buff[i + 1];
app->effective_day = buff[i + 2];
success = true;
FURI_LOG_T(TAG, "found EMV_TAG_APPL_ISSUE %x:", tag);
break;
case EMV_TAG_PDOL:
memcpy(app->pdol.data, &buff[i], tlen);
app->pdol.size = tlen;
success = true;
FURI_LOG_T(TAG, "found EMV_TAG_PDOL %x (len=%d)", tag, tlen);
break;
case EMV_TAG_AFL:
memcpy(app->afl.data, &buff[i], tlen);
app->afl.size = tlen;
success = true;
FURI_LOG_T(TAG, "found EMV_TAG_AFL %x (len=%d)", tag, tlen);
break;
// Tracks data https://murdoch.is/papers/defcon20emvdecode.pdf
case EMV_TAG_TRACK_1_EQUIV: {
// Contain PAN and expire date
char track_1_equiv[80];
memcpy(track_1_equiv, &buff[i], tlen);
track_1_equiv[tlen] = '\0';
success = true;
FURI_LOG_T(TAG, "found EMV_TAG_TRACK_1_EQUIV %x : %s", tag, track_1_equiv);
break;
}
case EMV_TAG_TRACK_2_DATA:
case EMV_TAG_TRACK_2_EQUIV: {
FURI_LOG_T(TAG, "found EMV_TAG_TRACK_2 %X", tag);
// 0xD0 delimits PAN from expiry (YYMM)
for(int x = 1; x < tlen; x++) {
if(buff[i + x + 1] > 0xD0) {
memcpy(app->pan, &buff[i], x + 1);
app->pan_len = x + 1;
app->exp_year = (buff[i + x + 1] << 4) | (buff[i + x + 2] >> 4);
app->exp_month = (buff[i + x + 2] << 4) | (buff[i + x + 3] >> 4);
break;
}
}
// Convert 4-bit to ASCII representation
char track_2_equiv[41];
uint8_t track_2_equiv_len = 0;
for(int x = 0; x < tlen; x++) {
char top = (buff[i + x] >> 4) + '0';
char bottom = (buff[i + x] & 0x0F) + '0';
track_2_equiv[x * 2] = top;
track_2_equiv_len++;
if(top == '?') break;
track_2_equiv[x * 2 + 1] = bottom;
track_2_equiv_len++;
if(bottom == '?') break;
}
track_2_equiv[track_2_equiv_len] = '\0';
FURI_LOG_T(TAG, "found EMV_TAG_TRACK_2 %X : %s", tag, track_2_equiv);
success = true;
break;
}
case EMV_TAG_CARDHOLDER_NAME: {
if(strlen(app->cardholder_name) > tlen) break;
memcpy(app->cardholder_name, &buff[i], tlen);
app->cardholder_name[tlen] = '\0';
// use space char as terminator
for(size_t i = 0; i < tlen; i++)
if(app->cardholder_name[i] == 0x20) {
app->cardholder_name[i] = '\0';
break;
}
success = true;
FURI_LOG_T(TAG, "found EMV_TAG_CARDHOLDER_NAME %x: %s", tag, app->cardholder_name);
break;
}
case EMV_TAG_PAN:
memcpy(app->pan, &buff[i], tlen);
app->pan_len = tlen;
success = true;
FURI_LOG_T(TAG, "found EMV_TAG_PAN %x", tag);
break;
case EMV_TAG_EXP_DATE:
app->exp_year = buff[i];
app->exp_month = buff[i + 1];
app->exp_day = buff[i + 2];
success = true;
FURI_LOG_T(TAG, "found EMV_TAG_EXP_DATE %x", tag);
break;
case EMV_TAG_CURRENCY_CODE:
app->currency_code = (buff[i] << 8 | buff[i + 1]);
success = true;
FURI_LOG_T(TAG, "found EMV_TAG_CURRENCY_CODE %x", tag);
break;
case EMV_TAG_COUNTRY_CODE:
app->country_code = (buff[i] << 8 | buff[i + 1]);
success = true;
FURI_LOG_T(TAG, "found EMV_TAG_COUNTRY_CODE %x", tag);
break;
case EMV_TAG_LOG_ENTRY:
app->log_sfi = buff[i];
app->log_records = buff[i + 1];
success = true;
FURI_LOG_T(
TAG,
"found EMV_TAG_LOG_ENTRY %x: sfi 0x%x, records %d",
tag,
app->log_sfi,
app->log_records);
break;
case EMV_TAG_LAST_ONLINE_ATC:
app->last_online_atc = (buff[i] << 8 | buff[i + 1]);
success = true;
break;
case EMV_TAG_ATC:
if(app->saving_trans_list)
app->trans[app->active_tr].atc = (buff[i] << 8 | buff[i + 1]);
else
app->transaction_counter = (buff[i] << 8 | buff[i + 1]);
success = true;
break;
case EMV_TAG_LOG_AMOUNT:
memcpy(&app->trans[app->active_tr].amount, &buff[i], tlen);
success = true;
break;
case EMV_TAG_LOG_COUNTRY:
app->trans[app->active_tr].country = (buff[i] << 8 | buff[i + 1]);
success = true;
break;
case EMV_TAG_LOG_CURRENCY:
app->trans[app->active_tr].currency = (buff[i] << 8 | buff[i + 1]);
success = true;
break;
case EMV_TAG_LOG_DATE:
memcpy(&app->trans[app->active_tr].date, &buff[i], tlen);
success = true;
break;
case EMV_TAG_LOG_TIME:
memcpy(&app->trans[app->active_tr].time, &buff[i], tlen);
success = true;
break;
case EMV_TAG_PIN_TRY_COUNTER:
app->pin_try_counter = buff[i];
success = true;
FURI_LOG_T(TAG, "found EMV_TAG_PIN_TRY_COUNTER %x: %d", tag, app->pin_try_counter);
break;
}
return success;
}
static bool emv_response_error(const uint8_t* buff, uint16_t len) {
uint8_t i = 0;
uint8_t first_byte = 0;
bool error = true;
first_byte = buff[i];
if((len == 2) && ((first_byte >> 4) == 6)) {
switch(buff[i]) {
case EMV_TAG_RESP_BUF_SIZE:
FURI_LOG_T(TAG, " Wrong length. Read %02X bytes", buff[i + 1]);
// Need to request SFI again with this length value
return error;
case EMV_TAG_RESP_BYTES_AVAILABLE:
FURI_LOG_T(TAG, " Bytes available: %02X", buff[i + 1]);
// Need to request one more time
return error;
default:
FURI_LOG_T(TAG, " Error/warning code: %02X %02X", buff[i], buff[i + 1]);
return error;
}
}
return false;
}
static bool
emv_parse_tag(const uint8_t* buff, uint16_t len, uint16_t* t, uint8_t* tl, uint8_t* off) {
uint8_t i = *off;
uint16_t tag = 0;
uint8_t first_byte = 0;
uint8_t tlen = 0;
bool success = false;
first_byte = buff[i];
if(emv_response_error(buff, len)) return success;
if((first_byte & 31) == 31) { // 2-byte tag
tag = buff[i] << 8 | buff[i + 1];
i++;
FURI_LOG_T(TAG, " 2-byte TLV EMV tag: %x", tag);
} else {
tag = buff[i];
FURI_LOG_T(TAG, " 1-byte TLV EMV tag: %x", tag);
}
i++;
tlen = buff[i];
if((tlen & 128) == 128) { // long length value
i++;
tlen = buff[i];
FURI_LOG_T(TAG, " 2-byte TLV length: %d", tlen);
} else {
FURI_LOG_T(TAG, " 1-byte TLV length: %d", tlen);
}
i++;
*off = i;
*t = tag;
*tl = tlen;
success = true;
return success;
}
static bool emv_decode_tl(
const uint8_t* buff,
uint16_t len,
const uint8_t* fmt,
uint8_t fmt_len,
EmvApplication* app) {
uint8_t i = 0;
uint8_t f = 0;
uint16_t tag = 0;
uint8_t tlen = 0;
bool success = false;
if(emv_response_error(buff, len)) return success;
while(f < fmt_len && i < len) {
success = emv_parse_tag(fmt, fmt_len, &tag, &tlen, &f);
if(!success) return success;
emv_decode_tlv_tag(&buff[i], tag, tlen, app);
i += tlen;
}
success = true;
return success;
}
static bool emv_decode_response_tlv(const uint8_t* buff, uint8_t len, EmvApplication* app) {
uint8_t i = 0;
uint16_t tag = 0;
uint8_t first_byte = 0;
uint8_t tlen = 0;
bool success = false;
while(i < len) {
first_byte = buff[i];
success = emv_parse_tag(buff, len, &tag, &tlen, &i);
if(!success) return success;
if((first_byte & 32) == 32) { // "Constructed" -- contains more TLV data to parse
FURI_LOG_T(TAG, "Constructed TLV %x", tag);
if(!emv_decode_response_tlv(&buff[i], tlen, app)) {
FURI_LOG_T(TAG, "Failed to decode response for %x", tag);
// return false;
} else {
success = true;
}
} else {
emv_decode_tlv_tag(&buff[i], tag, tlen, app);
}
i += tlen;
}
return success;
}
static void emv_prepare_pdol(APDU* dest, APDU* src) {
uint16_t tag = 0;
uint8_t tlen = 0;
uint8_t i = 0;
while(i < src->size) {
bool tag_found = false;
if(!emv_parse_tag(src->data, src->size, &tag, &tlen, &i)) {
FURI_LOG_T(TAG, "Parsing PDOL failed at 0x%x", i);
dest->size = 0;
return;
}
furi_check(dest->size + tlen < sizeof(dest->data));
for(uint8_t j = 0; j < COUNT_OF(pdol_values); j++) {
if(tag == pdol_values[j]->tag) {
memcpy(dest->data + dest->size, pdol_values[j]->data, tlen);
dest->size += tlen;
tag_found = true;
break;
}
}
if(!tag_found) {
// Unknown tag, fill zeros
memset(dest->data + dest->size, 0, tlen);
dest->size += tlen;
}
}
}
EmvError emv_poller_select_ppse(EmvPoller* instance) {
EmvError error = EmvErrorNone;
const uint8_t emv_select_ppse_cmd[] = {
0x00, 0xA4, // SELECT ppse
0x04, 0x00, // P1:By name, P2: empty
0x0e, // Lc: Data length
0x32, 0x50, 0x41, 0x59, 0x2e, 0x53, 0x59, // Data string:
0x53, 0x2e, 0x44, 0x44, 0x46, 0x30, 0x31, // 2PAY.SYS.DDF01 (PPSE)
0x00 // Le
};
bit_buffer_reset(instance->tx_buffer);
bit_buffer_reset(instance->rx_buffer);
bit_buffer_copy_bytes(instance->tx_buffer, emv_select_ppse_cmd, sizeof(emv_select_ppse_cmd));
do {
FURI_LOG_D(TAG, "Send select PPSE");
Iso14443_4aError iso14443_4a_error = iso14443_4a_poller_send_block_pwt_ext(
instance->iso14443_4a_poller, instance->tx_buffer, instance->rx_buffer);
if(iso14443_4a_error != Iso14443_4aErrorNone) {
FURI_LOG_E(TAG, "Failed select PPSE");
error = emv_process_error(iso14443_4a_error);
break;
}
emv_trace(instance, "Select PPSE answer:");
const uint8_t* buff = bit_buffer_get_data(instance->rx_buffer);
if(!emv_decode_response_tlv(
buff,
bit_buffer_get_size_bytes(instance->rx_buffer),
&instance->data->emv_application)) {
error = EmvErrorProtocol;
FURI_LOG_E(TAG, "Failed to parse application");
}
} while(false);
return error;
}
EmvError emv_poller_select_application(EmvPoller* instance) {
EmvError error = EmvErrorNone;
const uint8_t emv_select_header[] = {
0x00,
0xA4, // SELECT application
0x04,
0x00 // P1:By name, P2:First or only occurence
};
bit_buffer_reset(instance->tx_buffer);
bit_buffer_reset(instance->rx_buffer);
// Copy header
bit_buffer_copy_bytes(instance->tx_buffer, emv_select_header, sizeof(emv_select_header));
// Copy AID
bit_buffer_append_byte(instance->tx_buffer, instance->data->emv_application.aid_len);
bit_buffer_append_bytes(
instance->tx_buffer,
instance->data->emv_application.aid,
instance->data->emv_application.aid_len);
bit_buffer_append_byte(instance->tx_buffer, 0x00);
do {
FURI_LOG_D(TAG, "Start application");
Iso14443_4aError iso14443_4a_error = iso14443_4a_poller_send_block_pwt_ext(
instance->iso14443_4a_poller, instance->tx_buffer, instance->rx_buffer);
emv_trace(instance, "Start application answer:");
if(iso14443_4a_error != Iso14443_4aErrorNone) {
FURI_LOG_E(TAG, "Failed to read PAN or PDOL");
error = emv_process_error(iso14443_4a_error);
break;
}
const uint8_t* buff = bit_buffer_get_data(instance->rx_buffer);
if(!emv_decode_response_tlv(
buff,
bit_buffer_get_size_bytes(instance->rx_buffer),
&instance->data->emv_application)) {
error = EmvErrorProtocol;
FURI_LOG_E(TAG, "Failed to parse application");
break;
}
} while(false);
return error;
}
EmvError emv_poller_get_processing_options(EmvPoller* instance) {
EmvError error = EmvErrorNone;
const uint8_t emv_gpo_header[] = {0x80, 0xA8, 0x00, 0x00};
bit_buffer_reset(instance->tx_buffer);
bit_buffer_reset(instance->rx_buffer);
// Copy header
bit_buffer_copy_bytes(instance->tx_buffer, emv_gpo_header, sizeof(emv_gpo_header));
// Prepare and copy pdol parameters
APDU pdol_data = {0, {0}};
emv_prepare_pdol(&pdol_data, &instance->data->emv_application.pdol);
bit_buffer_append_byte(instance->tx_buffer, 0x02 + pdol_data.size);
bit_buffer_append_byte(instance->tx_buffer, 0x83);
bit_buffer_append_byte(instance->tx_buffer, pdol_data.size);
bit_buffer_append_bytes(instance->tx_buffer, pdol_data.data, pdol_data.size);
bit_buffer_append_byte(instance->tx_buffer, 0x00);
do {
FURI_LOG_D(TAG, "Get proccessing options");
Iso14443_4aError iso14443_4a_error = iso14443_4a_poller_send_block_pwt_ext(
instance->iso14443_4a_poller, instance->tx_buffer, instance->rx_buffer);
emv_trace(instance, "Get processing options answer:");
if(iso14443_4a_error != Iso14443_4aErrorNone) {
FURI_LOG_E(TAG, "Failed to get processing options, error %u", iso14443_4a_error);
error = emv_process_error(iso14443_4a_error);
break;
}
const uint8_t* buff = bit_buffer_get_data(instance->rx_buffer);
if(!emv_decode_response_tlv(
buff,
bit_buffer_get_size_bytes(instance->rx_buffer),
&instance->data->emv_application)) {
error = EmvErrorProtocol;
FURI_LOG_E(TAG, "Failed to parse processing options");
}
} while(false);
return error;
}
EmvError emv_poller_read_sfi_record(EmvPoller* instance, uint8_t sfi, uint8_t record_num) {
EmvError error = EmvErrorNone;
FuriString* text = furi_string_alloc();
uint8_t sfi_param = (sfi << 3) | (1 << 2);
uint8_t emv_sfi_header[] = {
0x00,
0xB2, // READ RECORD
record_num, // P1:record_number
sfi_param, // P2:SFI
0x00 // Le
};
bit_buffer_reset(instance->tx_buffer);
bit_buffer_reset(instance->rx_buffer);
bit_buffer_copy_bytes(instance->tx_buffer, emv_sfi_header, sizeof(emv_sfi_header));
do {
Iso14443_4aError iso14443_4a_error = iso14443_4a_poller_send_block_pwt_ext(
instance->iso14443_4a_poller, instance->tx_buffer, instance->rx_buffer);
furi_string_printf(text, "SFI 0x%X record %d:", sfi, record_num);
emv_trace(instance, furi_string_get_cstr(text));
if(iso14443_4a_error != Iso14443_4aErrorNone) {
FURI_LOG_E(TAG, "Failed to read SFI 0x%X record %d", sfi, record_num);
error = emv_process_error(iso14443_4a_error);
break;
}
} while(false);
furi_string_free(text);
return error;
}
EmvError emv_poller_read_afl(EmvPoller* instance, bool bruteforce_sfi, uint16_t* readed_mask) {
EmvError error = EmvErrorNone;
bool pan_fetched = (instance->data->emv_application.pan_len);
bool cardholder_name_fetched = strlen(instance->data->emv_application.cardholder_name);
if(!bruteforce_sfi) {
// SEARCH PAN, RETURN WHEN FOUND
APDU* afl = &instance->data->emv_application.afl;
if(afl->size == 0) {
return false;
}
FURI_LOG_D(TAG, "Search PAN in SFI");
// Iterate through all files
for(size_t i = 0; i < instance->data->emv_application.afl.size; i += 4) {
uint8_t sfi = afl->data[i] >> 3;
uint8_t record_start = afl->data[i + 1];
uint8_t record_end = afl->data[i + 2];
// Iterate through all records in file
for(uint8_t record = record_start; record <= record_end; ++record) {
if((sfi <= 3) && (record <= 5))
FURI_BIT_SET(
*readed_mask,
record + ((sfi - 2) * 8)); //black magic: mask 0003333300022222
error = emv_poller_read_sfi_record(instance, sfi, record);
if(error != EmvErrorNone) break;
if(!emv_decode_response_tlv(
bit_buffer_get_data(instance->rx_buffer),
bit_buffer_get_size_bytes(instance->rx_buffer),
&instance->data->emv_application)) {
error = EmvErrorProtocol;
FURI_LOG_T(TAG, "Failed to parse SFI 0x%X record %d", sfi, record);
}
if(instance->data->emv_application.pan_len) {
pan_fetched = true;
break;
} // Card number fetched
}
if(pan_fetched) break;
}
} else { // BRUTFORCE FILES 2-3. SEARCH CARDHOLDER NAME
FURI_LOG_T(TAG, "Bruteforce files 2-3");
for(size_t sfi = 2; sfi <= 3; sfi++) {
// Iterate through records 1-5 in file
for(size_t record = 1; record <= 5; record++) {
// Skip previously readed sfi
if((*readed_mask >> (record + ((sfi - 2) * 8))) & (0b1)) continue;
error = emv_poller_read_sfi_record(instance, sfi, record);
if(error != EmvErrorNone) break;
if(!emv_decode_response_tlv(
bit_buffer_get_data(instance->rx_buffer),
bit_buffer_get_size_bytes(instance->rx_buffer),
&instance->data->emv_application)) {
error = EmvErrorProtocol;
FURI_LOG_T(TAG, "Failed to parse SFI 0x%X record %d", sfi, record);
}
if(strlen(instance->data->emv_application.cardholder_name))
cardholder_name_fetched = true;
}
}
}
if((pan_fetched && (!bruteforce_sfi)) || (cardholder_name_fetched && bruteforce_sfi))
return EmvErrorNone;
else
return error;
}
static EmvError emv_poller_req_get_data(EmvPoller* instance, uint16_t tag) {
EmvError error = EmvErrorNone;
bit_buffer_reset(instance->tx_buffer);
bit_buffer_reset(instance->rx_buffer);
bit_buffer_append_byte(instance->tx_buffer, EMV_REQ_GET_DATA >> 8);
bit_buffer_append_byte(instance->tx_buffer, EMV_REQ_GET_DATA & 0xFF);
bit_buffer_append_byte(instance->tx_buffer, tag >> 8);
bit_buffer_append_byte(instance->tx_buffer, tag & 0xFF);
bit_buffer_append_byte(instance->tx_buffer, 0x00); //Length
do {
FURI_LOG_D(TAG, "Get data for tag 0x%x", tag);
Iso14443_4aError iso14443_4a_error = iso14443_4a_poller_send_block_pwt_ext(
instance->iso14443_4a_poller, instance->tx_buffer, instance->rx_buffer);
emv_trace(instance, "Get log data answer:");
if(iso14443_4a_error != Iso14443_4aErrorNone) {
FURI_LOG_E(TAG, "Failed to get data, error %u", iso14443_4a_error);
error = emv_process_error(iso14443_4a_error);
break;
}
const uint8_t* buff = bit_buffer_get_data(instance->rx_buffer);
if(!emv_decode_response_tlv(
buff,
bit_buffer_get_size_bytes(instance->rx_buffer),
&instance->data->emv_application)) {
error = EmvErrorProtocol;
FURI_LOG_E(TAG, "Failed to parse get data");
}
} while(false);
return error;
}
EmvError emv_poller_get_pin_try_counter(EmvPoller* instance) {
return emv_poller_req_get_data(instance, EMV_TAG_PIN_TRY_COUNTER);
}
EmvError emv_poller_get_last_online_atc(EmvPoller* instance) {
return emv_poller_req_get_data(instance, EMV_TAG_LAST_ONLINE_ATC);
}
static EmvError emv_poller_get_log_format(EmvPoller* instance) {
return emv_poller_req_get_data(instance, EMV_TAG_LOG_FMT);
}
EmvError emv_poller_read_log_entry(EmvPoller* instance) {
EmvError error = EmvErrorProtocol;
if(!instance->data->emv_application.log_sfi) return error;
uint8_t records = instance->data->emv_application.log_records;
if(records == 0) {
return error;
}
instance->data->emv_application.saving_trans_list = true;
error = emv_poller_get_log_format(instance);
if(error != EmvErrorNone) return error;
FURI_LOG_D(TAG, "Read Transaction logs");
uint8_t sfi = instance->data->emv_application.log_sfi;
uint8_t record_start = 1;
uint8_t record_end = records;
// Iterate through all records in file
for(uint8_t record = record_start; record <= record_end; ++record) {
error = emv_poller_read_sfi_record(instance, sfi, record);
if(error != EmvErrorNone) break;
if(!emv_decode_tl(
bit_buffer_get_data(instance->rx_buffer),
bit_buffer_get_size_bytes(instance->rx_buffer),
instance->data->emv_application.log_fmt,
instance->data->emv_application.log_fmt_len,
&instance->data->emv_application)) {
error = EmvErrorProtocol;
FURI_LOG_T(TAG, "Failed to parse log SFI 0x%X record %d", sfi, record);
break;
}
instance->data->emv_application.active_tr++;
furi_check(
instance->data->emv_application.active_tr <
COUNT_OF(instance->data->emv_application.trans));
}
instance->data->emv_application.saving_trans_list = false;
return error;
}