Cryptol Version 2 for Version 1 Programmers

April 3, 2014

Contents

=

Introduction
Summary of Changes

[\

New Features in Cryptol version 2
Sequence Literals
Layout e
Module System
Multi-way If-Then-Else
First-class Type Variables
Type Aliases e
Type Classes o i e
Tuple Projection Syntax oL
Properties (theorems in version 1)

SO CTUU R W W N

(=]

Current Limitations of :modernize
Syntactic limitations oL oL
Converting Endianness L L oL

N

Introduction

Cryptol version 2 makes some changes based on suggestions from the user
community and lessons learned by the Cryptol design team. These include
syntax changes and some extensions to the type system. Perhaps the the most
disruptive change for current Cryptol programmers is that Cryptol version 2
interprets sequences in “big endian” mode, rather than “little endian.”

Current versions of Cryptol version 1 come with a “modernize” command to
convert a Cryptol version 1 file to Cryptol version 2. The conversion is not
complete, however, and no attempt is made to change the logic of the program
that may depend on endianness, so careful human review is still needed. The
Cryptol command is

:modernize <infile> <outfile>

Summary of Changes

Here’s a short summary of the syntax changes made in Cryptol version 2:

Cryptol version 2

Cryptol version 1

Summary

[False, True, True] (==3)
[1, 1, 2, 3, 51

x =1

[x | x<-1[1..10]]1]
f:{a,b} a->b

take {1} xs

x "2

<| x"T2+ 1 |>

[0 ..1:[_1[8]

[0 ...]1:[inf][8]

[9, 8 .. 0]

&&, 11, °

(1,2,3).0 (== 1)
property foo xs=...

[False True True] (== 6)
[11235]

x = 1;
[lxIllx<-[1..
f:{abra->b
take(1, xs)

X Rk 2

<| x"2+1 [>

take (255, [0 ..]:[inf][8])
[0 ..]:[inf][8]

[9 -- 0]

&, I, "
project(1,3,(1,2,3)) (==1)
theorem foo: {xs}. xs==...

10] 11

Big-endian word representation
Commas separate sequence entries
Uses layout instead of ;’s and {’s
Cleaner sequence constructor syntax
Commas separate type variables
First-class type parameters

~~ for exponentiation

Polynomial exponentiation now uniform
Both produce [0 .. 255]

Both produce [0 .. 255](repeated)
Step defines decreasing sequences
Boolean operator syntax

Tuple projection syntax (and 0-based)
Properties replace theorems (see below)

Figure 1: Summary of Changes from Cryptol version 1 to Cryptol version 2

New Features in Cryptol version 2

Sequence Literals

In Cryptol version 1, [0
elements wrapping in n bits. In version 2, the ..

halts before the wrapping would occur.

In version 2, use the ...
additional change: in version 1 [0
1], and in version 2, [0

..1:[inf] [n] constructs an infinitely long list of

syntax creates a finite list that

syntax to construct an infinitely long sequence. One

...] constructs the sequence [0, 0, 0, ...].

..]1 constructs the sequence [0 1 0 1 0

To

produce the list of alternating ones and zeros, specify the width of the elements,

as in:

Cryptol> [0

.o 1:0.1111
(0, 1, 0, 1, 0, ...]

Finally, version 1 used -- for decreasing sequences, but version 2 uses the
difference between the first two elements to define the step between elements in

the sequence, as in:

Cryptol> [10, 9 .. 0]

(10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Cryptol> [6, 4 .. 1]
6, 4, 2]

Layout

Version 1 of Cryptol used curly braces to delimit blocks and semicolons to
separate expressions. In version 2, Cryptol has layout-based syntax which uses
indentation to delimit blocks and \ to indicate line continuation.

Where in Cryptol version 1 we might write:

caesar : {n} ([8], String n) -> String n;

caesar (s, msg) = [| shift x || x <- msg |] where {
map = ['A' .. 'Z'] << s;
shift ¢ = map @ (c - 'A');

I

in version 2 would become:

caesar : {n} ([8], String n) -> String n
caesar (s, msg) = [shift x | x <- msg]
where map = ['Ar .. 'Z2'] <5
shift ¢ = map @ (c - 'A'")

Module System

The beginning of a Cryptol file can declare that it defines a module:
module Vector where

and can import another module:

import Math

Note that the filename for a module should correspond to the module’s name
with a .cry extension. This allows Cryptol to locate imported modules.

Definitions within a module are public by default, but can be hidden from other
modules like this:

private internalConstant = 0x55
anotherInternalConstant = 0x66
externalConstant=0x77

Whenever names might be ambiguous, they can be disambiguated with the : :
syntax (using a qualified import using “as”):

import ExternalModule as eModule

functionName = ... // shadows external definition

eModule: :functionName xs // accesses external definition

Multi-way If-Then-Else

Cryptol version 2 supports a “case-statement”-like multi-way branch:

x = if y % 2 == 0 then 1
| v % 3 ==0 then 2
| vy %5 ==0 then 3
else 7

First-class Type Variables

In Cryptol version 1, type variables, such as the first argument to take, were
special-cased and could not be written in Cryptol itself, but had to be part of
built-in functions. In Cryptol version 2, the named type variables defined in
a function’s signature can be referred to when that function is called, either
positionally, or by name. This has allowed many of the previously built-in
functions to be defined in a Cryptol “prelude” file. You can examine this file by
running the Cryptol tool with no argument, and then typing :e. We suggest you
not edit this file, however. Here is the definition of take, a previously built-in
Cryptol function:

take : {front,back,elem} (fin front) => [front +
back] elem -> [front] elem
take (x # _) = x

Since programmers usually think of take as a one-argument function (the number
of elements to take from the head of the list), that argument (front) has been
defined first in the signature of take. This lets us call it like this:

take {3}xs
Which does the same as the Cryptol version 1 call take(3,xs).
Here is the signature for the (still) built-in split:

split : {parts, each, a} (fin each) => [parts *
eachla -> [parts] [each]a

and here is how groupBy is defined in terms of split:

groupBy : {each,parts,elem} (fin each) =>
[parts * each] elem -> [parts][each]elem
groupBy = split”{parts=parts}

We can pass the each argument to groupBy positionally, or by name. These two
calls are equivalent:

groupBy~ {3}xs
groupBy~ {each=3}xs

but we could instead pass the parts argument by name, or positionally as in:

groupBy~ {parts=2}
groupBy {_,2}

The former being preferred whenever it makes the code easier to read.

Finally, you can declare type variables in a function declaration, by typing the
function’s arguments, like this:

myWidth (xs:[a]lb) = "a

This can help break the Catch-22 situation that sometimes arises when you’re
writing a function that needs access to type variables, but you’re not yet sure
about the whole function’s type signature.

Type Aliases

Type aliases are only permitted to be defined on curried primitive types in
Cryptol version 2. In Cryptol version 1, for example, tuples were permitted in
type declaration contexts.

Type Classes

Cryptol version 2 has introduced type classes to enable type constraints to be
more expressive. For example, the type of 4+ in Cryptol version 1 is:

Cryptol> :t +
+ : {a b} ([alb,[alb) -> [alb

and in Cryptol version 2, the type of + is:

Cryptol> :t (+)
+ : {a} (Arith a) => a -> a -> a

This latter type says that the arguments of + must be things that “arithmetic
can be performed on”.

The other type class Cryptol version 2 defines is Cmp — the class of things that
can be compared to each other:

Cryptol> :t (==
== : {a} (Cmp a) => a -> a -> Bit

Tuple Projection Syntax

In Cryptol version 1, we used the project function to extract items out of a tuple.
In Cryptol version 2, we use the same . notation as is used to extract items out
of records. Further, the project function was 1-based (the first element is at
index 1 of the tuple), but the . version of project is now 0-based (so the first
element is at index 0 of the tuple). So, in Cryptol version 1:

Cryptol> project(1,3,(1,2,3))
1

in Cryptol version 2, becomes:

Cryptol> (1,2,3).0
1

Properties (theorems in version 1)

In version 1, theorems are special syntax attached to function declarations. In
version 2, the property keyword can be added to any function that returns a
Bit. All of the arguments to a property are implicitly universally quantified. So
version 1’s

sqDiffThm : ([8], [8]) -> Bit;
theorem sqDiffThm: {x, y}. sqDiffl (x, y) == sqDiff2 (x, y);

becomes, in version 2:

sqDiffThm : ([8], [8]) -> Bit
property sqDiffThm x y = sqDiffl (x, y) == sqDiff2 (x, y)

The property keyword is just an annotation. You can apply :check, :exhaust,
:sat and :prove to any function that returns Bit.

Current Limitations of :modernize

If you want to translate a significant codebase written in Cryptol version 1 to
version 2, the :modernize command can help a lot. However it doesn’t do the
whole job for you. This section describes some limitations and suggests effective
ways of translating your code.

Syntactic limitations

Currently, :modernize:

o doesn’t add commas to lists of type variables,

e doesn’t automatically translate take(3,xs) to take‘{3}xs,
e doesn’t translate ** to "7,
e doesn’t turn theorem declarations into property’s.

e doesn’t convert tuple project to the new . syntax

Feature requests have been filed for these limitations.

Converting Endianness

If your code goes back and forth between numeric constants and sequences (as
much crypto code does), you have already been affected by version 1’s choice
of little endianness, in which the “rightmost” bits of the word are the most
significant digits.

Cryptol> [False False True]
0x4

Since humans made the (questionable?) decision to write the most-significant
bits first when we write numbers down, many translations of crypto specs involve
frequent use of the reverse operator. We have found that Cryptol code looks
closer to most specs when it’s in “big endian” mode. This is why version 2 only
supports this mode.

The translation between endianness can not be easily mechanized, though, so
:modernize doesn’t try to.

As a result, our suggested translation path from version 1 to version 2 is either to
completely rewrite the code based on looking at the original spec (which is likely
to produce surprisingly cleaner code), or if that isn’t feasible to first translate
the version 1 code to “big endian” mode (use :set +B), then apply :modernize,
then finally fix up the source based on the limitations enumerated above. The
reason for going this route is that switching endianness within version 1 lets you
use the :prove and :check operations to verify the correctness of your logic,
then it becomes a simple syntax modernization task. Doing both at once has
proven to be very difficult, and leaves you without tool support.

% creation of function bindings in where clauses

	Introduction
	Summary of Changes

	New Features in Cryptol version 2
	Sequence Literals
	Layout
	Module System
	Multi-way If-Then-Else
	First-class Type Variables
	Type Aliases
	Type Classes
	Tuple Projection Syntax
	Properties (theorems in version 1)

	Current Limitations of :modernize
	Syntactic limitations
	Converting Endianness

