mirror of
https://github.com/GaloisInc/cryptol.git
synced 2024-12-18 13:31:50 +03:00
244 lines
11 KiB
Haskell
244 lines
11 KiB
Haskell
-----------------------------------------------------------------------------
|
|
-- |
|
|
-- Module : Data.SBV.BitVectors.PrettyNum
|
|
-- Copyright : (c) Levent Erkok
|
|
-- License : BSD3
|
|
-- Maintainer : erkokl@gmail.com
|
|
-- Stability : experimental
|
|
--
|
|
-- Number representations in hex/bin
|
|
-----------------------------------------------------------------------------
|
|
|
|
{-# LANGUAGE ScopedTypeVariables #-}
|
|
{-# LANGUAGE TypeSynonymInstances #-}
|
|
|
|
module Data.SBV.BitVectors.PrettyNum (
|
|
PrettyNum(..), readBin, shex, shexI, sbin, sbinI
|
|
, showCFloat, showCDouble, showHFloat, showHDouble
|
|
, showSMTFloat, showSMTDouble, smtRoundingMode
|
|
) where
|
|
|
|
import Data.Char (ord)
|
|
import Data.Int (Int8, Int16, Int32, Int64)
|
|
import Data.List (isPrefixOf)
|
|
import Data.Maybe (fromJust)
|
|
import Data.Ratio (numerator, denominator)
|
|
import Data.Word (Word8, Word16, Word32, Word64)
|
|
import Numeric (showIntAtBase, showHex, readInt)
|
|
|
|
import Data.SBV.BitVectors.Data
|
|
import Data.SBV.BitVectors.Model () -- instances only
|
|
|
|
-- | PrettyNum class captures printing of numbers in hex and binary formats; also supporting negative numbers.
|
|
--
|
|
-- Minimal complete definition: 'hexS' and 'binS'
|
|
class PrettyNum a where
|
|
-- | Show a number in hexadecimal (starting with @0x@ and type.)
|
|
hexS :: a -> String
|
|
-- | Show a number in binary (starting with @0b@ and type.)
|
|
binS :: a -> String
|
|
-- | Show a number in hex, without prefix, or types.
|
|
hex :: a -> String
|
|
-- | Show a number in bin, without prefix, or types.
|
|
bin :: a -> String
|
|
|
|
-- Why not default methods? Because defaults need "Integral a" but Bool is not..
|
|
instance PrettyNum Bool where
|
|
{hexS = show; binS = show; hex = show; bin = show}
|
|
instance PrettyNum Word8 where
|
|
{hexS = shex True True (False,8) ; binS = sbin True True (False,8) ; hex = shex False False (False,8) ; bin = sbin False False (False,8) ;}
|
|
instance PrettyNum Int8 where
|
|
{hexS = shex True True (True,8) ; binS = sbin True True (True,8) ; hex = shex False False (True,8) ; bin = sbin False False (True,8) ;}
|
|
instance PrettyNum Word16 where
|
|
{hexS = shex True True (False,16); binS = sbin True True (False,16); hex = shex False False (False,16); bin = sbin False False (False,16);}
|
|
instance PrettyNum Int16 where
|
|
{hexS = shex True True (True,16); binS = sbin True True (True,16) ; hex = shex False False (True,16); bin = sbin False False (True,16) ;}
|
|
instance PrettyNum Word32 where
|
|
{hexS = shex True True (False,32); binS = sbin True True (False,32); hex = shex False False (False,32); bin = sbin False False (False,32);}
|
|
instance PrettyNum Int32 where
|
|
{hexS = shex True True (True,32); binS = sbin True True (True,32) ; hex = shex False False (True,32); bin = sbin False False (True,32) ;}
|
|
instance PrettyNum Word64 where
|
|
{hexS = shex True True (False,64); binS = sbin True True (False,64); hex = shex False False (False,64); bin = sbin False False (False,64);}
|
|
instance PrettyNum Int64 where
|
|
{hexS = shex True True (True,64); binS = sbin True True (True,64) ; hex = shex False False (True,64); bin = sbin False False (True,64) ;}
|
|
instance PrettyNum Integer where
|
|
{hexS = shexI True True; binS = sbinI True True; hex = shexI False False; bin = sbinI False False;}
|
|
|
|
instance PrettyNum CW where
|
|
hexS cw | cwIsBit cw = hexS (cwToBool cw)
|
|
| isReal cw = let CWAlgReal w = cwVal cw in show w
|
|
| not (isBounded cw) = let CWInteger w = cwVal cw in shexI True True w
|
|
| isUninterpreted cw = show cw
|
|
| True = let CWInteger w = cwVal cw in shex True True (hasSign cw, intSizeOf cw) w
|
|
|
|
binS cw | cwIsBit cw = binS (cwToBool cw)
|
|
| isReal cw = let CWAlgReal w = cwVal cw in show w
|
|
| not (isBounded cw) = let CWInteger w = cwVal cw in sbinI True True w
|
|
| isUninterpreted cw = show cw
|
|
| True = let CWInteger w = cwVal cw in sbin True True (hasSign cw, intSizeOf cw) w
|
|
|
|
hex cw | cwIsBit cw = hexS (cwToBool cw)
|
|
| isReal cw = let CWAlgReal w = cwVal cw in show w
|
|
| not (isBounded cw) = let CWInteger w = cwVal cw in shexI False False w
|
|
| isUninterpreted cw = show cw
|
|
| True = let CWInteger w = cwVal cw in shex False False (hasSign cw, intSizeOf cw) w
|
|
|
|
bin cw | cwIsBit cw = binS (cwToBool cw)
|
|
| isReal cw = let CWAlgReal w = cwVal cw in show w
|
|
| not (isBounded cw) = let CWInteger w = cwVal cw in sbinI False False w
|
|
| isUninterpreted cw = show cw
|
|
| True = let CWInteger w = cwVal cw in sbin False False (hasSign cw, intSizeOf cw) w
|
|
|
|
instance (SymWord a, PrettyNum a) => PrettyNum (SBV a) where
|
|
hexS s = maybe (show s) (hexS :: a -> String) $ unliteral s
|
|
binS s = maybe (show s) (binS :: a -> String) $ unliteral s
|
|
hex s = maybe (show s) (hex :: a -> String) $ unliteral s
|
|
bin s = maybe (show s) (bin :: a -> String) $ unliteral s
|
|
|
|
-- | Show as a hexadecimal value. First bool controls whether type info is printed
|
|
-- while the second boolean controls wether 0x prefix is printed. The tuple is
|
|
-- the signedness and the bit-length of the input. The length of the string
|
|
-- will /not/ depend on the value, but rather the bit-length.
|
|
shex :: (Show a, Integral a) => Bool -> Bool -> (Bool, Int) -> a -> String
|
|
shex shType shPre (signed, size) a
|
|
| a < 0
|
|
= "-" ++ pre ++ pad l (s16 (abs (fromIntegral a :: Integer))) ++ t
|
|
| True
|
|
= pre ++ pad l (s16 a) ++ t
|
|
where t | shType = " :: " ++ (if signed then "Int" else "Word") ++ show size
|
|
| True = ""
|
|
pre | shPre = "0x"
|
|
| True = ""
|
|
l = (size + 3) `div` 4
|
|
|
|
-- | Show as a hexadecimal value, integer version. Almost the same as shex above
|
|
-- except we don't have a bit-length so the length of the string will depend
|
|
-- on the actual value.
|
|
shexI :: Bool -> Bool -> Integer -> String
|
|
shexI shType shPre a
|
|
| a < 0
|
|
= "-" ++ pre ++ s16 (abs a) ++ t
|
|
| True
|
|
= pre ++ s16 a ++ t
|
|
where t | shType = " :: Integer"
|
|
| True = ""
|
|
pre | shPre = "0x"
|
|
| True = ""
|
|
|
|
-- | Similar to 'shex'; except in binary.
|
|
sbin :: (Show a, Integral a) => Bool -> Bool -> (Bool, Int) -> a -> String
|
|
sbin shType shPre (signed,size) a
|
|
| a < 0
|
|
= "-" ++ pre ++ pad size (s2 (abs (fromIntegral a :: Integer))) ++ t
|
|
| True
|
|
= pre ++ pad size (s2 a) ++ t
|
|
where t | shType = " :: " ++ (if signed then "Int" else "Word") ++ show size
|
|
| True = ""
|
|
pre | shPre = "0b"
|
|
| True = ""
|
|
|
|
-- | Similar to 'shexI'; except in binary.
|
|
sbinI :: Bool -> Bool -> Integer -> String
|
|
sbinI shType shPre a
|
|
| a < 0
|
|
= "-" ++ pre ++ s2 (abs a) ++ t
|
|
| True
|
|
= pre ++ s2 a ++ t
|
|
where t | shType = " :: Integer"
|
|
| True = ""
|
|
pre | shPre = "0b"
|
|
| True = ""
|
|
|
|
-- | Pad a string to a given length. If the string is longer, then we don't drop anything.
|
|
pad :: Int -> String -> String
|
|
pad l s = replicate (l - length s) '0' ++ s
|
|
|
|
-- | Binary printer
|
|
s2 :: (Show a, Integral a) => a -> String
|
|
s2 v = showIntAtBase 2 dig v "" where dig = fromJust . flip lookup [(0, '0'), (1, '1')]
|
|
|
|
-- | Hex printer
|
|
s16 :: (Show a, Integral a) => a -> String
|
|
s16 v = showHex v ""
|
|
|
|
-- | A more convenient interface for reading binary numbers, also supports negative numbers
|
|
readBin :: Num a => String -> a
|
|
readBin ('-':s) = -(readBin s)
|
|
readBin s = case readInt 2 isDigit cvt s' of
|
|
[(a, "")] -> a
|
|
_ -> error $ "SBV.readBin: Cannot read a binary number from: " ++ show s
|
|
where cvt c = ord c - ord '0'
|
|
isDigit = (`elem` "01")
|
|
s' | "0b" `isPrefixOf` s = drop 2 s
|
|
| True = s
|
|
|
|
-- | A version of show for floats that generates correct C literals for nan/infinite. NB. Requires "math.h" to be included.
|
|
showCFloat :: Float -> String
|
|
showCFloat f
|
|
| isNaN f = "((float) NAN)"
|
|
| isInfinite f, f < 0 = "((float) (-INFINITY))"
|
|
| isInfinite f = "((float) INFINITY)"
|
|
| True = show f ++ "F"
|
|
|
|
-- | A version of show for doubles that generates correct C literals for nan/infinite. NB. Requires "math.h" to be included.
|
|
showCDouble :: Double -> String
|
|
showCDouble f
|
|
| isNaN f = "((double) NAN)"
|
|
| isInfinite f, f < 0 = "((double) (-INFINITY))"
|
|
| isInfinite f = "((double) INFINITY)"
|
|
| True = show f
|
|
|
|
-- | A version of show for floats that generates correct Haskell literals for nan/infinite
|
|
showHFloat :: Float -> String
|
|
showHFloat f
|
|
| isNaN f = "((0/0) :: Float)"
|
|
| isInfinite f, f < 0 = "((-1/0) :: Float)"
|
|
| isInfinite f = "((1/0) :: Float)"
|
|
| True = show f
|
|
|
|
-- | A version of show for doubles that generates correct Haskell literals for nan/infinite
|
|
showHDouble :: Double -> String
|
|
showHDouble d
|
|
| isNaN d = "((0/0) :: Double)"
|
|
| isInfinite d, d < 0 = "((-1/0) :: Double)"
|
|
| isInfinite d = "((1/0) :: Double)"
|
|
| True = show d
|
|
|
|
-- | A version of show for floats that generates correct SMTLib literals using the rounding mode
|
|
showSMTFloat :: RoundingMode -> Float -> String
|
|
showSMTFloat rm f
|
|
| isNaN f = as "NaN"
|
|
| isInfinite f, f < 0 = as "minusInfinity"
|
|
| isInfinite f = as "plusInfinity"
|
|
| isNegativeZero f = "(- ((_ asFloat 8 24) " ++ smtRoundingMode rm ++ " (/ 0 1)))"
|
|
| True = "((_ asFloat 8 24) " ++ smtRoundingMode rm ++ " " ++ toSMTLibRational (toRational f) ++ ")"
|
|
where as s = "(as " ++ s ++ " (_ FP 8 24))"
|
|
|
|
-- | A version of show for doubles that generates correct SMTLib literals using the rounding mode
|
|
showSMTDouble :: RoundingMode -> Double -> String
|
|
showSMTDouble rm d
|
|
| isNaN d = as "NaN"
|
|
| isInfinite d, d < 0 = as "minusInfinity"
|
|
| isInfinite d = as "plusInfinity"
|
|
| isNegativeZero d = "(- ((_ asFloat 11 53) " ++ smtRoundingMode rm ++ " (/ 0 1)))"
|
|
| True = "((_ asFloat 11 53) " ++ smtRoundingMode rm ++ " " ++ toSMTLibRational (toRational d) ++ ")"
|
|
where as s = "(as " ++ s ++ " (_ FP 11 53))"
|
|
|
|
-- | Show a rational in SMTLib format
|
|
toSMTLibRational :: Rational -> String
|
|
toSMTLibRational r
|
|
| n < 0
|
|
= "(- (/ " ++ show (abs n) ++ " " ++ show d ++ "))"
|
|
| True
|
|
= "(/ " ++ show n ++ " " ++ show d ++ ")"
|
|
where n = numerator r
|
|
d = denominator r
|
|
|
|
-- | Convert a rounding mode to the format SMT-Lib2 understands.
|
|
smtRoundingMode :: RoundingMode -> String
|
|
smtRoundingMode RoundNearestTiesToEven = "roundNearestTiesToEven"
|
|
smtRoundingMode RoundNearestTiesToAway = "roundNearestTiesToAway"
|
|
smtRoundingMode RoundTowardPositive = "roundTowardPositive"
|
|
smtRoundingMode RoundTowardNegative = "roundTowardNegative"
|
|
smtRoundingMode RoundTowardZero = "roundTowardZero"
|