Loading module Cryptol Loading module Cryptol Loading module issue226r2 Loading module issue226 Type Synonyms ============= type Bool = Bit type Char = [8] type String n = [n][8] type Word n = [n] type lg2 n = width (max 1 n - 1) Symbols ======= (!) : {a, b, c} (fin a, fin c) => [a]b -> [c] -> b (!!) : {a, b, c, d} (fin a, fin d) => [a]b -> [c][d] -> [c]b (!=) : {a} (Cmp a) => a -> a -> Bit (!==) : {a, b} (Cmp b) => (a -> b) -> (a -> b) -> a -> Bit (#) : {front, back, a} (fin front) => [front]a -> [back]a -> [front + back]a (%) : {a} (Arith a) => a -> a -> a (%$) : {a} (Arith a) => a -> a -> a (&&) : {a} (Logic a) => a -> a -> a (*) : {a} (Arith a) => a -> a -> a (+) : {a} (Arith a) => a -> a -> a (-) : {a} (Arith a) => a -> a -> a (/) : {a} (Arith a) => a -> a -> a (/$) : {a} (Arith a) => a -> a -> a (/\) : Bit -> Bit -> Bit (<) : {a} (Cmp a) => a -> a -> Bit (<$) : {a} (SignedCmp a) => a -> a -> Bit (<<) : {a, b, c} (fin b, Zero c) => [a]c -> [b] -> [a]c (<<<) : {a, b, c} (fin a, fin b) => [a]c -> [b] -> [a]c (<=) : {a} (Cmp a) => a -> a -> Bit (<=$) : {a} (SignedCmp a) => a -> a -> Bit (==) : {a} (Cmp a) => a -> a -> Bit (===) : {a, b} (Cmp b) => (a -> b) -> (a -> b) -> a -> Bit (==>) : Bit -> Bit -> Bit (>) : {a} (Cmp a) => a -> a -> Bit (>$) : {a} (SignedCmp a) => a -> a -> Bit (>=) : {a} (Cmp a) => a -> a -> Bit (>=$) : {a} (SignedCmp a) => a -> a -> Bit (>>) : {a, b, c} (fin b, Zero c) => [a]c -> [b] -> [a]c (>>$) : {n, k} (fin n, n >= 1, fin k) => [n] -> [k] -> [n] (>>>) : {a, b, c} (fin a, fin b) => [a]c -> [b] -> [a]c (@) : {a, b, c} (fin c) => [a]b -> [c] -> b (@@) : {a, b, c, d} (fin d) => [a]b -> [c][d] -> [c]b False : Bit True : Bit (\/) : Bit -> Bit -> Bit (^) : {a} (Logic a) => a -> a -> a (^^) : {a} (Arith a) => a -> a -> a carry : {n} (fin n) => [n] -> [n] -> Bit complement : {a} (Logic a) => a -> a demote : {val, bits} (fin val, fin bits, bits >= width val) => [bits] drop : {front, back, elem} (fin front) => [front + back]elem -> [back]elem error : {at, len} (fin len) => [len][8] -> at foo : {a} a -> a fromThen : {first, next, bits, len} (fin first, fin next, fin bits, bits >= width first, bits >= width next, lengthFromThen first next bits == len) => [len][bits] fromThenTo : {first, next, last, bits, len} (fin first, fin next, fin last, fin bits, bits >= width first, bits >= width next, bits >= width last, lengthFromThenTo first next last == len) => [len][bits] fromTo : {first, last, bits} (fin last, fin bits, last >= first, bits >= width last) => [1 + (last - first)][bits] groupBy : {each, parts, elem} (fin each) => [each * parts]elem -> [parts][each]elem infFrom : {bits} (fin bits) => [bits] -> [inf][bits] infFromThen : {bits} (fin bits) => [bits] -> [bits] -> [inf][bits] join : {parts, each, a} (fin each) => [parts][each]a -> [parts * each]a lg2 : {a} (Arith a) => a -> a max : {a} (Cmp a) => a -> a -> a min : {a} (Cmp a) => a -> a -> a negate : {a} (Arith a) => a -> a pdiv : {a, b} (fin a, fin b) => [a] -> [b] -> [a] pmod : {a, b} (fin a, fin b) => [a] -> [1 + b] -> [b] pmult : {a, b} (fin a, fin b) => [1 + a] -> [1 + b] -> [1 + (a + b)] random : {a} [256] -> a reverse : {a, b} (fin a) => [a]b -> [a]b sborrow : {n} (fin n, n >= 1) => [n] -> [n] -> Bit scarry : {n} (fin n, n >= 1) => [n] -> [n] -> Bit sext : {n, m} (fin m, m >= n, n >= 1) => [n] -> [m] split : {parts, each, a} (fin each) => [parts * each]a -> [parts][each]a splitAt : {front, back, a} (fin front) => [front + back]a -> ([front]a, [back]a) tail : {a, b} [1 + a]b -> [a]b take : {front, back, elem} (fin front) => [front + back]elem -> [front]elem trace : {n, a, b} (fin n) => [n][8] -> a -> b -> b traceVal : {n, a} (fin n) => [n][8] -> a -> a transpose : {a, b, c} [a][b]c -> [b][a]c undefined : {a} a update : {a, b, c} (fin c) => [a]b -> [c] -> b -> [a]b updateEnd : {a, b, c} (fin a, fin c) => [a]b -> [c] -> b -> [a]b updates : {a, b, c, d} (fin c, fin d) => [a]b -> [d][c] -> [d]b -> [a]b updatesEnd : {a, b, c, d} (fin a, fin c, fin d) => [a]b -> [d][c] -> [d]b -> [a]b width : {bits, len, elem} (fin len, fin bits, bits >= width len) => [len]elem -> [bits] zero : {a} (Zero a) => a zext : {n, m} (fin m, m >= n) => [n] -> [m] (||) : {a} (Logic a) => a -> a -> a