unleashed-firmware/furi/core/valuemutex.h
あく e3c7201a20
Furi: core refactoring and CMSIS removal part 2 (#1410)
* Furi: rename and move core
* Furi: drop CMSIS_OS header and unused api, partially refactor and cleanup the rest
* Furi: CMSIS_OS drop and refactoring.
* Furi: refactoring, remove cmsis legacy
* Furi: fix incorrect assert on queue deallocation, cleanup timer
* Furi: improve delay api, get rid of floats
* hal: dropped furi_hal_crc
* Furi: move DWT based delay to cortex HAL
* Furi: update core documentation

Co-authored-by: hedger <hedger@nanode.su>
2022-07-20 13:56:33 +03:00

150 lines
3.7 KiB
C

#pragma once
#include <stdbool.h>
#include "mutex.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* == ValueMutex ==
* The most simple concept is ValueMutex.
* It is wrapper around mutex and value pointer.
* You can take and give mutex to work with value and read and write value.
*/
typedef struct {
void* value;
size_t size;
FuriMutex* mutex;
} ValueMutex;
/**
* Creates ValueMutex.
*/
bool init_mutex(ValueMutex* valuemutex, void* value, size_t size);
/**
* Free resources allocated by `init_mutex`.
* This function doesn't free the memory occupied by `ValueMutex` itself.
*/
bool delete_mutex(ValueMutex* valuemutex);
/**
* Call for work with data stored in mutex.
* @return pointer to data if success, NULL otherwise.
*/
void* acquire_mutex(ValueMutex* valuemutex, uint32_t timeout);
/**
* Helper: infinitly wait for mutex
*/
static inline void* acquire_mutex_block(ValueMutex* valuemutex) {
return acquire_mutex(valuemutex, FuriWaitForever);
}
/**
* With statement for value mutex, acts as lambda
* @param name a resource name, const char*
* @param function_body a (){} lambda declaration,
* executed within you parent function context.
*/
#define with_value_mutex(value_mutex, function_body) \
{ \
void* p = acquire_mutex_block(value_mutex); \
furi_check(p); \
({ void __fn__ function_body __fn__; })(p); \
release_mutex(value_mutex, p); \
}
/**
* Release mutex after end of work with data.
* Call `release_mutex` and pass ValueData instance and pointer to data.
*/
bool release_mutex(ValueMutex* valuemutex, const void* value);
/**
* Instead of take-access-give sequence you can use `read_mutex` and `write_mutex` functions.
* Both functions return true in case of success, false otherwise.
*/
bool read_mutex(ValueMutex* valuemutex, void* data, size_t len, uint32_t timeout);
bool write_mutex(ValueMutex* valuemutex, void* data, size_t len, uint32_t timeout);
inline static bool write_mutex_block(ValueMutex* valuemutex, void* data, size_t len) {
return write_mutex(valuemutex, data, len, FuriWaitForever);
}
inline static bool read_mutex_block(ValueMutex* valuemutex, void* data, size_t len) {
return read_mutex(valuemutex, data, len, FuriWaitForever);
}
#ifdef __cplusplus
}
#endif
/*
Usage example
```C
// MANIFEST
// name="example-provider-app"
// stack=128
void provider_app(void* _p) {
// create record with mutex
uint32_t example_value = 0;
ValueMutex example_mutex;
// call `init_mutex`.
if(!init_mutex(&example_mutex, (void*)&example_value, sizeof(uint32_t))) {
printf("critical error\n");
flapp_exit(NULL);
}
furi_record_create("provider/example", (void*)&example_mutex);
// we are ready to provide record to other apps
flapp_ready();
// get value and increment it
while(1) {
uint32_t* value = acquire_mutex(&example_mutex, OsWaitForever);
if(value != NULL) {
value++;
}
release_mutex(&example_mutex, value);
furi_delay_ms(100);
}
}
// MANIFEST
// name="example-consumer-app"
// stack=128
// require="example-provider-app"
void consumer_app(void* _p) {
// this app run after flapp_ready call in all requirements app
// open mutex value
ValueMutex* counter_mutex = furi_record_open("provider/example");
if(counter_mutex == NULL) {
printf("critical error\n");
flapp_exit(NULL);
}
// continously read value every 1s
uint32_t counter;
while(1) {
if(read_mutex(counter_mutex, &counter, sizeof(counter), OsWaitForever)) {
printf("counter value: %d\n", counter);
}
furi_delay_ms(1000);
}
}
```
*/