
Cryptol version 2 Syntax

Contents
Layout 2

Comments 3

Identifiers 3

Keywords and Built-in Operators 3

Built-in Type-level Operators 4

Numeric Literals 4

Expressions 6

Bits 7

Multi-way Conditionals 7

Tuples and Records 8
Accessing Fields . 8
Updating Fields . 9

Sequences 10

Functions 11

Local Declarations 11

Explicit Type Instantiation 11

Demoting Numeric Types to Values 11

Explicit Type Annotations 12

Type Signatures 12

1

Type Synonyms and Newtypes 12
Type synonyms . 12
Newtypes . 12

Modules 13

Hierarchical Module Names 13

Module Imports 13

Import Lists 14

Hiding Imports 14

Qualified Module Imports 14

Private Blocks 15

Parameterized Modules 16

Named Module Instantiations 16

Parameterized Instantiations 17

Importing Parameterized Modules 18

Layout
Groups of declarations are organized based on indentation. Declarations with
the same indentation belong to the same group. Lines of text that are indented
more than the beginning of a declaration belong to that declaration, while lines
of text that are indented less terminate a group of declarations. Groups of
declarations appear at the top level of a Cryptol file, and inside where blocks in
expressions. For example, consider the following declaration group:

f x = x + y + z
where
y = x * x
z = x + y

g y = y

This group has two declarations, one for f and one for g. All the lines between
f and g that are indented more than f belong to f.

This example also illustrates how groups of declarations may be nested within
each other. For example, the where expression in the definition of f starts

2

another group of declarations, containing y and z. This group ends just before
g, because g is indented less than y and z.

Comments
Cryptol supports block comments, which start with /* and end with */, and
line comments, which start with // and terminate at the end of the line. Block
comments may be nested arbitrarily.

Examples:

/* This is a block comment */
// This is a line comment
/* This is a /* Nested */ block comment */

Identifiers
Cryptol identifiers consist of one or more characters. The first character must
be either an English letter or underscore (_). The following characters may
be an English letter, a decimal digit, underscore (_), or a prime ('). Some
identifiers have special meaning in the language, so they may not be used in
programmer-defined names (see Keywords).

Examples:

name name1 name' longer_name
Name Name2 Name'' longerName

Keywords and Built-in Operators
The following identifiers have special meanings in Cryptol, and may not be used
for programmer defined names:

else include property let infixl parameter
extern module then import infixr constraint
if newtype type as infix by
private pragma where hiding primitive down

The following table contains Cryptol’s operators and their associativity with
lowest precedence operators first, and highest precedence last.

Table 1: Operator precedences.

Operator Associativity
==> right
\/ right

3

Operator Associativity
/\ right
== != === !== not associative
> < <= >= <$ >$ <=$ >=$ not associative
|| right
ˆ left
&& right
right
>> << >>> <<< >>$ left
+ - left
* / % /$ %$ left
ˆˆ right
@ @@ ! !! left
(unary) - ~ right

Built-in Type-level Operators
Cryptol includes a variety of operators that allow computations on the numeric
types used to specify the sizes of sequences.

Table 2: Type-level operators

Operator Meaning
+ Addition
- Subtraction
* Multiplication
/ Division
/ˆ Ceiling division (/ rounded up)
% Modulus
%ˆ Ceiling modulus (compute padding)
ˆˆ Exponentiation
lg2 Ceiling logarithm (base 2)
width Bit width (equal to lg2(n+1))
max Maximum
min Minimum

Numeric Literals
Numeric literals may be written in binary, octal, decimal, or hexadecimal notation.
The base of a literal is determined by its prefix: 0b for binary, 0o for octal, no
special prefix for decimal, and 0x for hexadecimal.

Examples:

4

254 // Decimal literal
0254 // Decimal literal
0b11111110 // Binary literal
0o376 // Octal literal
0xFE // Hexadecimal literal
0xfe // Hexadecimal literal

Numeric literals in binary, octal, or hexadecimal notation result in bit sequences
of a fixed length (i.e., they have type [n] for some n). The length is determined
by the base and the number of digits in the literal. Decimal literals are overloaded,
and so the type is inferred from context in which the literal is used. Examples:

0b1010 // : [4], 1 * number of digits
0o1234 // : [12], 3 * number of digits
0x1234 // : [16], 4 * number of digits

10 // : {a}. (Literal 10 a) => a
// a = Integer or [n] where n >= width 10

Numeric literals may also be written as polynomials by writing a polynomial
expression in terms of x between an opening <| and a closing |>. Numeric
literals in polynomial notation result in bit sequences of length one more than
the degree of the polynomial. Examples:

<| x^^6 + x^^4 + x^^2 + x^^1 + 1 |> // : [7], equal to 0b1010111
<| x^^4 + x^^3 + x |> // : [5], equal to 0b11010

Cryptol also supports fractional literals using binary (prefix 0b), octal (prefix 0o),
decimal (no prefix), and hexadecimal (prefix ox) digits. A fractional literal must
contain a . and may optionally have an exponent. The base of the exponent for
binary, octal, and hexadecimal literals is 2 and the exponent is marked using
the symbol p. Decimal fractional literals use exponent base 10, and the symbol
e. Examples:

10.2
10.2e3 // 10.2 * 10^3
0x30.1 // 3 * 64 + 1/16
0x30.1p4 // (3 * 64 + 1/16) * 2^4

All fractional literals are overloaded and may be used with types that support
fractional numbers (e.g., Rational, and the Float family of types).

Some types (e.g. the Float family) cannot represent all fractional literals precisely.
Such literals are rejected statically when using binary, octal, or hexadecimal
notation. When using decimal notation, the literal is rounded to the closest
representable even number.

All numeric literals may also include _, which has no effect on the literal value
but may be used to improve readability. Here are some examples:

0b_0000_0010

5

0x_FFFF_FFEA

Expressions
This section provides an overview of the Cryptol’s expression syntax.

Calling Functions

f 2 // call `f` with parameter `2`
g x y // call `g` with two parameters: `x` and `y`
h (x,y) // call `h` with one parameter, the pair `(x,y)`

Prefix Operators

-2 // call unary `-` with parameter `2`
- 2 // call unary `-` with parameter `2`
f (-2) // call `f` with one argument: `-2`, parens are important
-f 2 // call unary `-` with parameter `f 2`
- f 2 // call unary `-` with parameter `f 2`

Infix Functions

2 + 3 // call `+` with two parameters: `2` and `3`
2 + 3 * 5 // call `+` with two parameters: `2` and `3 * 5`
(+) 2 3 // call `+` with two parameters: `2` and `3`
f 2 + g 3 // call `+` with two parameters: `f 2` and `g 3`
- 2 + - 3 // call `+` with two parameters: `-2` and `-3`
- f 2 + - g 3

Type Annotations

x : Bit // specify that `x` has type `Bit`
f x : Bit // specify that `f x` has type `Bit`
- f x : [8] // specify that `- f x` has type `[8]`
2 + 3 : [8] // specify that `2 + 3` has type `[8]`
\x -> x : [8] // type annotation is on `x`, not the function
if x
then y
else z : Bit // the type annotation is on `z`, not the whole `if`

[1..9 : [8]] // specify that elements in `[1..9]` have type `[8]`

Local Declarations

Local declarations have the weakest precedence of all expressions.

2 + x : [T]
where
type T = 8
x = 2 // `T` and `x` are in scope of `2 + x : `[T]`

6

if x then 1 else 2
where x = 2 // `x` is in scope in the whole `if`

\y -> x + y
where x = 2 // `y` is not in scope in the defintion of `x`

Block Arguments

When used as the last argument to a function call, if and lambda expressions
do not need parens:

f \x -> x // call `f` with one argument `x -> x`
2 + if x

then y
else z // call `+` with two arguments: `2` and `if ...`

Bits
The type Bit has two inhabitants: True and False. These values may be
combined using various logical operators, or constructed as results of comparisons.

Table 3: Bit operations.

Operator Associativity Description
==> right Short-cut implication
\/ right Short-cut or
/\ right Short-cut and
!= == none Not equals, equals
> < <= >= <$ >$ <=$ >=$ none Comparisons
|| right Logical or
ˆ left Exclusive-or
&& right Logical and
~ right Logical negation

Multi-way Conditionals
The if ... then ... else construct can be used with multiple branches. For
example:

x = if y % 2 == 0 then 22 else 33

x = if y % 2 == 0 then 1
| y % 3 == 0 then 2
| y % 5 == 0 then 3
else 7

7

Tuples and Records
Tuples and records are used for packaging multiple values together. Tuples are
enclosed in parentheses, while records are enclosed in curly braces. The compo-
nents of both tuples and records are separated by commas. The components of
tuples are expressions, while the components of records are a label and a value
separated by an equal sign. Examples:

(1,2,3) // A tuple with 3 component
() // A tuple with no components

{ x = 1, y = 2 } // A record with two fields, `x` and `y`
{} // A record with no fields

The components of tuples are identified by position, while the components of
records are identified by their label, and so the ordering of record components is
not important for most purposes. Examples:

(1,2) == (1,2) // True
(1,2) == (2,1) // False

{ x = 1, y = 2 } == { x = 1, y = 2 } // True
{ x = 1, y = 2 } == { y = 2, x = 1 } // True

Ordering on tuples and records is defined lexicographically. Tuple components
are compared in the order they appear, whereas record fields are compared in
alphabetical order of field names.

Accessing Fields
The components of a record or a tuple may be accessed in two ways: via pattern
matching or by using explicit component selectors. Explicit component selectors
are written as follows:

(15, 20).0 == 15
(15, 20).1 == 20

{ x = 15, y = 20 }.x == 15

Explicit record selectors may be used only if the program contains sufficient type
information to determine the shape of the tuple or record. For example:

type T = { sign : Bit, number : [15] }

// Valid definition:
// the type of the record is known.
isPositive : T -> Bit
isPositive x = x.sign

8

// Invalid definition:
// insufficient type information.
badDef x = x.f

The components of a tuple or a record may also be accessed using pattern match-
ing. Patterns for tuples and records mirror the syntax for constructing values:
tuple patterns use parentheses, while record patterns use braces. Examples:

getFst (x,_) = x

distance2 { x = xPos, y = yPos } = xPos ^^ 2 + yPos ^^ 2

f p = x + y where
(x, y) = p

Selectors are also lifted through sequence and function types, point-wise, so that
the following equations should hold:

xs.l == [x.l | x <- xs] // sequences
f.l == \x -> (f x).l // functions

Thus, if we have a sequence of tuples, xs, then we can quickly obtain a sequence
with only the tuples’ first components by writing xs.0.

Similarly, if we have a function, f, that computes a tuple of results, then we can
write f.0 to get a function that computes only the first entry in the tuple.

This behavior is quite handy when examining complex data at the REPL.

Updating Fields
The components of a record or a tuple may be updated using the following
notation:

// Example values
r = { x = 15, y = 20 } // a record
t = (True,True) // a tuple
n = { pt = r, size = 100 } // nested record

// Setting fields
{ r | x = 30 } == { x = 30, y = 20 }
{ t | 0 = False } == (False,True)

// Update relative to the old value
{ r | x -> x + 5 } == { x = 20, y = 20 }

// Update a nested field
{ n | pt.x = 10 } == { pt = { x = 10, y = 20 }, size = 100 }
{ n | pt.x -> x + 10 } == { pt = { x = 25, y = 20 }, size = 100 }

9

Sequences
A sequence is a fixed-length collection of elements of the same type. The type of
a finite sequence of length n, with elements of type a is [n] a. Often, a finite
sequence of bits, [n] Bit, is called a word. We may abbreviate the type [n]
Bit as [n]. An infinite sequence with elements of type a has type [inf] a, and
[inf] is an infinite stream of bits.

[e1,e2,e3] // A sequence with three elements

[t1 .. t2] // Enumeration
[t1 .. <t2] // Enumeration (exclusive bound)
[t1 .. t2 by n] // Enumeration (stride)
[t1 .. <t2 by n] // Enumeration (stride, ex. bound)
[t1 .. t2 down by n] // Enumeration (downward stride)
[t1 .. >t2 down by n] // Enumeration (downward stride, ex. bound)
[t1, t2 .. t3] // Enumeration (step by t2 - t1)

[e1 ...] // Infinite sequence starting at e1
[e1, e2 ...] // Infinite sequence stepping by e2-e1

[e | p11 <- e11, p12 <- e12 // Sequence comprehensions
| p21 <- e21, p22 <- e22]

x = generate (\i -> e) // Sequence from generating function
x @ i = e // Sequence with index binding
arr @ i @ j = e // Two-dimensional sequence

Note: the bounds in finite sequences (those with ..) are type expressions, while
the bounds in infinite sequences are value expressions.

Table 4: Sequence operations.

Operator Description
Sequence concatenation
>> << Shift (right, left)
>>> <<< Rotate (right, left)
>>$ Arithmetic right shift (on bitvectors only)
@ ! Access elements (front, back)
@@ !! Access sub-sequence (front, back)
update updateEnd Update the value of a sequence at a location (front, back)
updates updatesEnd Update multiple values of a sequence (front, back)

There are also lifted pointwise operations.

[p1, p2, p3, p4] // Sequence pattern

10

p1 # p2 // Split sequence pattern

Functions
\p1 p2 -> e // Lambda expression
f p1 p2 = e // Function definition

Local Declarations
e where ds

Note that by default, any local declarations without type signatures are monomor-
phized. If you need a local declaration to be polymorphic, use an explicit type
signature.

Explicit Type Instantiation
If f is a polymorphic value with type:

f : { tyParam } tyParam
f = zero

you can evaluate f, passing it a type parameter:

f `{ tyParam = 13 }

Demoting Numeric Types to Values
The value corresponding to a numeric type may be accessed using the following
notation:

`t

Here t should be a finite type expression with numeric kind. The resulting expres-
sion will be of a numeric base type, which is sufficiently large to accommodate
the value of the type:

`t : {a} (Literal t a) => a

This backtick notation is syntax sugar for an application of the number primtive,
so the above may be written as:

number`{t} : {a} (Literal t a) => a

If a type cannot be inferred from context, a suitable type will be automatically
chosen if possible, usually Integer.

11

Explicit Type Annotations
Explicit type annotations may be added on expressions, patterns, and in argument
definitions.

e : t

p : t

f (x : t) = ...

Type Signatures
f,g : {a,b} (fin a) => [a] b

Type Synonyms and Newtypes
Type synonyms
type T a b = [a] b

A type declaration creates a synonym for a pre-existing type expression, which
may optionally have arguments. A type synonym is transparently unfolded at
use sites and is treated as though the user had instead written the body of the
type synonym in line. Type synonyms may mention other synonyms, but it is
not allowed to create a recursive collection of type synonyms.

Newtypes
newtype NewT a b = { seq : [a]b }

A newtype declaration declares a new named type which is defined by a record
body. Unlike type synonyms, each named newtype is treated as a distinct type
by the type checker, even if they have the same bodies. Moreover, types created
by a newtype declaration will not be members of any typeclasses, even if the
record defining their body would be. For the purposes of typechecking, two
newtypes are considered equal only if all their arguments are equal, even if the
arguments do not appear in the body of the newtype, or are otherwise irrelevant.
Just like type synonyms, newtypes are not allowed to form recursive groups.

Every newtype declaration brings into scope a new function with the same name
as the type which can be used to create values of the newtype.

x : NewT 3 Integer
x = NewT { seq = [1,2,3] }

Just as with records, field projections can be used directly on values of newtypes
to extract the values in the body of the type.

12

> sum x.seq
6

Modules
A module is used to group some related definitions. Each file may contain at
most one module.

module M where

type T = [8]

f : [8]
f = 10

Hierarchical Module Names
Module may have either simple or hierarchical names. Hierarchical names are
constructed by gluing together ordinary identifiers using the symbol ::.

module Hash::SHA256 where

sha256 = ...

The structure in the name may be used to group together related modules. Also,
the Cryptol implementation uses the structure of the name to locate the file
containing the definition of the module. For example, when searching for module
Hash::SHA256, Cryptol will look for a file named SHA256.cry in a directory
called Hash, contained in one of the directories specified by CRYPTOLPATH.

Module Imports
To use the definitions from one module in another module, we use import
declarations:

// Provide some definitions
module M where

f : [8]
f = 2

// Uses definitions from `M`
module N where

import M // import all definitions from `M`

13

g = f // `f` was imported from `M`

Import Lists
Sometimes, we may want to import only some of the definitions from a module.
To do so, we use an import declaration with an import list.

module M where

f = 0x02
g = 0x03
h = 0x04

module N where

import M(f,g) // Imports only `f` and `g`, but not `h`

x = f + g

Using explicit import lists helps reduce name collisions. It also tends to make
code easier to understand, because it makes it easy to see the source of definitions.

Hiding Imports
Sometimes a module may provide many definitions, and we want to use most
of them but with a few exceptions (e.g., because those would result to a name
clash). In such situations it is convenient to use a hiding import:

module M where

f = 0x02
g = 0x03
h = 0x04

module N where

import M hiding (h) // Import everything but `h`

x = f + g

Qualified Module Imports
Another way to avoid name collisions is by using a qualified import.

14

module M where

f : [8]
f = 2

module N where

import M as P

g = P::f
// `f` was imported from `M`
// but when used it needs to be prefixed by the qualifier `P`

Qualified imports make it possible to work with definitions that happen to have
the same name but are defined in different modules.

Qualified imports may be combined with import lists or hiding clauses:

import A as B (f) // introduces B::f
import X as Y hiding (f) // introduces everything but `f` from X

// using the prefix `X`

It is also possible to use the same qualifier prefix for imports from different
modules. For example:

import A as B
import X as B

Such declarations will introduces all definitions from A and X but to use them,
you would have to qualify using the prefix B:::.

Private Blocks
In some cases, definitions in a module might use helper functions that are not
intended to be used outside the module. It is good practice to place such
declarations in private blocks:

module M where

f : [8]
f = 0x01 + helper1 + helper2

private

helper1 : [8]
helper1 = 2

helper2 : [8]

15

helper2 = 3

The keyword private introduces a new layout scope, and all declarations in the
block are considered to be private to the module. A single module may contain
multiple private blocks. For example, the following module is equivalent to the
previous one:

module M where

f : [8]
f = 0x01 + helper1 + helper2

private
helper1 : [8]
helper1 = 2

private
helper2 : [8]
helper2 = 3

Parameterized Modules
module M where

parameter
type n : # // `n` is a numeric type parameter

type constraint (fin n, n >= 1)
// Assumptions about the parameter

x : [n] // A value parameter

// This definition uses the parameters.
f : [n]
f = 1 + x

Named Module Instantiations
One way to use a parameterized module is through a named instantiation:

// A parameterized module
module M where

parameter
type n : #
x : [n]

16

y : [n]

f : [n]
f = x + y

// A module instantiation
module N = M where

type n = 32
x = 11
y = helper

helper = 12

The second module, N, is computed by instantiating the parameterized module M.
Module N will provide the exact same definitions as M, except that the parameters
will be replaced by the values in the body of N. In this example, N provides just
a single definition, f.

Note that the only purpose of the body of N (the declarations after the where
keyword) is to define the parameters for M.

Parameterized Instantiations
It is possible for a module instantiation to be itself parameterized. This could
be useful if we need to define some of a module’s parameters but not others.

// A parameterized module
module M where

parameter
type n : #
x : [n]
y : [n]

f : [n]
f = x + y

// A parameterized instantiation
module N = M where

parameter
x : [32]

17

type n = 32
y = helper

helper = 12

In this case N has a single parameter x. The result of instantiating N would result
in instantiating M using the value of x and 12 for the value of y.

Importing Parameterized Modules
It is also possible to import a parameterized module without using a module
instantiation:

module M where

parameter
x : [8]
y : [8]

f : [8]
f = x + y

module N where

import `M

g = f { x = 2, y = 3 }

A backtick at the start of the name of an imported module indicates that we
are importing a parameterized module. In this case, Cryptol will import all
definitions from the module as usual, however every definition will have some
additional parameters corresponding to the parameters of a module. All value
parameters are grouped in a record.

This is why in the example f is applied to a record of values, even though its
definition in M does not look like a function.

18

	Layout
	Comments
	Identifiers
	Keywords and Built-in Operators
	Built-in Type-level Operators
	Numeric Literals
	Expressions
	Bits
	Multi-way Conditionals
	Tuples and Records
	Accessing Fields
	Updating Fields

	Sequences
	Functions
	Local Declarations
	Explicit Type Instantiation
	Demoting Numeric Types to Values
	Explicit Type Annotations
	Type Signatures
	Type Synonyms and Newtypes
	Type synonyms
	Newtypes

	Modules
	Hierarchical Module Names
	Module Imports
	Import Lists
	Hiding Imports
	Qualified Module Imports
	Private Blocks
	Parameterized Modules
	Named Module Instantiations
	Parameterized Instantiations
	Importing Parameterized Modules

