mirror of
https://github.com/GaloisInc/cryptol.git
synced 2024-11-25 20:04:14 +03:00
Update documenetation with new enumeration forms,
and update the reference semantics. Other minor documentation fixes and updates.
This commit is contained in:
parent
914f7fbe18
commit
d740442035
@ -25,13 +25,20 @@ Literals
|
||||
number : {val, rep} Literal val rep => rep
|
||||
length : {n, a, b} (fin n, Literal n b) => [n]a -> b
|
||||
|
||||
// '[a..b]' is syntactic sugar for 'fromTo`{first=a,last=b}'
|
||||
// '[x..y]' is syntactic sugar for 'fromTo`{first=x,last=y}'
|
||||
fromTo : {first, last, a}
|
||||
(fin last, last >= first,
|
||||
Literal first a, Literal last a) =>
|
||||
[1 + (last - first)]a
|
||||
|
||||
// '[a,b..c]' is syntactic sugar for 'fromThenTo`{first=a,next=b,last=c}'
|
||||
// '[x .. < y]' is syntactic sugar for
|
||||
// 'fromToLessThan`{first=x,bound=y}'
|
||||
fromToLessThan : {first, bound, a}
|
||||
(fin first, bound >= first, LiteralLessThan bound a) =>
|
||||
[bound - first]a
|
||||
|
||||
// '[x,y..z]' is syntactic sugar for
|
||||
// 'fromThenTo`{first=x,next=y,last=z}'
|
||||
fromThenTo : {first, next, last, a, len}
|
||||
( fin first, fin next, fin last
|
||||
, Literal first a, Literal next a, Literal last a
|
||||
@ -39,10 +46,30 @@ Literals
|
||||
, lengthFromThenTo first next last == len) =>
|
||||
[len]a
|
||||
|
||||
// '[a .. < b]` is syntactic sugar for 'fromToLessThan`{first=a,bound=b}'
|
||||
fromToLessThan : {first, bound, a}
|
||||
(fin first, bound >= first, LiteralLessThan bound a) =>
|
||||
[bound - first]a
|
||||
// '[x .. y by n]' is syntactic sugar for
|
||||
// 'fromToBy`{first=x,last=y,stride=n}'.
|
||||
primitive fromToBy : {first, last, stride, a}
|
||||
(fin last, fin stride, stride >= 1, last >= first, Literal last a) =>
|
||||
[1 + (last - first)/stride]a
|
||||
|
||||
// '[x ..< y by n]' is syntactic sugar for
|
||||
// 'fromToByLessThan`{first=x,bound=y,stride=n}'.
|
||||
primitive fromToByLessThan : {first, bound, stride, a}
|
||||
(fin first, fin stride, stride >= 1, bound >= first, LiteralLessThan bound a) =>
|
||||
[(bound - first)/^stride]a
|
||||
|
||||
// '[x .. y down by n]' is syntactic sugar for
|
||||
// 'fromToDownBy`{first=x,last=y,stride=n}'.
|
||||
primitive fromToDownBy : {first, last, stride, a}
|
||||
(fin first, fin stride, stride >= 1, first >= last, Literal first a) =>
|
||||
[1 + (first - last)/stride]a
|
||||
|
||||
// '[x ..> y down by n]' is syntactic sugar for
|
||||
// 'fromToDownByGreaterThan`{first=x,bound=y,stride=n}'.
|
||||
primitive fromToDownByGreaterThan : {first, bound, stride, a}
|
||||
(fin first, fin stride, stride >= 1, first >= bound, Literal first a) =>
|
||||
[(first - bound)/^stride]a
|
||||
|
||||
|
||||
Fractional Literals
|
||||
-------------------
|
||||
|
Binary file not shown.
Binary file not shown.
@ -2,7 +2,8 @@
|
||||
% markdown in ../../Syntax.md. If you make changes, please make them
|
||||
% there and then regenerate the .tex file using the Makefile.
|
||||
|
||||
\section{Layout}\label{layout}
|
||||
\hypertarget{layout}{%
|
||||
\section{Layout}\label{layout}}
|
||||
|
||||
Groups of declarations are organized based on indentation. Declarations
|
||||
with the same indentation belong to the same group. Lines of text that
|
||||
@ -32,7 +33,8 @@ containing \texttt{y} and \texttt{z}. This group ends just before
|
||||
\texttt{g}, because \texttt{g} is indented less than \texttt{y} and
|
||||
\texttt{z}.
|
||||
|
||||
\section{Comments}\label{comments}
|
||||
\hypertarget{comments}{%
|
||||
\section{Comments}\label{comments}}
|
||||
|
||||
Cryptol supports block comments, which start with \texttt{/*} and end
|
||||
with \texttt{*/}, and line comments, which start with \texttt{//} and
|
||||
@ -47,7 +49,8 @@ Examples:
|
||||
/* This is a /* Nested */ block comment */
|
||||
\end{verbatim}
|
||||
|
||||
\section{Identifiers}\label{identifiers}
|
||||
\hypertarget{identifiers}{%
|
||||
\section{Identifiers}\label{identifiers}}
|
||||
|
||||
Cryptol identifiers consist of one or more characters. The first
|
||||
character must be either an English letter or underscore (\texttt{\_}).
|
||||
@ -64,8 +67,9 @@ name name1 name' longer_name
|
||||
Name Name2 Name'' longerName
|
||||
\end{verbatim}
|
||||
|
||||
\hypertarget{keywords-and-built-in-operators}{\section{Keywords and
|
||||
Built-in Operators}\label{keywords-and-built-in-operators}}
|
||||
\hypertarget{keywords-and-built-in-operators}{%
|
||||
\section{Keywords and Built-in
|
||||
Operators}\label{keywords-and-built-in-operators}}
|
||||
|
||||
The following identifiers have special meanings in Cryptol, and may not
|
||||
be used for programmer defined names:
|
||||
@ -73,8 +77,8 @@ be used for programmer defined names:
|
||||
\begin{verbatim}
|
||||
else include property let infixl parameter
|
||||
extern module then import infixr constraint
|
||||
if newtype type as infix
|
||||
private pragma where hiding primitive
|
||||
if newtype type as infix by
|
||||
private pragma where hiding primitive down
|
||||
\end{verbatim}
|
||||
|
||||
The following table contains Cryptol's operators and their associativity
|
||||
@ -83,41 +87,40 @@ with lowest precedence operators first, and highest precedence last.
|
||||
\begin{longtable}[]{@{}ll@{}}
|
||||
\caption{Operator precedences.}\tabularnewline
|
||||
\toprule
|
||||
Operator & Associativity\tabularnewline
|
||||
Operator & Associativity \\
|
||||
\midrule
|
||||
\endfirsthead
|
||||
\toprule
|
||||
Operator & Associativity\tabularnewline
|
||||
Operator & Associativity \\
|
||||
\midrule
|
||||
\endhead
|
||||
\texttt{==\textgreater{}} & right\tabularnewline
|
||||
\texttt{\textbackslash{}/} & right\tabularnewline
|
||||
\texttt{/\textbackslash{}} & right\tabularnewline
|
||||
\texttt{==} \texttt{!=} \texttt{===} \texttt{!==} & not
|
||||
associative\tabularnewline
|
||||
\texttt{==\textgreater{}} & right \\
|
||||
\texttt{\textbackslash{}/} & right \\
|
||||
\texttt{/\textbackslash{}} & right \\
|
||||
\texttt{==} \texttt{!=} \texttt{===} \texttt{!==} & not associative \\
|
||||
\texttt{\textgreater{}} \texttt{\textless{}} \texttt{\textless{}=}
|
||||
\texttt{\textgreater{}=} \texttt{\textless{}\$}
|
||||
\texttt{\textgreater{}\$} \texttt{\textless{}=\$}
|
||||
\texttt{\textgreater{}=\$} & not associative\tabularnewline
|
||||
\texttt{\textbar{}\textbar{}} & right\tabularnewline
|
||||
\texttt{\^{}} & left\tabularnewline
|
||||
\texttt{\&\&} & right\tabularnewline
|
||||
\texttt{\#} & right\tabularnewline
|
||||
\texttt{\textgreater{}=\$} & not associative \\
|
||||
\texttt{\textbar{}\textbar{}} & right \\
|
||||
\texttt{\^{}} & left \\
|
||||
\texttt{\&\&} & right \\
|
||||
\texttt{\#} & right \\
|
||||
\texttt{\textgreater{}\textgreater{}} \texttt{\textless{}\textless{}}
|
||||
\texttt{\textgreater{}\textgreater{}\textgreater{}}
|
||||
\texttt{\textless{}\textless{}\textless{}}
|
||||
\texttt{\textgreater{}\textgreater{}\$} & left\tabularnewline
|
||||
\texttt{+} \texttt{-} & left\tabularnewline
|
||||
\texttt{*} \texttt{/} \texttt{\%} \texttt{/\$} \texttt{\%\$} &
|
||||
left\tabularnewline
|
||||
\texttt{\^{}\^{}} & right\tabularnewline
|
||||
\texttt{@} \texttt{@@} \texttt{!} \texttt{!!} & left\tabularnewline
|
||||
(unary) \texttt{-} \texttt{\textasciitilde{}} & right\tabularnewline
|
||||
\texttt{\textgreater{}\textgreater{}\$} & left \\
|
||||
\texttt{+} \texttt{-} & left \\
|
||||
\texttt{*} \texttt{/} \texttt{\%} \texttt{/\$} \texttt{\%\$} & left \\
|
||||
\texttt{\^{}\^{}} & right \\
|
||||
\texttt{@} \texttt{@@} \texttt{!} \texttt{!!} & left \\
|
||||
(unary) \texttt{-} \texttt{\textasciitilde{}} & right \\
|
||||
\bottomrule
|
||||
\end{longtable}
|
||||
|
||||
\hypertarget{built-in-type-level-operators}{%
|
||||
\section{Built-in Type-level
|
||||
Operators}\label{built-in-type-level-operators}
|
||||
Operators}\label{built-in-type-level-operators}}
|
||||
|
||||
Cryptol includes a variety of operators that allow computations on the
|
||||
numeric types used to specify the sizes of sequences.
|
||||
@ -125,29 +128,30 @@ numeric types used to specify the sizes of sequences.
|
||||
\begin{longtable}[]{@{}ll@{}}
|
||||
\caption{Type-level operators}\tabularnewline
|
||||
\toprule
|
||||
Operator & Meaning\tabularnewline
|
||||
Operator & Meaning \\
|
||||
\midrule
|
||||
\endfirsthead
|
||||
\toprule
|
||||
Operator & Meaning\tabularnewline
|
||||
Operator & Meaning \\
|
||||
\midrule
|
||||
\endhead
|
||||
\texttt{+} & Addition\tabularnewline
|
||||
\texttt{-} & Subtraction\tabularnewline
|
||||
\texttt{*} & Multiplication\tabularnewline
|
||||
\texttt{/} & Division\tabularnewline
|
||||
\texttt{/\^{}} & Ceiling division (\texttt{/} rounded up)\tabularnewline
|
||||
\texttt{\%} & Modulus\tabularnewline
|
||||
\texttt{\%\^{}} & Ceiling modulus (compute padding)\tabularnewline
|
||||
\texttt{\^{}\^{}} & Exponentiation\tabularnewline
|
||||
\texttt{lg2} & Ceiling logarithm (base 2)\tabularnewline
|
||||
\texttt{width} & Bit width (equal to \texttt{lg2(n+1)})\tabularnewline
|
||||
\texttt{max} & Maximum\tabularnewline
|
||||
\texttt{min} & Minimum\tabularnewline
|
||||
\texttt{+} & Addition \\
|
||||
\texttt{-} & Subtraction \\
|
||||
\texttt{*} & Multiplication \\
|
||||
\texttt{/} & Division \\
|
||||
\texttt{/\^{}} & Ceiling division (\texttt{/} rounded up) \\
|
||||
\texttt{\%} & Modulus \\
|
||||
\texttt{\%\^{}} & Ceiling modulus (compute padding) \\
|
||||
\texttt{\^{}\^{}} & Exponentiation \\
|
||||
\texttt{lg2} & Ceiling logarithm (base 2) \\
|
||||
\texttt{width} & Bit width (equal to \texttt{lg2(n+1)}) \\
|
||||
\texttt{max} & Maximum \\
|
||||
\texttt{min} & Minimum \\
|
||||
\bottomrule
|
||||
\end{longtable}
|
||||
|
||||
\section{Numeric Literals}\label{numeric-literals}
|
||||
\hypertarget{numeric-literals}{%
|
||||
\section{Numeric Literals}\label{numeric-literals}}
|
||||
|
||||
Numeric literals may be written in binary, octal, decimal, or
|
||||
hexadecimal notation. The base of a literal is determined by its prefix:
|
||||
@ -226,7 +230,8 @@ some examples:
|
||||
0x_FFFF_FFEA
|
||||
\end{verbatim}
|
||||
|
||||
\section{Expressions}\label{expressions}
|
||||
\hypertarget{expressions}{%
|
||||
\section{Expressions}\label{expressions}}
|
||||
|
||||
This section provides an overview of the Cryptol's expression syntax.
|
||||
|
||||
@ -302,7 +307,8 @@ f \x -> x // call `f` with one argument `x -> x`
|
||||
else z // call `+` with two arguments: `2` and `if ...`
|
||||
\end{verbatim}
|
||||
|
||||
\section{Bits}\label{bits}
|
||||
\hypertarget{bits}{%
|
||||
\section{Bits}\label{bits}}
|
||||
|
||||
The type \texttt{Bit} has two inhabitants: \texttt{True} and
|
||||
\texttt{False}. These values may be combined using various logical
|
||||
@ -311,29 +317,30 @@ operators, or constructed as results of comparisons.
|
||||
\begin{longtable}[]{@{}lll@{}}
|
||||
\caption{Bit operations.}\tabularnewline
|
||||
\toprule
|
||||
Operator & Associativity & Description\tabularnewline
|
||||
Operator & Associativity & Description \\
|
||||
\midrule
|
||||
\endfirsthead
|
||||
\toprule
|
||||
Operator & Associativity & Description\tabularnewline
|
||||
Operator & Associativity & Description \\
|
||||
\midrule
|
||||
\endhead
|
||||
\texttt{==\textgreater{}} & right & Short-cut implication\tabularnewline
|
||||
\texttt{\textbackslash{}/} & right & Short-cut or\tabularnewline
|
||||
\texttt{/\textbackslash{}} & right & Short-cut and\tabularnewline
|
||||
\texttt{!=} \texttt{==} & none & Not equals, equals\tabularnewline
|
||||
\texttt{==\textgreater{}} & right & Short-cut implication \\
|
||||
\texttt{\textbackslash{}/} & right & Short-cut or \\
|
||||
\texttt{/\textbackslash{}} & right & Short-cut and \\
|
||||
\texttt{!=} \texttt{==} & none & Not equals, equals \\
|
||||
\texttt{\textgreater{}} \texttt{\textless{}} \texttt{\textless{}=}
|
||||
\texttt{\textgreater{}=} \texttt{\textless{}\$}
|
||||
\texttt{\textgreater{}\$} \texttt{\textless{}=\$}
|
||||
\texttt{\textgreater{}=\$} & none & Comparisons\tabularnewline
|
||||
\texttt{\textbar{}\textbar{}} & right & Logical or\tabularnewline
|
||||
\texttt{\^{}} & left & Exclusive-or\tabularnewline
|
||||
\texttt{\&\&} & right & Logical and\tabularnewline
|
||||
\texttt{\textasciitilde{}} & right & Logical negation\tabularnewline
|
||||
\texttt{\textgreater{}=\$} & none & Comparisons \\
|
||||
\texttt{\textbar{}\textbar{}} & right & Logical or \\
|
||||
\texttt{\^{}} & left & Exclusive-or \\
|
||||
\texttt{\&\&} & right & Logical and \\
|
||||
\texttt{\textasciitilde{}} & right & Logical negation \\
|
||||
\bottomrule
|
||||
\end{longtable}
|
||||
|
||||
\section{Multi-way Conditionals}\label{multi-way-conditionals}
|
||||
\hypertarget{multi-way-conditionals}{%
|
||||
\section{Multi-way Conditionals}\label{multi-way-conditionals}}
|
||||
|
||||
The \texttt{if\ ...\ then\ ...\ else} construct can be used with
|
||||
multiple branches. For example:
|
||||
@ -347,7 +354,8 @@ x = if y % 2 == 0 then 1
|
||||
else 7
|
||||
\end{verbatim}
|
||||
|
||||
\section{Tuples and Records}\label{tuples-and-records}
|
||||
\hypertarget{tuples-and-records}{%
|
||||
\section{Tuples and Records}\label{tuples-and-records}}
|
||||
|
||||
Tuples and records are used for packaging multiple values together.
|
||||
Tuples are enclosed in parentheses, while records are enclosed in curly
|
||||
@ -379,7 +387,8 @@ Ordering on tuples and records is defined lexicographically. Tuple
|
||||
components are compared in the order they appear, whereas record fields
|
||||
are compared in alphabetical order of field names.
|
||||
|
||||
\subsection{Accessing Fields}\label{accessing-fields}
|
||||
\hypertarget{accessing-fields}{%
|
||||
\subsection{Accessing Fields}\label{accessing-fields}}
|
||||
|
||||
The components of a record or a tuple may be accessed in two ways: via
|
||||
pattern matching or by using explicit component selectors. Explicit
|
||||
@ -441,7 +450,8 @@ only the first entry in the tuple.
|
||||
|
||||
This behavior is quite handy when examining complex data at the REPL.
|
||||
|
||||
\subsection{Updating Fields}\label{updating-fields}
|
||||
\hypertarget{updating-fields}{%
|
||||
\subsection{Updating Fields}\label{updating-fields}}
|
||||
|
||||
The components of a record or a tuple may be updated using the following
|
||||
notation:
|
||||
@ -464,7 +474,8 @@ n = { pt = r, size = 100 } // nested record
|
||||
{ n | pt.x -> x + 10 } == { pt = { x = 25, y = 20 }, size = 100 }
|
||||
\end{verbatim}
|
||||
|
||||
\section{Sequences}\label{sequences}
|
||||
\hypertarget{sequences}{%
|
||||
\section{Sequences}\label{sequences}}
|
||||
|
||||
A sequence is a fixed-length collection of elements of the same type.
|
||||
The type of a finite sequence of length \texttt{n}, with elements of
|
||||
@ -475,19 +486,25 @@ with elements of type \texttt{a} has type \texttt{{[}inf{]}\ a}, and
|
||||
\texttt{{[}inf{]}} is an infinite stream of bits.
|
||||
|
||||
\begin{verbatim}
|
||||
[e1,e2,e3] // A sequence with three elements
|
||||
[e1,e2,e3] // A sequence with three elements
|
||||
|
||||
[t1 .. t3 ] // Sequence enumerations
|
||||
[t1, t2 .. t3 ] // Step by t2 - t1
|
||||
[e1 ... ] // Infinite sequence starting at e1
|
||||
[e1, e2 ... ] // Infinite sequence stepping by e2-e1
|
||||
[t1 .. t2] // Enumeration
|
||||
[t1 .. <t2] // Enumeration (exclusive bound)
|
||||
[t1 .. t2 by n] // Enumeration (stride)
|
||||
[t1 .. <t2 by n] // Enumeration (stride, ex. bound)
|
||||
[t1 .. t2 down by n] // Enumeration (downward stride)
|
||||
[t1 .. >t2 down by n] // Enumeration (downward stride, ex. bound)
|
||||
[t1, t2 .. t3] // Enumeration (step by t2 - t1)
|
||||
|
||||
[ e | p11 <- e11, p12 <- e12 // Sequence comprehensions
|
||||
[e1 ...] // Infinite sequence starting at e1
|
||||
[e1, e2 ...] // Infinite sequence stepping by e2-e1
|
||||
|
||||
[ e | p11 <- e11, p12 <- e12 // Sequence comprehensions
|
||||
| p21 <- e21, p22 <- e22 ]
|
||||
|
||||
x = generate (\i -> e) // Sequence from generating function
|
||||
x @ i = e // Sequence with index binding
|
||||
arr @ i @ j = e // Two-dimensional sequence
|
||||
x = generate (\i -> e) // Sequence from generating function
|
||||
x @ i = e // Sequence with index binding
|
||||
arr @ i @ j = e // Two-dimensional sequence
|
||||
\end{verbatim}
|
||||
|
||||
Note: the bounds in finite sequences (those with \texttt{..}) are type
|
||||
@ -497,28 +514,26 @@ expressions.
|
||||
\begin{longtable}[]{@{}ll@{}}
|
||||
\caption{Sequence operations.}\tabularnewline
|
||||
\toprule
|
||||
Operator & Description\tabularnewline
|
||||
Operator & Description \\
|
||||
\midrule
|
||||
\endfirsthead
|
||||
\toprule
|
||||
Operator & Description\tabularnewline
|
||||
Operator & Description \\
|
||||
\midrule
|
||||
\endhead
|
||||
\texttt{\#} & Sequence concatenation\tabularnewline
|
||||
\texttt{\#} & Sequence concatenation \\
|
||||
\texttt{\textgreater{}\textgreater{}} \texttt{\textless{}\textless{}} &
|
||||
Shift (right, left)\tabularnewline
|
||||
Shift (right, left) \\
|
||||
\texttt{\textgreater{}\textgreater{}\textgreater{}}
|
||||
\texttt{\textless{}\textless{}\textless{}} & Rotate (right,
|
||||
left)\tabularnewline
|
||||
\texttt{\textless{}\textless{}\textless{}} & Rotate (right, left) \\
|
||||
\texttt{\textgreater{}\textgreater{}\$} & Arithmetic right shift (on
|
||||
bitvectors only)\tabularnewline
|
||||
\texttt{@} \texttt{!} & Access elements (front, back)\tabularnewline
|
||||
\texttt{@@} \texttt{!!} & Access sub-sequence (front,
|
||||
back)\tabularnewline
|
||||
bitvectors only) \\
|
||||
\texttt{@} \texttt{!} & Access elements (front, back) \\
|
||||
\texttt{@@} \texttt{!!} & Access sub-sequence (front, back) \\
|
||||
\texttt{update} \texttt{updateEnd} & Update the value of a sequence at a
|
||||
location (front, back)\tabularnewline
|
||||
location (front, back) \\
|
||||
\texttt{updates} \texttt{updatesEnd} & Update multiple values of a
|
||||
sequence (front, back)\tabularnewline
|
||||
sequence (front, back) \\
|
||||
\bottomrule
|
||||
\end{longtable}
|
||||
|
||||
@ -529,14 +544,16 @@ There are also lifted pointwise operations.
|
||||
p1 # p2 // Split sequence pattern
|
||||
\end{verbatim}
|
||||
|
||||
\section{Functions}\label{functions}
|
||||
\hypertarget{functions}{%
|
||||
\section{Functions}\label{functions}}
|
||||
|
||||
\begin{verbatim}
|
||||
\p1 p2 -> e // Lambda expression
|
||||
f p1 p2 = e // Function definition
|
||||
\end{verbatim}
|
||||
|
||||
\section{Local Declarations}\label{local-declarations}
|
||||
\hypertarget{local-declarations}{%
|
||||
\section{Local Declarations}\label{local-declarations}}
|
||||
|
||||
\begin{verbatim}
|
||||
e where ds
|
||||
@ -546,7 +563,9 @@ Note that by default, any local declarations without type signatures are
|
||||
monomorphized. If you need a local declaration to be polymorphic, use an
|
||||
explicit type signature.
|
||||
|
||||
\section{Explicit Type Instantiation}\label{explicit-type-instantiation}
|
||||
\hypertarget{explicit-type-instantiation}{%
|
||||
\section{Explicit Type
|
||||
Instantiation}\label{explicit-type-instantiation}}
|
||||
|
||||
If \texttt{f} is a polymorphic value with type:
|
||||
|
||||
@ -561,8 +580,9 @@ you can evaluate \texttt{f}, passing it a type parameter:
|
||||
f `{ tyParam = 13 }
|
||||
\end{verbatim}
|
||||
|
||||
\hypertarget{demoting-numeric-types-to-values}{%
|
||||
\section{Demoting Numeric Types to
|
||||
Values}\label{demoting-numeric-types-to-values}
|
||||
Values}\label{demoting-numeric-types-to-values}}
|
||||
|
||||
The value corresponding to a numeric type may be accessed using the
|
||||
following notation:
|
||||
@ -571,15 +591,26 @@ following notation:
|
||||
`t
|
||||
\end{verbatim}
|
||||
|
||||
Here \texttt{t} should be a type expression with numeric kind. The
|
||||
resulting expression is a finite word, which is sufficiently large to
|
||||
accommodate the value of the type:
|
||||
Here \texttt{t} should be a finite type expression with numeric kind.
|
||||
The resulting expression will be of a numeric base type, which is
|
||||
sufficiently large to accommodate the value of the type:
|
||||
|
||||
\begin{verbatim}
|
||||
`t : {n} (fin n, n >= width t) => [n]
|
||||
`t : {a} (Literal t a) => a
|
||||
\end{verbatim}
|
||||
|
||||
\section{Explicit Type Annotations}\label{explicit-type-annotations}
|
||||
This backtick notation is syntax sugar for an application of the
|
||||
\texttt{number} primtive, so the above may be written as:
|
||||
|
||||
\begin{verbatim}
|
||||
number`{t} : {a} (Literal t a) => a
|
||||
\end{verbatim}
|
||||
|
||||
If a type cannot be inferred from context, a suitable type will be
|
||||
automatically chosen if possible, usually \texttt{Integer}.
|
||||
|
||||
\hypertarget{explicit-type-annotations}{%
|
||||
\section{Explicit Type Annotations}\label{explicit-type-annotations}}
|
||||
|
||||
Explicit type annotations may be added on expressions, patterns, and in
|
||||
argument definitions.
|
||||
@ -592,15 +623,18 @@ p : t
|
||||
f (x : t) = ...
|
||||
\end{verbatim}
|
||||
|
||||
\section{Type Signatures}\label{type-signatures}
|
||||
\hypertarget{type-signatures}{%
|
||||
\section{Type Signatures}\label{type-signatures}}
|
||||
|
||||
\begin{verbatim}
|
||||
f,g : {a,b} (fin a) => [a] b
|
||||
\end{verbatim}
|
||||
|
||||
\section{Type Synonyms and Newtypes}\label{type-synonyms-and-newtypes}
|
||||
\hypertarget{type-synonyms-and-newtypes}{%
|
||||
\section{Type Synonyms and Newtypes}\label{type-synonyms-and-newtypes}}
|
||||
|
||||
\subsection{Type synonyms}\label{type-synonyms}
|
||||
\hypertarget{type-synonyms}{%
|
||||
\subsection{Type synonyms}\label{type-synonyms}}
|
||||
|
||||
\begin{verbatim}
|
||||
type T a b = [a] b
|
||||
@ -613,7 +647,8 @@ had instead written the body of the type synonym in line. Type synonyms
|
||||
may mention other synonyms, but it is not allowed to create a recursive
|
||||
collection of type synonyms.
|
||||
|
||||
\subsection{Newtypes}\label{newtypes}
|
||||
\hypertarget{newtypes}{%
|
||||
\subsection{Newtypes}\label{newtypes}}
|
||||
|
||||
\begin{verbatim}
|
||||
newtype NewT a b = { seq : [a]b }
|
||||
@ -647,7 +682,8 @@ of newtypes to extract the values in the body of the type.
|
||||
6
|
||||
\end{verbatim}
|
||||
|
||||
\section{Modules}\label{modules}
|
||||
\hypertarget{modules}{%
|
||||
\section{Modules}\label{modules}}
|
||||
|
||||
A \textbf{\emph{module}} is used to group some related definitions. Each
|
||||
file may contain at most one module.
|
||||
@ -661,7 +697,8 @@ f : [8]
|
||||
f = 10
|
||||
\end{verbatim}
|
||||
|
||||
\section{Hierarchical Module Names}\label{hierarchical-module-names}
|
||||
\hypertarget{hierarchical-module-names}{%
|
||||
\section{Hierarchical Module Names}\label{hierarchical-module-names}}
|
||||
|
||||
Module may have either simple or \textbf{\emph{hierarchical}} names.
|
||||
Hierarchical names are constructed by gluing together ordinary
|
||||
@ -680,7 +717,8 @@ when searching for module \texttt{Hash::SHA256}, Cryptol will look for a
|
||||
file named \texttt{SHA256.cry} in a directory called \texttt{Hash},
|
||||
contained in one of the directories specified by \texttt{CRYPTOLPATH}.
|
||||
|
||||
\section{Module Imports}\label{module-imports}
|
||||
\hypertarget{module-imports}{%
|
||||
\section{Module Imports}\label{module-imports}}
|
||||
|
||||
To use the definitions from one module in another module, we use
|
||||
\texttt{import} declarations:
|
||||
@ -701,7 +739,8 @@ import M // import all definitions from `M`
|
||||
g = f // `f` was imported from `M`
|
||||
\end{verbatim}
|
||||
|
||||
\section{Import Lists}\label{import-lists}
|
||||
\hypertarget{import-lists}{%
|
||||
\section{Import Lists}\label{import-lists}}
|
||||
|
||||
Sometimes, we may want to import only some of the definitions from a
|
||||
module. To do so, we use an import declaration with an
|
||||
@ -725,7 +764,8 @@ Using explicit import lists helps reduce name collisions. It also tends
|
||||
to make code easier to understand, because it makes it easy to see the
|
||||
source of definitions.
|
||||
|
||||
\section{Hiding Imports}\label{hiding-imports}
|
||||
\hypertarget{hiding-imports}{%
|
||||
\section{Hiding Imports}\label{hiding-imports}}
|
||||
|
||||
Sometimes a module may provide many definitions, and we want to use most
|
||||
of them but with a few exceptions (e.g., because those would result to a
|
||||
@ -748,7 +788,8 @@ import M hiding (h) // Import everything but `h`
|
||||
x = f + g
|
||||
\end{verbatim}
|
||||
|
||||
\section{Qualified Module Imports}\label{qualified-module-imports}
|
||||
\hypertarget{qualified-module-imports}{%
|
||||
\section{Qualified Module Imports}\label{qualified-module-imports}}
|
||||
|
||||
Another way to avoid name collisions is by using a
|
||||
\textbf{\emph{qualified}} import.
|
||||
@ -791,7 +832,8 @@ Such declarations will introduces all definitions from \texttt{A} and
|
||||
\texttt{X} but to use them, you would have to qualify using the prefix
|
||||
\texttt{B:::}.
|
||||
|
||||
\section{Private Blocks}\label{private-blocks}
|
||||
\hypertarget{private-blocks}{%
|
||||
\section{Private Blocks}\label{private-blocks}}
|
||||
|
||||
In some cases, definitions in a module might use helper functions that
|
||||
are not intended to be used outside the module. It is good practice to
|
||||
@ -832,7 +874,8 @@ private
|
||||
helper2 = 3
|
||||
\end{verbatim}
|
||||
|
||||
\section{Parameterized Modules}\label{parameterized-modules}
|
||||
\hypertarget{parameterized-modules}{%
|
||||
\section{Parameterized Modules}\label{parameterized-modules}}
|
||||
|
||||
\begin{verbatim}
|
||||
module M where
|
||||
@ -850,7 +893,9 @@ f : [n]
|
||||
f = 1 + x
|
||||
\end{verbatim}
|
||||
|
||||
\section{Named Module Instantiations}\label{named-module-instantiations}
|
||||
\hypertarget{named-module-instantiations}{%
|
||||
\section{Named Module
|
||||
Instantiations}\label{named-module-instantiations}}
|
||||
|
||||
One way to use a parameterized module is through a named instantiation:
|
||||
|
||||
@ -887,8 +932,9 @@ Note that the only purpose of the body of \texttt{N} (the declarations
|
||||
after the \texttt{where} keyword) is to define the parameters for
|
||||
\texttt{M}.
|
||||
|
||||
\hypertarget{parameterized-instantiations}{%
|
||||
\section{Parameterized
|
||||
Instantiations}\label{parameterized-instantiations}
|
||||
Instantiations}\label{parameterized-instantiations}}
|
||||
|
||||
It is possible for a module instantiation to be itself parameterized.
|
||||
This could be useful if we need to define some of a module's parameters
|
||||
@ -923,8 +969,9 @@ In this case \texttt{N} has a single parameter \texttt{x}. The result of
|
||||
instantiating \texttt{N} would result in instantiating \texttt{M} using
|
||||
the value of \texttt{x} and \texttt{12} for the value of \texttt{y}.
|
||||
|
||||
\hypertarget{importing-parameterized-modules}{%
|
||||
\section{Importing Parameterized
|
||||
Modules}\label{importing-parameterized-modules}
|
||||
Modules}\label{importing-parameterized-modules}}
|
||||
|
||||
It is also possible to import a parameterized module without using a
|
||||
module instantiation:
|
||||
|
@ -22,7 +22,7 @@ Basic Syntax
|
||||
Declarations
|
||||
============
|
||||
|
||||
.. code-block:: cryptol
|
||||
.. code-block:: cryptol
|
||||
|
||||
f x = x + y + z
|
||||
|
||||
@ -126,7 +126,8 @@ not be used for programmer defined names:
|
||||
primitive
|
||||
parameter
|
||||
constraint
|
||||
|
||||
down
|
||||
by
|
||||
.. _Keywords:
|
||||
|
||||
.. code-block:: none
|
||||
@ -134,8 +135,8 @@ not be used for programmer defined names:
|
||||
|
||||
else include property let infixl parameter
|
||||
extern module then import infixr constraint
|
||||
if newtype type as infix
|
||||
private pragma where hiding primitive
|
||||
if newtype type as infix down
|
||||
private pragma where hiding primitive by
|
||||
|
||||
|
||||
The following table contains Cryptol's operators and their
|
||||
@ -246,7 +247,7 @@ type is inferred from context in which the literal is used. Examples:
|
||||
0b1010 // : [4], 1 * number of digits
|
||||
0o1234 // : [12], 3 * number of digits
|
||||
0x1234 // : [16], 4 * number of digits
|
||||
|
||||
|
||||
10 // : {a}. (Literal 10 a) => a
|
||||
// a = Integer or [n] where n >= width 10
|
||||
|
||||
@ -356,7 +357,7 @@ in argument definitions.
|
||||
then y
|
||||
else z : Bit // the type annotation is on `z`, not the whole `if`
|
||||
[1..9 : [8]] // specify that elements in `[1..9]` have type `[8]`
|
||||
|
||||
|
||||
f (x : [8]) = x + 1 // type annotation on patterns
|
||||
|
||||
.. todo::
|
||||
@ -442,15 +443,23 @@ following notation:
|
||||
|
||||
`t
|
||||
|
||||
Here ``t`` should be a type expression with numeric kind. The resulting
|
||||
expression is a finite word, which is sufficiently large to accommodate
|
||||
the value of the type:
|
||||
Here `t` should be a finite type expression with numeric kind. The resulting
|
||||
expression will be of a numeric base type, which is sufficiently large
|
||||
to accommodate the value of the type:
|
||||
|
||||
.. code-block:: cryptol
|
||||
|
||||
`t : {n} (fin n, n >= width t) => [n]
|
||||
`t : {a} (Literal t a) => a
|
||||
|
||||
This backtick notation is syntax sugar for an application of the
|
||||
`number` primtive, so the above may be written as:
|
||||
|
||||
.. code-block:: cryptol
|
||||
|
||||
number`{t} : {a} (Literal t a) => a
|
||||
|
||||
If a type cannot be inferred from context, a suitable type will be
|
||||
automatically chosen if possible, usually `Integer`.
|
||||
|
||||
|
||||
|
||||
@ -507,7 +516,7 @@ sign. Examples:
|
||||
|
||||
(1,2,3) // A tuple with 3 component
|
||||
() // A tuple with no components
|
||||
|
||||
|
||||
{ x = 1, y = 2 } // A record with two fields, `x` and `y`
|
||||
{} // A record with no fields
|
||||
|
||||
@ -520,7 +529,7 @@ Examples:
|
||||
|
||||
(1,2) == (1,2) // True
|
||||
(1,2) == (2,1) // False
|
||||
|
||||
|
||||
{ x = 1, y = 2 } == { x = 1, y = 2 } // True
|
||||
{ x = 1, y = 2 } == { y = 2, x = 1 } // True
|
||||
|
||||
@ -539,7 +548,7 @@ component selectors are written as follows:
|
||||
|
||||
(15, 20).0 == 15
|
||||
(15, 20).1 == 20
|
||||
|
||||
|
||||
{ x = 15, y = 20 }.x == 15
|
||||
|
||||
Explicit record selectors may be used only if the program contains
|
||||
@ -549,12 +558,12 @@ record. For example:
|
||||
.. code-block:: cryptol
|
||||
|
||||
type T = { sign : Bit, number : [15] }
|
||||
|
||||
|
||||
// Valid definition:
|
||||
// the type of the record is known.
|
||||
isPositive : T -> Bit
|
||||
isPositive x = x.sign
|
||||
|
||||
|
||||
// Invalid definition:
|
||||
// insufficient type information.
|
||||
badDef x = x.f
|
||||
@ -567,9 +576,9 @@ patterns use braces. Examples:
|
||||
.. code-block:: cryptol
|
||||
|
||||
getFst (x,_) = x
|
||||
|
||||
|
||||
distance2 { x = xPos, y = yPos } = xPos ^^ 2 + yPos ^^ 2
|
||||
|
||||
|
||||
f p = x + y where
|
||||
(x, y) = p
|
||||
|
||||
@ -605,14 +614,14 @@ notation:
|
||||
r = { x = 15, y = 20 } // a record
|
||||
t = (True,True) // a tuple
|
||||
n = { pt = r, size = 100 } // nested record
|
||||
|
||||
|
||||
// Setting fields
|
||||
{ r | x = 30 } == { x = 30, y = 20 }
|
||||
{ t | 0 = False } == (False,True)
|
||||
|
||||
|
||||
// Update relative to the old value
|
||||
{ r | x -> x + 5 } == { x = 20, y = 20 }
|
||||
|
||||
|
||||
// Update a nested field
|
||||
{ n | pt.x = 10 } == { pt = { x = 10, y = 20 }, size = 100 }
|
||||
{ n | pt.x -> x + 10 } == { pt = { x = 25, y = 20 }, size = 100 }
|
||||
@ -630,20 +639,25 @@ an infinite stream of bits.
|
||||
|
||||
.. code-block:: cryptol
|
||||
|
||||
[e1,e2,e3] // A sequence with three elements
|
||||
|
||||
[t1 .. t3 ] // Sequence enumerations
|
||||
[t1, t2 .. t3 ] // Step by t2 - t1
|
||||
[e1 ... ] // Infinite sequence starting at e1
|
||||
[e1, e2 ... ] // Infinite sequence stepping by e2-e1
|
||||
|
||||
[ e | p11 <- e11, p12 <- e12 // Sequence comprehensions
|
||||
| p21 <- e21, p22 <- e22 ]
|
||||
|
||||
x = generate (\i -> e) // Sequence from generating function
|
||||
x @ i = e // Sequence with index binding
|
||||
arr @ i @ j = e // Two-dimensional sequence
|
||||
[e1,e2,e3] // A sequence with three elements
|
||||
|
||||
[t1 .. t2] // Enumeration
|
||||
[t1 .. <t2] // Enumeration (exclusive bound)
|
||||
[t1 .. t2 by n] // Enumeration (stride)
|
||||
[t1 .. <t2 by n] // Enumeration (stride, ex. bound)
|
||||
[t1 .. t2 down by n] // Enumeration (downward stride)
|
||||
[t1 .. >t2 down by n] // Enumeration (downward stride, ex. bound)
|
||||
[t1, t2 .. t3] // Enumeration (step by t2 - t1)
|
||||
|
||||
[e1 ...] // Infinite sequence starting at e1
|
||||
[e1, e2 ...] // Infinite sequence stepping by e2-e1
|
||||
|
||||
[ e | p11 <- e11, p12 <- e12 // Sequence comprehensions
|
||||
| p21 <- e21, p22 <- e22 ]
|
||||
|
||||
x = generate (\i -> e) // Sequence from generating function
|
||||
x @ i = e // Sequence with index binding
|
||||
arr @ i @ j = e // Two-dimensional sequence
|
||||
|
||||
Note: the bounds in finite sequences (those with `..`) are type
|
||||
expressions, while the bounds in infinite sequences are value
|
||||
@ -774,7 +788,7 @@ identifiers using the symbol ``::``.
|
||||
.. code-block:: cryptol
|
||||
|
||||
module Hash::SHA256 where
|
||||
|
||||
|
||||
sha256 = ...
|
||||
|
||||
The structure in the name may be used to group together related
|
||||
@ -853,7 +867,7 @@ to use a *hiding* import:
|
||||
:caption: module M
|
||||
|
||||
module M where
|
||||
|
||||
|
||||
f = 0x02
|
||||
g = 0x03
|
||||
h = 0x04
|
||||
@ -863,9 +877,9 @@ to use a *hiding* import:
|
||||
:caption: module N
|
||||
|
||||
module N where
|
||||
|
||||
|
||||
import M hiding (h) // Import everything but `h`
|
||||
|
||||
|
||||
x = f + g
|
||||
|
||||
|
||||
@ -880,7 +894,7 @@ Another way to avoid name collisions is by using a
|
||||
:caption: module M
|
||||
|
||||
module M where
|
||||
|
||||
|
||||
f : [8]
|
||||
f = 2
|
||||
|
||||
@ -889,9 +903,9 @@ Another way to avoid name collisions is by using a
|
||||
:caption: module N
|
||||
|
||||
module N where
|
||||
|
||||
|
||||
import M as P
|
||||
|
||||
|
||||
g = P::f
|
||||
// `f` was imported from `M`
|
||||
// but when used it needs to be prefixed by the qualifier `P`
|
||||
@ -1097,20 +1111,20 @@ a module instantiation:
|
||||
.. code-block:: cryptol
|
||||
|
||||
module M where
|
||||
|
||||
|
||||
parameter
|
||||
x : [8]
|
||||
y : [8]
|
||||
|
||||
|
||||
f : [8]
|
||||
f = x + y
|
||||
|
||||
.. code-block:: cryptol
|
||||
|
||||
module N where
|
||||
|
||||
|
||||
import `M
|
||||
|
||||
|
||||
g = f { x = 2, y = 3 }
|
||||
|
||||
A *backtick* at the start of the name of an imported module indicates
|
||||
|
Binary file not shown.
@ -90,12 +90,14 @@ infix
|
||||
primitive
|
||||
parameter
|
||||
constraint
|
||||
by
|
||||
down
|
||||
--->
|
||||
|
||||
else include property let infixl parameter
|
||||
extern module then import infixr constraint
|
||||
if newtype type as infix
|
||||
private pragma where hiding primitive
|
||||
if newtype type as infix by
|
||||
private pragma where hiding primitive down
|
||||
|
||||
|
||||
The following table contains Cryptol's operators and their
|
||||
@ -435,19 +437,25 @@ _word_. We may abbreviate the type `[n] Bit` as `[n]`. An infinite
|
||||
sequence with elements of type `a` has type `[inf] a`, and `[inf]` is
|
||||
an infinite stream of bits.
|
||||
|
||||
[e1,e2,e3] // A sequence with three elements
|
||||
[e1,e2,e3] // A sequence with three elements
|
||||
|
||||
[t1 .. t3 ] // Sequence enumerations
|
||||
[t1, t2 .. t3 ] // Step by t2 - t1
|
||||
[e1 ... ] // Infinite sequence starting at e1
|
||||
[e1, e2 ... ] // Infinite sequence stepping by e2-e1
|
||||
[t1 .. t2] // Enumeration
|
||||
[t1 .. <t2] // Enumeration (exclusive bound)
|
||||
[t1 .. t2 by n] // Enumeration (stride)
|
||||
[t1 .. <t2 by n] // Enumeration (stride, ex. bound)
|
||||
[t1 .. t2 down by n] // Enumeration (downward stride)
|
||||
[t1 .. >t2 down by n] // Enumeration (downward stride, ex. bound)
|
||||
[t1, t2 .. t3] // Enumeration (step by t2 - t1)
|
||||
|
||||
[ e | p11 <- e11, p12 <- e12 // Sequence comprehensions
|
||||
[e1 ...] // Infinite sequence starting at e1
|
||||
[e1, e2 ...] // Infinite sequence stepping by e2-e1
|
||||
|
||||
[ e | p11 <- e11, p12 <- e12 // Sequence comprehensions
|
||||
| p21 <- e21, p22 <- e22 ]
|
||||
|
||||
x = generate (\i -> e) // Sequence from generating function
|
||||
x @ i = e // Sequence with index binding
|
||||
arr @ i @ j = e // Two-dimensional sequence
|
||||
x = generate (\i -> e) // Sequence from generating function
|
||||
x @ i = e // Sequence with index binding
|
||||
arr @ i @ j = e // Two-dimensional sequence
|
||||
|
||||
|
||||
Note: the bounds in finite sequences (those with `..`) are type
|
||||
@ -508,11 +516,19 @@ following notation:
|
||||
|
||||
`t
|
||||
|
||||
Here `t` should be a type expression with numeric kind. The resulting
|
||||
expression is a finite word, which is sufficiently large to accommodate
|
||||
the value of the type:
|
||||
Here `t` should be a finite type expression with numeric kind. The resulting
|
||||
expression will be of a numeric base type, which is sufficiently large
|
||||
to accommodate the value of the type:
|
||||
|
||||
`t : {n} (fin n, n >= width t) => [n]
|
||||
`t : {a} (Literal t a) => a
|
||||
|
||||
This backtick notation is syntax sugar for an application of the
|
||||
`number` primtive, so the above may be written as:
|
||||
|
||||
number`{t} : {a} (Literal t a) => a
|
||||
|
||||
If a type cannot be inferred from context, a suitable type will be
|
||||
automatically chosen if possible, usually `Integer`.
|
||||
|
||||
Explicit Type Annotations
|
||||
=========================
|
||||
|
BIN
docs/Syntax.pdf
BIN
docs/Syntax.pdf
Binary file not shown.
@ -218,7 +218,7 @@ primitive fromToLessThan :
|
||||
* Note that 'last' will only be an element of the enumeration if
|
||||
* 'stride' divides 'last - first' evenly.
|
||||
*
|
||||
* '[x .. y by n]` is syntactic sugar for 'fromToBy`{first=x,last=y,stride=n}'.
|
||||
* '[x .. y by n]' is syntactic sugar for 'fromToBy`{first=x,last=y,stride=n}'.
|
||||
*/
|
||||
primitive fromToBy : {first, last, stride, a}
|
||||
(fin last, fin stride, stride >= 1, last >= first, Literal last a) =>
|
||||
@ -230,7 +230,7 @@ primitive fromToBy : {first, last, stride, a}
|
||||
* be empty. If 'bound = inf' then the sequence will be infinite, and will
|
||||
* eventually wrap around for bounded types.
|
||||
*
|
||||
* '[x ..< y by n]' is syntactic sugar for 'fromToByLessThan`{first=a,bound=b,stride=n}'.
|
||||
* '[x ..< y by n]' is syntactic sugar for 'fromToByLessThan`{first=x,bound=y,stride=n}'.
|
||||
*/
|
||||
primitive fromToByLessThan : {first, bound, stride, a}
|
||||
(fin first, fin stride, stride >= 1, bound >= first, LiteralLessThan bound a) =>
|
||||
@ -241,7 +241,7 @@ primitive fromToByLessThan : {first, bound, stride, a}
|
||||
* Note that 'last' will only be an element of the enumeration if
|
||||
* 'stride' divides 'first - last' evenly.
|
||||
*
|
||||
* '[x .. y down by n]` is syntactic sugar for 'fromToDownBy`{first=x,last=y,stride=n}'.
|
||||
* '[x .. y down by n]' is syntactic sugar for 'fromToDownBy`{first=x,last=y,stride=n}'.
|
||||
*/
|
||||
primitive fromToDownBy : {first, last, stride, a}
|
||||
(fin first, fin stride, stride >= 1, first >= last, Literal first a) =>
|
||||
@ -251,7 +251,7 @@ primitive fromToDownBy : {first, last, stride, a}
|
||||
* A finite sequence counting from 'first' down to (but not including)
|
||||
* 'bound' by 'stride'.
|
||||
*
|
||||
* '[x ..> y down by n]` is syntactic sugar for
|
||||
* '[x ..> y down by n]' is syntactic sugar for
|
||||
* 'fromToDownByGreaterThan`{first=x,bound=y,stride=n}'.
|
||||
*
|
||||
* Note that if 'first = bound' the sequence will be empty.
|
||||
@ -264,7 +264,7 @@ primitive fromToDownByGreaterThan : {first, bound, stride, a}
|
||||
* A finite arithmetic sequence starting with 'first' and 'next',
|
||||
* stopping when the values reach or would skip over 'last'.
|
||||
*
|
||||
* '[a,b..c]' is syntactic sugar for 'fromThenTo`{first=a,next=b,last=c}'.
|
||||
* '[x,y..z]' is syntactic sugar for 'fromThenTo`{first=x,next=y,last=z}'.
|
||||
*/
|
||||
primitive fromThenTo : {first, next, last, a, len}
|
||||
( fin first, fin next, fin last
|
||||
@ -274,12 +274,12 @@ primitive fromThenTo : {first, next, last, a, len}
|
||||
|
||||
// Fractional Literals ---------------------
|
||||
|
||||
/** 'FLiteral m n r a' asserts that the type `a' contains the
|
||||
fraction `m/n`. The flag `r` indicates if we should round (`r >= 1`)
|
||||
/** 'FLiteral m n r a' asserts that the type 'a' contains the
|
||||
fraction 'm/n'. The flag 'r' indicates if we should round ('r >= 1')
|
||||
or report an error if the number can't be represented exactly. */
|
||||
primitive type FLiteral : # -> # -> # -> * -> Prop
|
||||
|
||||
/** A fractional literal corresponding to `m/n` */
|
||||
/** A fractional literal corresponding to 'm/n' */
|
||||
primitive
|
||||
fraction : { m, n, r, a } FLiteral m n r a => a
|
||||
|
||||
|
@ -541,7 +541,7 @@ To evaluate a primitive, we look up its implementation by name in a table.
|
||||
> evalPrim :: Name -> Value
|
||||
> evalPrim n
|
||||
> | Just i <- asPrim n, Just v <- Map.lookup i primTable = v
|
||||
> | otherwise = evalPanic "evalPrim" ["Unimplemented primitive", show n]
|
||||
> | otherwise = evalPanic "evalPrim" ["Unimplemented primitive", show (pp n)]
|
||||
|
||||
Cryptol primitives fall into several groups, mostly delineated
|
||||
by corresponding type classes:
|
||||
@ -566,7 +566,9 @@ by corresponding type classes:
|
||||
|
||||
* Indexing: `@`, `@@`, `!`, `!!`, `update`, `updateEnd`
|
||||
|
||||
* Enumerations: `fromTo`, `fromThenTo`, `fromToLessThan`, `infFrom`, `infFromThen`
|
||||
* Enumerations: `fromTo`, `fromThenTo`, `fromToLessThan`, `fromToBy`,
|
||||
`fromToByLessThan`, `fromToDownBy`, `fromToDownByGreaterThan`,
|
||||
`infFrom`, `infFromThen`
|
||||
|
||||
* Polynomials: `pmult`, `pdiv`, `pmod`
|
||||
|
||||
@ -782,29 +784,71 @@ by corresponding type classes:
|
||||
> -- Enumerations
|
||||
> , "fromTo" ~> vFinPoly $ \first -> pure $
|
||||
> vFinPoly $ \lst -> pure $
|
||||
> VPoly $ \ty ->
|
||||
> let f i = literal i ty
|
||||
> in pure (VList (Nat (1 + lst - first)) (map f [first .. lst]))
|
||||
> VPoly $ \ty -> pure $
|
||||
> let f i = literal i ty in
|
||||
> VList (Nat (1 + lst - first)) (map f [first .. lst])
|
||||
>
|
||||
> , "fromToLessThan" ~>
|
||||
> vFinPoly $ \first -> pure $
|
||||
> VNumPoly $ \bound -> pure $
|
||||
> VPoly $ \ty -> pure $
|
||||
> let f i = literal i ty in
|
||||
> case bound of
|
||||
> Inf -> VList Inf (map f [first ..])
|
||||
> Nat bound' ->
|
||||
> let len = bound' - first in
|
||||
> VList (Nat len) (map f (genericTake len [first ..]))
|
||||
>
|
||||
> , "fromToBy" ~> vFinPoly $ \first -> pure $
|
||||
> vFinPoly $ \lst -> pure $
|
||||
> vFinPoly $ \stride -> pure $
|
||||
> VPoly $ \ty -> pure $
|
||||
> let f i = literal i ty in
|
||||
> let vs = [ f (first + i*stride) | i <- [0..] ] in
|
||||
> let len = 1 + ((lst-first) `div` stride) in
|
||||
> VList (Nat len) (genericTake len vs)
|
||||
>
|
||||
> , "fromToByLessThan" ~>
|
||||
> vFinPoly $ \first -> pure $
|
||||
> VNumPoly $ \bound -> pure $
|
||||
> vFinPoly $ \stride -> pure $
|
||||
> VPoly $ \ty -> pure $
|
||||
> let f i = literal i ty in
|
||||
> let vs = [ f (first + i*stride) | i <- [0..] ] in
|
||||
> case bound of
|
||||
> Inf -> VList Inf vs
|
||||
> Nat bound' ->
|
||||
> let len = (bound'-first+stride-1) `div` stride in
|
||||
> VList (Nat len) (genericTake len vs)
|
||||
>
|
||||
> , "fromToDownBy" ~>
|
||||
> vFinPoly $ \first -> pure $
|
||||
> vFinPoly $ \lst -> pure $
|
||||
> vFinPoly $ \stride -> pure $
|
||||
> VPoly $ \ty -> pure $
|
||||
> let f i = literal i ty in
|
||||
> let vs = [ f (first - i*stride) | i <- [0..] ] in
|
||||
> let len = 1 + ((first-lst) `div` stride) in
|
||||
> VList (Nat len) (genericTake len vs)
|
||||
>
|
||||
> , "fromToDownByGreaterThan" ~>
|
||||
> vFinPoly $ \first -> pure $
|
||||
> vFinPoly $ \lst -> pure $
|
||||
> vFinPoly $ \stride -> pure $
|
||||
> VPoly $ \ty -> pure $
|
||||
> let f i = literal i ty in
|
||||
> let vs = [ f (first - i*stride) | i <- [0..] ] in
|
||||
> let len = (first-lst+stride-1) `div` stride in
|
||||
> VList (Nat len) (genericTake len vs)
|
||||
>
|
||||
> , "fromThenTo" ~> vFinPoly $ \first -> pure $
|
||||
> vFinPoly $ \next -> pure $
|
||||
> vFinPoly $ \_lst -> pure $
|
||||
> VPoly $ \ty -> pure $
|
||||
> vFinPoly $ \len ->
|
||||
> let f i = literal i ty
|
||||
> in pure (VList (Nat len)
|
||||
> (map f (genericTake len [first, next ..])))
|
||||
>
|
||||
> , "fromToLessThan" ~>
|
||||
> vFinPoly $ \first -> pure $
|
||||
> VNumPoly $ \bound -> pure $
|
||||
> VPoly $ \ty ->
|
||||
> vFinPoly $ \len -> pure $
|
||||
> let f i = literal i ty in
|
||||
> case bound of
|
||||
> Inf -> pure (VList Inf (map f [first ..]))
|
||||
> Nat bound' ->
|
||||
> let len = bound' - first in
|
||||
> pure (VList (Nat len) (map f (genericTake len [first ..])))
|
||||
> VList (Nat len)
|
||||
> (map f (genericTake len [first, next ..]))
|
||||
>
|
||||
> , "infFrom" ~> VPoly $ \ty -> pure $
|
||||
> VFun $ \first ->
|
||||
|
Loading…
Reference in New Issue
Block a user