%% %% This is file `sampleEq.tex', %% generated with the docstrip utility. %% %% The original source files were: %% %% glossary.dtx (with options: `sampleEq.tex,package') %% Copyright (C) 2006 Nicola Talbot, all rights reserved. %% If you modify this file, you must change its name first. %% You are NOT ALLOWED to distribute this file alone. You are NOT %% ALLOWED to take money for the distribution or use of either this %% file or a changed version, except for a nominal charge for copying %% etc. %% \CharacterTable %% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z %% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z %% Digits \0\1\2\3\4\5\6\7\8\9 %% Exclamation \! Double quote \" Hash (number) \# %% Dollar \$ Percent \% Ampersand \& %% Acute accent \' Left paren \( Right paren \) %% Asterisk \* Plus \+ Comma \, %% Minus \- Point \. Solidus \/ %% Colon \: Semicolon \; Less than \< %% Equals \= Greater than \> Question mark \? %% Commercial at \@ Left bracket \[ Backslash \\ %% Right bracket \] Circumflex \^ Underscore \_ %% Grave accent \` Left brace \{ Vertical bar \| %% Right brace \} Tilde \~} \documentclass[a4paper,12pt]{report} \usepackage{amsmath} \usepackage[colorlinks]{hyperref} \usepackage[header,border=none,cols=3,number=equation]{glossary}[2006/07/20] \newcommand{\erf}{\operatorname{erf}} \newcommand{\erfc}{\operatorname{erfc}} \makeglossary \renewcommand{\glossaryname}{Index of Special Functions and Notations} \renewcommand{\entryname}{Notation} \renewcommand{\descriptionname}{Function Name} \renewcommand{\glspageheader}{Number of Formula} \newcommand{\glossarysubheader}{ & & \\} \storeglosentry{Gamma}{name=\ensuremath{\Gamma(z)}, description=Gamma function,sort=Gamma} \storeglosentry{gamma}{name={\ensuremath{\gamma(\alpha,x)}}, description=Incomplete gamma function,sort=gamma} \storeglosentry{iGamma}{name={\ensuremath{\Gamma(\alpha,x)}}, description=Incomplete gamma function,sort=Gamma} \storeglosentry{psi}{name=\ensuremath{\psi(x)}, description=Psi function,sort=psi} \storeglosentry{erf}{name=\ensuremath{\erf(x)}, description=Error function,sort=erf} \storeglosentry{erfc}{name=\ensuremath{\erfc}, description=Complementary error function,sort=erfc} \storeglosentry{B}{name={\ensuremath{B(x,y)}}, description=Beta function,sort=B} \storeglosentry{Bx}{name={\ensuremath{B_x(p,q)}}, description=Incomplete beta function,sort=Bx} \storeglosentry{Tn}{name=\ensuremath{T_n(x)}, description=Chebyshev's polynomials of the first kind,sort=Tn} \storeglosentry{Un}{name=\ensuremath{U_n(x)}, description=Chebyshev's polynomials of the second kind,sort=Un} \storeglosentry{Hn}{name=\ensuremath{H_n(x)}, description=Hermite polynomials,sort=Hn} \storeglosentry{Ln}{name=\ensuremath{L_n^\alpha(x)}, description=Laguerre polynomials,sort=Lna} \storeglosentry{Znu}{name=\ensuremath{Z_\nu(z)}, description=Bessel functions,sort=Z} \storeglosentry{Phi}{name={\ensuremath{\Phi(\alpha,\gamma;z)}}, description=confluent hypergeometric function,sort=Pagz} \storeglosentry{knu}{name=\ensuremath{k_\nu(x)}, description=Bateman's function,sort=kv} \storeglosentry{Dp}{name=\ensuremath{D_p(z)}, description=Parabolic cylinder functions,sort=Dp} \storeglosentry{F}{name={\ensuremath{F(\phi,k)}}, description=Elliptical integral of the first kind,sort=Fpk} \storeglosentry{C}{name=\ensuremath{C}, description=Euler's constant,sort=C} \storeglosentry{G}{name=\ensuremath{G}, description=Catalan's constant,sort=G} \begin{document} \title{A Sample Document Using glossary.sty} \author{Nicola Talbot} \maketitle \begin{abstract} This is a sample document illustrating the use of the \textsf{glossary} package. The functions here have been taken from ``Tables of Integrals, Series, and Products'' by I.S.~Gradshteyn and I.M~Ryzhik. The glossary is a list of special functions, so the equation number has been used rather than the page number. This can be done using the \texttt{number=equation} package option. \end{abstract} \printglossary \chapter{Gamma Functions} \begin{equation} \gls{Gamma} = \int_{0}^{\infty}e^{-t}t^{z-1}\,dt \end{equation} \verb|\ensuremath| is only required here if using hyperlinks. \begin{equation} \useGlosentry{Gamma}{\ensuremath{\Gamma(x+1)}} = x\Gamma(x) \end{equation} \begin{equation} \gls{gamma} = \int_0^x e^{-t}t^{\alpha-1}\,dt \end{equation} \begin{equation} \gls{iGamma} = \int_x^\infty e^{-t}t^{\alpha-1}\,dt \end{equation} \newpage \begin{equation} \gls{Gamma} = \Gamma(\alpha, x) + \gamma(\alpha, x) \end{equation} \begin{equation} \gls{psi} = \frac{d}{dx}\ln\Gamma(x) \end{equation} \chapter{Error Functions} \begin{equation} \gls{erf} = \frac{2}{\surd\pi}\int_0^x e^{-t^2}\,dt \end{equation} \begin{equation} \gls{erfc} = 1 - \erf(x) \end{equation} \chapter{Beta Function} \begin{equation} \gls{B} = 2\int_0^1 t^{x-1}(1-t^2)^{y-1}\,dt \end{equation} Alternatively: \begin{equation} \gls{B} = 2\int_0^{\frac\pi2}\sin^{2x-1}\phi\cos^{2y-1}\phi\,d\phi \end{equation} \begin{equation} \gls{B} = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} = B(y,x) \end{equation} \begin{equation} \gls{Bx} = \int_0^x t^{p-1}(1-t)^{q-1}\,dt \end{equation} \chapter{Polynomials} \section{Chebyshev's polynomials} \begin{equation} \gls{Tn} = \cos(n\arccos x) \end{equation} \begin{equation} \gls{Un} = \frac{\sin[(n+1)\arccos x]}{\sin[\arccos x]} \end{equation} \section{Hermite polynomials} \begin{equation} \gls{Hn} = (-1)^n e^{x^2} \frac{d^n}{dx^n}(e^{-x^2}) \end{equation} \section{Laguerre polynomials} \begin{equation} L_n^{\alpha} (x) = \frac{1}{n!}e^x x^{-\alpha} \frac{d^n}{dx^n}(e^{-x}x^{n+\alpha}) \end{equation} \chapter{Bessel Functions} Bessel functions $Z_\nu$ are solutions of \begin{equation} \useglosentry{Znu} \frac{d^2Z_\nu}{dz^2} + \frac{1}{z}\,\frac{dZ_\nu}{dz} + \left( 1-\frac{\nu^2}{z^2}Z_\nu = 0 \right) \end{equation} \chapter{Confluent hypergeometric function} \begin{equation} \gls{Phi} = 1 + \frac{\alpha}{\gamma}\,\frac{z}{1!} + \frac{\alpha(\alpha+1)}{\gamma(\gamma+1)}\,\frac{z^2}{2!} +\frac{\alpha(\alpha+1)(\alpha+2)}{\gamma(\gamma+1)(\gamma+2)}\, \frac{z^3}{3!} + \cdots \end{equation} \begin{equation} \gls{knu} = \frac{2}{\pi}\int_0^{\pi/2} \cos(x \tan\theta - \nu\theta)\,d\theta \end{equation} \chapter{Parabolic cylinder functions} \begin{equation} \gls{Dp} = 2^{\frac{p}{2}}e^{-\frac{z^2}{4}} \left\{ \frac{\surd\pi}{\Gamma\left(\frac{1-p}{2}\right)} \Phi\left(-\frac{p}{2},\frac{1}{2};\frac{z^2}{2}\right) -\frac{\sqrt{2\pi}z}{\Gamma\left(-\frac{p}{2}\right)} \Phi\left(\frac{1-p}{2},\frac{3}{2};\frac{z^2}{2}\right) \right\} \end{equation} \chapter{Elliptical Integral of the First Kind} \begin{equation} \gls{F} = \int_0^\phi \frac{d\alpha}{\sqrt{1-k^2\sin^2\alpha}} \end{equation} \chapter{Constants} \begin{equation} \gls{C} = 0.577\,215\,664\,901\ldots \end{equation} \begin{equation} \gls{G} = 0.915\,965\,594\ldots \end{equation} \end{document} \endinput %% %% End of file `sampleEq.tex'.