unleashed-firmware/applications/lfrfid/helpers/rfid_reader.cpp

176 lines
4.2 KiB
C++

#include "rfid_reader.h"
#include <furi.h>
#include <furi_hal.h>
#include <stm32wbxx_ll_cortex.h>
/**
* @brief private violation assistant for RfidReader
*/
struct RfidReaderAccessor {
static void decode(RfidReader& rfid_reader, bool polarity) {
rfid_reader.decode(polarity);
}
};
void RfidReader::decode(bool polarity) {
uint32_t current_dwt_value = DWT->CYCCNT;
uint32_t period = current_dwt_value - last_dwt_value;
last_dwt_value = current_dwt_value;
#ifdef RFID_GPIO_DEBUG
decoder_gpio_out.process_front(polarity, period);
#endif
switch(type) {
case Type::Normal:
decoder_em.process_front(polarity, period);
decoder_hid26.process_front(polarity, period);
decoder_ioprox.process_front(polarity, period);
break;
case Type::Indala:
decoder_em.process_front(polarity, period);
decoder_hid26.process_front(polarity, period);
decoder_ioprox.process_front(polarity, period);
decoder_indala.process_front(polarity, period);
break;
}
detect_ticks++;
}
bool RfidReader::switch_timer_elapsed() {
const uint32_t seconds_to_switch = osKernelGetTickFreq() * 2.0f;
return (osKernelGetTickCount() - switch_os_tick_last) > seconds_to_switch;
}
void RfidReader::switch_timer_reset() {
switch_os_tick_last = osKernelGetTickCount();
}
void RfidReader::switch_mode() {
switch(type) {
case Type::Normal:
type = Type::Indala;
furi_hal_rfid_change_read_config(62500.0f, 0.25f);
break;
case Type::Indala:
type = Type::Normal;
furi_hal_rfid_change_read_config(125000.0f, 0.5f);
break;
}
switch_timer_reset();
}
static void comparator_trigger_callback(bool level, void* comp_ctx) {
RfidReader* _this = static_cast<RfidReader*>(comp_ctx);
RfidReaderAccessor::decode(*_this, !level);
}
RfidReader::RfidReader() {
}
void RfidReader::start() {
type = Type::Normal;
furi_hal_rfid_pins_read();
furi_hal_rfid_tim_read(125000, 0.5);
furi_hal_rfid_tim_read_start();
start_comparator();
switch_timer_reset();
last_read_count = 0;
}
void RfidReader::start_forced(RfidReader::Type _type) {
start();
if(_type == Type::Indala) {
switch_mode();
}
}
void RfidReader::stop() {
furi_hal_rfid_pins_reset();
furi_hal_rfid_tim_read_stop();
furi_hal_rfid_tim_reset();
stop_comparator();
}
bool RfidReader::read(LfrfidKeyType* _type, uint8_t* data, uint8_t data_size, bool switch_enable) {
bool result = false;
bool something_read = false;
// reading
if(decoder_em.read(data, data_size)) {
*_type = LfrfidKeyType::KeyEM4100;
something_read = true;
}
if(decoder_hid26.read(data, data_size)) {
*_type = LfrfidKeyType::KeyH10301;
something_read = true;
}
if(decoder_ioprox.read(data, data_size)) {
*_type = LfrfidKeyType::KeyIoProxXSF;
something_read = true;
}
if(decoder_indala.read(data, data_size)) {
*_type = LfrfidKeyType::KeyI40134;
something_read = true;
}
// validation
if(something_read) {
switch_timer_reset();
if(last_read_type == *_type && memcmp(last_read_data, data, data_size) == 0) {
last_read_count = last_read_count + 1;
if(last_read_count > 2) {
result = true;
}
} else {
last_read_type = *_type;
memcpy(last_read_data, data, data_size);
last_read_count = 0;
}
}
// mode switching
if(switch_enable && switch_timer_elapsed()) {
switch_mode();
last_read_count = 0;
}
return result;
}
bool RfidReader::detect() {
bool detected = false;
if(detect_ticks > 10) {
detected = true;
}
detect_ticks = 0;
return detected;
}
bool RfidReader::any_read() {
return last_read_count > 0;
}
void RfidReader::start_comparator(void) {
furi_hal_rfid_comp_set_callback(comparator_trigger_callback, this);
last_dwt_value = DWT->CYCCNT;
furi_hal_rfid_comp_start();
}
void RfidReader::stop_comparator(void) {
furi_hal_rfid_comp_stop();
furi_hal_rfid_comp_set_callback(NULL, NULL);
}