change in normalization of Min

Previously, we would factor out constants from `min`, now we push them in.

Thus:  `3 + min a b` becomes `min (3 + a) (3 + b)`.
This allows nested `min` to flow next to each other and interact.

We also add rules for moving constants out of nested `min`:

min a (min K b) ~> min K (min a b)

and another useful rule, which sort of factors out the constants again,
but notice that the result does not have a `min` in it.

min (K1 + a) (K2 + a) ~> min K1 K2 + a
This commit is contained in:
Iavor S. Diatchki 2017-06-15 16:55:38 -07:00
parent fab66bbf36
commit 509ef089c0

View File

@ -81,6 +81,12 @@ tAdd x y
(do m <- aNat a (do m <- aNat a
return (tSub (tNum (m+n)) b)) return (tSub (tNum (m+n)) b))
= v = v
-- K + min a b ~> min (K + a) (K + b)
| Just v <- matchMaybe
$ do (a,b) <- aMin t
return $ tMin (tAdd (tNum n) a) (tAdd (tNum n) b)
= v
| otherwise = tf2 TCAdd (tNum n) t | otherwise = tf2 TCAdd (tNum n) t
factor = do (a,b1) <- aMul x factor = do (a,b1) <- aMul x
@ -183,12 +189,32 @@ tMin x y
| Just n <- tIsNat' x = minK n y | Just n <- tIsNat' x = minK n y
| Just n <- tIsNat' y = minK n x | Just n <- tIsNat' y = minK n x
| Just n <- matchMaybe (minPlusK x y <|> minPlusK y x) = n | Just n <- matchMaybe (minPlusK x y <|> minPlusK y x) = n
| Just n <- matchMaybe $ do (k,a) <- isMinK x
return $ minK k (tMin a y)
<|>
do (k,a) <- isMinK y
return $ minK k (tMin x a)
= n
| Just n <- matchMaybe $ do (k1,a) <- isAddK x
(k2,b) <- isAddK y
guard (a == b)
return $ tAdd (tNum (min k1 k2)) a
= n
| x == y = x | x == y = x
-- XXX: min (k + t) t -> t -- XXX: min (k + t) t -> t
| otherwise = tf2 TCMin x y | otherwise = tf2 TCMin x y
where where
minPlusK a b = do (l,r) <- anAdd a isAddK ty = do (a,b) <- anAdd ty
k <- aNat l k <- aNat a
return (k,b)
isMinK ty = do (a,b) <- aMin ty
k <- aNat' a
return (k,b)
minPlusK a b = do (k,r) <- isAddK a
guard (k >= 1 && b == r) guard (k >= 1 && b == r)
return b return b
@ -196,14 +222,6 @@ tMin x y
minK Inf t = t minK Inf t = t
minK (Nat 0) _ = tNum (0 :: Int) minK (Nat 0) _ = tNum (0 :: Int)
minK (Nat k) t minK (Nat k) t
| TCon (TF TCAdd) [a,b] <- t'
, Just n <- tIsNum a = if k <= n then tNum k
else tAdd a (tMin (tNum (k - n)) b)
| TCon (TF TCSub) [a,b] <- t'
, Just n <- tIsNum a =
if k >= n then t else tSub a (tMax (tNum (n - k)) b)
| TCon (TF TCMin) [a,b] <- t' | TCon (TF TCMin) [a,b] <- t'
, Just n <- tIsNum a = tf2 TCMin (tNum (min k n)) b , Just n <- tIsNum a = tf2 TCMin (tNum (min k n)) b