mirror of
https://github.com/GaloisInc/cryptol.git
synced 2024-12-01 08:32:23 +03:00
Merge branch 'master' of github.com:GaloisInc/cryptol
This commit is contained in:
commit
dac4c2e5a3
@ -23,109 +23,102 @@
|
||||
// Specification of the Keccak (SHA-3) hash function
|
||||
// Author: David Lazar
|
||||
|
||||
SHA_3_224 M = take(224, Keccak `{r = 1152, c = 448} M);
|
||||
SHA_3_256 M = take(256, Keccak `{r = 1088, c = 512} M);
|
||||
SHA_3_384 M = take(384, Keccak `{r = 832, c = 768} M);
|
||||
SHA_3_512 M = take(512, Keccak `{r = 576, c = 1024} M);
|
||||
SHA_3_224 M = take`{224} (Keccak `{r = 1152, c = 448} M)
|
||||
SHA_3_256 M = take`{256} (Keccak `{r = 1088, c = 512} M)
|
||||
SHA_3_384 M = take`{384} (Keccak `{r = 832, c = 768} M)
|
||||
SHA_3_512 M = take`{512} (Keccak `{r = 576, c = 1024} M)
|
||||
|
||||
Keccak : {r c m}
|
||||
( fin r, fin c, fin m
|
||||
, r >= 0, c >= 0, m >= 0
|
||||
, fin ((r + m + 1) / r)
|
||||
, (r + m + 1) / r >= 0
|
||||
, (r + m + 1) / r * r - m >= 2
|
||||
Keccak : {r, c, m, n}
|
||||
( fin r, fin c, fin m, fin n
|
||||
, (r + c) % 25 == 0
|
||||
, 64 >= (r + c) / 25
|
||||
, 25 * ((r + c) / 25) >= r
|
||||
) => [m] -> [inf];
|
||||
, r * n >= 2 + m
|
||||
) => [m] -> [inf]
|
||||
Keccak M = squeeze `{r = r} (absorb `{w = (r + c) / 25} Ps)
|
||||
where Ps = pad `{r = r} M;
|
||||
where Ps = pad `{r = r, n = n} M
|
||||
|
||||
squeeze : {r w} (fin r, fin w, 64 >= w, r >= 0, 25 * w >= r) => [5][5][w] -> [inf];
|
||||
squeeze A = take(`r, flatten A) # squeeze `{r = r} (Keccak_f A);
|
||||
squeeze : {r, w} (fin r, fin w, 64 >= w, r >= 0, 25 * w >= r) => [5][5][w] -> [inf]
|
||||
squeeze A = take`{r} (flatten A) # squeeze`{r = r} (Keccak_f A)
|
||||
|
||||
absorb : {r w n} (fin r, fin w, fin n, 64 >= w, 25 * w >= r) => [n][r] -> [5][5][w];
|
||||
absorb : {r, w, n} (fin r, fin w, fin n, 64 >= w, 25 * w >= r) => [n][r] -> [5][5][w]
|
||||
absorb Ps = as ! 0
|
||||
where {
|
||||
as = [zero] # [| Keccak_f `{w = w} (s ^ (unflatten p)) || s <- as || p <- Ps |];
|
||||
};
|
||||
where
|
||||
as = [zero] # [ Keccak_f `{w = w} (s ^ (unflatten p)) | s <- as | p <- Ps ]
|
||||
|
||||
pad : {r m n}
|
||||
pad : {r, m, n}
|
||||
( fin r, fin m, fin n
|
||||
, n == (r + m + 1) / r
|
||||
, r * n - m >= 2
|
||||
) => [m] -> [n][r];
|
||||
pad M = split (M # [True] # zero # [True]);
|
||||
, r * n >= 2 + m
|
||||
) => [m] -> [n][r]
|
||||
pad M = split (M # [True] # (zero : [r*n-2-m]) # [True])
|
||||
|
||||
Keccak_f : {b w} (fin w, b == 25 * w, 64 >= w) => [5][5][w] -> [5][5][w];
|
||||
Keccak_f : {w} (fin w, 64 >= w) => [5][5][w] -> [5][5][w]
|
||||
Keccak_f A = rounds ! 0
|
||||
where {
|
||||
rounds = [A] # [| Round RC A || RC <- RCs `{w = w} || A <- rounds |];
|
||||
};
|
||||
where
|
||||
rounds = [A] # [ Round RC A | RC <- RCs`{w = w} | A <- rounds ]
|
||||
|
||||
Round : {w} (fin w) => [5][5][w] -> [5][5][w] -> [5][5][w];
|
||||
Round RC A = ι RC (χ (π (ρ (θ A))));
|
||||
Round : {w} (fin w) => [5][5][w] -> [5][5][w] -> [5][5][w]
|
||||
Round RC A = ι RC (χ (π (ρ (θ A))))
|
||||
|
||||
θ : {w} (fin w) => [5][5][w] -> [5][5][w];
|
||||
θ : {w} (fin w) => [5][5][w] -> [5][5][w]
|
||||
θ A = A'
|
||||
where {
|
||||
C = [| xor a || a <- A |];
|
||||
D = [| C @ x ^ (C @ y <<< 1)
|
||||
|| x <- [0 .. 4] >>> 1
|
||||
|| y <- [0 .. 4] <<< 1
|
||||
|];
|
||||
A' = [| [| a ^ (D @ x) || a <- A @ x |] || x <- [0 .. 4] |];
|
||||
};
|
||||
where
|
||||
C = [ xor a | a <- A ]
|
||||
D = [ C @ x ^ (C @ y <<< 1)
|
||||
| x <- [0 .. 4] >>> 1
|
||||
| y <- [0 .. 4] <<< 1
|
||||
]
|
||||
A' = [ [ a ^ (D @ x) | a <- A @ x ] | x <- [0 .. 4] ]
|
||||
|
||||
ρ : {w} (fin w) => [5][5][w] -> [5][5][w];
|
||||
ρ A = groupBy(5, [| a <<< r || a <- join(A) || r <- R |])
|
||||
where R = [00 36 03 41 18
|
||||
01 44 10 45 02
|
||||
62 06 43 15 61
|
||||
28 55 25 21 56
|
||||
27 20 39 08 14];
|
||||
ρ : {w} (fin w) => [5][5][w] -> [5][5][w]
|
||||
ρ A = groupBy`{5} [ a <<< r | a <- join A | r <- R ]
|
||||
where R = [00, 36, 03, 41, 18,
|
||||
01, 44, 10, 45, 02,
|
||||
62, 06, 43, 15, 61,
|
||||
28, 55, 25, 21, 56,
|
||||
27, 20, 39, 08, 14]
|
||||
|
||||
π : {w} (fin w) => [5][5][w] -> [5][5][w];
|
||||
π A = groupBy(5, [| A @ ((x + (3:[8]) * y) % 5) @ x
|
||||
|| x <- [0..4], y <- [0..4]
|
||||
|]);
|
||||
π : {w} (fin w) => [5][5][w] -> [5][5][w]
|
||||
π A = groupBy`{5} [ A @ ((x + (3:[8]) * y) % 5) @ x
|
||||
| x <- [0..4], y <- [0..4]
|
||||
]
|
||||
|
||||
χ : {w} (fin w) => [5][5][w] -> [5][5][w];
|
||||
χ A = groupBy(5, [| (A @ x @ y) ^ (~ A @ ((x + 1) % 5) @ y
|
||||
& A @ ((x + 2) % 5) @ y)
|
||||
|| x <- [0..4], y <- [0..4]
|
||||
|]);
|
||||
χ : {w} (fin w) => [5][5][w] -> [5][5][w]
|
||||
χ A = groupBy`{5} [ (A @ x @ y) ^ (~ A @ ((x + 1) % 5) @ y
|
||||
&& A @ ((x + 2) % 5) @ y)
|
||||
| x <- [0..4], y <- [0..4]
|
||||
]
|
||||
|
||||
ι : {w} (fin w) => [5][5][w] -> [5][5][w] -> [5][5][w];
|
||||
ι RC A = A ^ RC;
|
||||
ι : {w} (fin w) => [5][5][w] -> [5][5][w] -> [5][5][w]
|
||||
ι RC A = A ^ RC
|
||||
|
||||
RCs : {w n} (fin w, fin n, 24 >= n, n == 12 + 2 * (lg2 w)) => [n][5][5][w];
|
||||
RCs = [| [([(RC @@ [0 .. `(w - 1)])] # zero)] # zero
|
||||
|| RC <- RCs64
|
||||
|| _ <- [1 .. `n]
|
||||
|];
|
||||
RCs : {w, n} (fin w, fin n, 24 >= n, n == 12 + 2 * (lg2 w)) => [n][5][5][w]
|
||||
RCs = [ [[take`{w} RC] # zero] # zero
|
||||
| RC <- RCs64
|
||||
| _ <- zero:[n]
|
||||
]
|
||||
|
||||
RCs64 : [24][64];
|
||||
RCs64 : [24][64]
|
||||
RCs64 = join (transpose [
|
||||
[0x0000000000000001 0x000000008000808B]
|
||||
[0x0000000000008082 0x800000000000008B]
|
||||
[0x800000000000808A 0x8000000000008089]
|
||||
[0x8000000080008000 0x8000000000008003]
|
||||
[0x000000000000808B 0x8000000000008002]
|
||||
[0x0000000080000001 0x8000000000000080]
|
||||
[0x8000000080008081 0x000000000000800A]
|
||||
[0x8000000000008009 0x800000008000000A]
|
||||
[0x000000000000008A 0x8000000080008081]
|
||||
[0x0000000000000088 0x8000000000008080]
|
||||
[0x0000000080008009 0x0000000080000001]
|
||||
[0x000000008000000A 0x8000000080008008]
|
||||
]);
|
||||
[0x0000000000000001, 0x000000008000808B],
|
||||
[0x0000000000008082, 0x800000000000008B],
|
||||
[0x800000000000808A, 0x8000000000008089],
|
||||
[0x8000000080008000, 0x8000000000008003],
|
||||
[0x000000000000808B, 0x8000000000008002],
|
||||
[0x0000000080000001, 0x8000000000000080],
|
||||
[0x8000000080008081, 0x000000000000800A],
|
||||
[0x8000000000008009, 0x800000008000000A],
|
||||
[0x000000000000008A, 0x8000000080008081],
|
||||
[0x0000000000000088, 0x8000000000008080],
|
||||
[0x0000000080008009, 0x0000000080000001],
|
||||
[0x000000008000000A, 0x8000000080008008]
|
||||
])
|
||||
|
||||
unflatten : {r w} (fin r, 25*w >= r) => [r] -> [5][5][w];
|
||||
unflatten p = transpose(groupBy(5, groupBy(`w, p # zero)));
|
||||
unflatten : {r, w} (fin w, 25*w >= r) => [r] -> [5][5][w]
|
||||
unflatten p = transpose (groupBy`{5} (groupBy`{w} (p # zero)))
|
||||
|
||||
flatten : {r w} [5][5][w] -> [5 * 5 * w];
|
||||
flatten A = join (join (transpose A));
|
||||
flatten : {w} (fin w) => [5][5][w] -> [5 * 5 * w]
|
||||
flatten A = join (join (transpose A))
|
||||
|
||||
xor : {a b} (fin a) => [a][b] -> [b];
|
||||
xor : {a, b} (fin a) => [a][b] -> [b]
|
||||
xor xs = xors ! 0
|
||||
where xors = [0] # [| x ^ z || x <- xs || z <- xors |];
|
||||
where xors = [zero] # [ x ^ z | x <- xs | z <- xors ]
|
||||
|
Loading…
Reference in New Issue
Block a user