Merge branch 'master' of github.com:GaloisInc/macaw into HEAD

This commit is contained in:
Tristan Ravitch 2018-04-23 18:51:19 -07:00
commit ee96681d8d
31 changed files with 1330 additions and 783 deletions

View File

@ -13,9 +13,9 @@ before_cache:
matrix:
include:
- env: CABALVER=1.24 GHCVER=8.0.2
compiler: ": #GHC 8.0.2"
addons: {apt: {packages: [cabal-install-1.24,ghc-8.0.2], sources: [hvr-ghc]}}
- env: CABALVER=1.24 GHCVER=8.2.2
compiler: ": #GHC 8.2.2"
addons: {apt: {packages: [cabal-install-1.24,ghc-8.2.2], sources: [hvr-ghc]}}
before_install:
- unset CC

View File

@ -31,6 +31,7 @@ library
base >= 4,
ansi-wl-pprint,
binary,
binary-symbols,
bytestring,
containers >= 0.5.8.1,
elf-edit >= 0.29,

View File

@ -1092,7 +1092,8 @@ setAbsIP a b
-- This is only a function of the address width.
type ArchAbsValue arch = AbsValue (RegAddrWidth (ArchReg arch))
-- | This stores the abstract state of the system at a given point in time.
-- | This stores the abstract state of the system which may be within
-- a block.
data AbsProcessorState r ids
= AbsProcessorState { absMem :: !(Memory (RegAddrWidth r))
-- ^ Recognizer for code addresses.
@ -1205,6 +1206,7 @@ transferValue c v = do
FinSet $ Set.singleton $ toInteger addr
| otherwise ->
TopV
SymbolValue{} -> TopV
-- Invariant: v is in m
AssignedValue a ->
fromMaybe (error $ "Missing assignment for " ++ show (assignId a))

View File

@ -180,6 +180,8 @@ unsignedUpperBound bnds v =
BVValue _ i -> Right (IntegerUpperBound i)
RelocatableValue{} ->
Left "Relocatable values do not have bounds."
SymbolValue{} ->
Left "Symbol values do not have bounds."
AssignedValue a ->
case MapF.lookup (assignId a) (bnds^.assignUpperBound) of
Just bnd -> Right bnd

View File

@ -297,13 +297,8 @@ addIntraproceduralJumpTarget fun_info src_block dest_addr = do -- record the ed
valueUses :: (OrdF (ArchReg arch), FoldableFC (ArchFn arch))
=> Value arch ids tp
-> FunctionArgsM arch ids (RegisterSet (ArchReg arch))
valueUses v =
zoom assignmentCache $
foldValueCached (\_ _ -> mempty)
(\_ -> mempty)
(\r -> Set.singleton (Some r))
(\_ regs -> regs)
v
valueUses v = zoom assignmentCache $ foldValueCached fns v
where fns = emptyValueFold { foldInput = Set.singleton . Some }
-- | Record that a block demands the value of certain registers.
recordBlockDemand :: ( OrdF (ArchReg arch)
@ -479,8 +474,6 @@ stmtDemandedValues ctx stmt = demandConstraints ctx $
| otherwise ->
[]
WriteMem addr _ v -> [Some addr, Some v]
-- Place holder statements are unknown.
PlaceHolderStmt _ _ -> []
InstructionStart _ _ -> []
-- Comment statements have no specific value.
Comment _ -> []

View File

@ -137,12 +137,17 @@ data ArchitectureInfo arch
-- The architecture-specific statement
-> ArchTermStmt arch ids
-> Maybe (ArchSegmentOff arch, AbsBlockState (ArchReg arch)))
-- ^ This takes an abstract state from before executing an abs state, and an
-- architecture-specific terminal statement, and returns the next address within
-- the procedure that the statement jumps to along with the updated abstract state.
-- ^ This takes an abstract state from before executing an abs
-- state, and an architecture-specific terminal statement.
--
-- Note that per their documentation, architecture specific statements may return to at
-- most one location within a function.
-- If the statement does not return to this function, this
-- function should return `Nothing`. Otherwise, it should
-- returns the next address within the procedure that the
-- statement jumps to along with the updated abstract state.
--
-- Note that per their documentation, architecture specific
-- statements may return to at most one location within a
-- function.
}
-- | Apply optimizations to a terminal statement.

View File

@ -2,7 +2,7 @@
Copyright : (c) Galois, Inc 2017
Maintainer : Joe Hendrix <jhendrix@galois.com>
This exports the pre-clasisification term statement and block data
This exports the pre-classification term statement and block data
types.
-}
{-# LANGUAGE FlexibleContexts #-}

View File

@ -70,6 +70,8 @@ module Data.Macaw.CFG.Core
, ArchTermStmt
, RegAddrWord
, RegAddrWidth
-- * Utilities
, addrWidthTypeRepr
-- * RegisterInfo
, RegisterInfo(..)
, asStackAddrOffset
@ -149,6 +151,11 @@ bracketsep (h:l) = vcat $
++ fmap (text "," <+>) l
++ [text "}"]
-- | A type repr for the address width
addrWidthTypeRepr :: AddrWidthRepr w -> TypeRepr (BVType w)
addrWidthTypeRepr Addr32 = BVTypeRepr knownNat
addrWidthTypeRepr Addr64 = BVTypeRepr knownNat
------------------------------------------------------------------------
-- AssignId
@ -328,25 +335,29 @@ instance FoldableFC (ArchFn arch) => FoldableFC (AssignRhs arch) where
-- Value and Assignment, AssignRhs declarations.
-- | A value at runtime.
data Value arch ids tp
= forall n
. (tp ~ BVType n, 1 <= n)
=> BVValue !(NatRepr n) !Integer
-- ^ A constant bitvector
--
-- The integer should be between 0 and 2^n-1.
| (tp ~ BoolType)
=> BoolValue !Bool
-- ^ A constant Boolean
| ( tp ~ BVType (ArchAddrWidth arch)
, 1 <= ArchAddrWidth arch
)
=> RelocatableValue !(NatRepr (ArchAddrWidth arch)) !(ArchMemAddr arch)
-- ^ A memory address
| AssignedValue !(Assignment arch ids tp)
-- ^ Value from an assignment statement.
| Initial !(ArchReg arch tp)
-- ^ Represents the value assigned to the register when the block started.
data Value arch ids tp where
BVValue :: (1 <= n) => !(NatRepr n) -> !Integer -> Value arch ids (BVType n)
-- ^ A constant bitvector
--
-- The integer should be between 0 and 2^n-1.
BoolValue :: !Bool -> Value arch ids BoolType
-- ^ A constant Boolean
RelocatableValue :: !(AddrWidthRepr (ArchAddrWidth arch))
-> !(ArchMemAddr arch)
-> Value arch ids (BVType (ArchAddrWidth arch))
-- ^ A memory address
SymbolValue :: !(AddrWidthRepr (ArchAddrWidth arch))
-> !SymbolIdentifier
-> Value arch ids (BVType (ArchAddrWidth arch))
-- ^ Reference to a symbol identifier.
--
-- This appears when dealing with relocations.
AssignedValue :: !(Assignment arch ids tp)
-> Value arch ids tp
-- ^ Value from an assignment statement.
Initial :: !(ArchReg arch tp)
-> Value arch ids tp
-- ^ Represents the value assigned to the register when the block started.
-- | An assignment consists of a unique location identifier and a right-
-- hand side that returns a value.
@ -370,7 +381,8 @@ instance ( HasRepr (ArchReg arch) TypeRepr
typeRepr (BoolValue _) = BoolTypeRepr
typeRepr (BVValue w _) = BVTypeRepr w
typeRepr (RelocatableValue w _) = BVTypeRepr w
typeRepr (RelocatableValue w _) = addrWidthTypeRepr w
typeRepr (SymbolValue w _) = addrWidthTypeRepr w
typeRepr (AssignedValue a) = typeRepr (assignRhs a)
typeRepr (Initial r) = typeRepr r
@ -392,12 +404,16 @@ instance OrdF (ArchReg arch)
compareF BVValue{} _ = LTF
compareF _ BVValue{} = GTF
compareF (RelocatableValue _ x) (RelocatableValue _ y) =
fromOrdering (compare x y)
compareF RelocatableValue{} _ = LTF
compareF _ RelocatableValue{} = GTF
compareF (SymbolValue _ x) (SymbolValue _ y) =
fromOrdering (compare x y)
compareF SymbolValue{} _ = LTF
compareF _ SymbolValue{} = GTF
compareF (AssignedValue x) (AssignedValue y) =
compareF (assignId x) (assignId y)
compareF AssignedValue{} _ = LTF
@ -613,8 +629,8 @@ ppValue p (BVValue w i)
-- TODO: We may want to report an error here.
parenIf (p > colonPrec) $
text (show i) <+> text "::" <+> brackets (text (show w))
ppValue p (RelocatableValue _ a) = parenIf (p > plusPrec) $ text (show a)
ppValue _ (SymbolValue _ a) = text (show a)
ppValue _ (AssignedValue a) = ppAssignId (assignId a)
ppValue _ (Initial r) = text (showF r) PP.<> text "_0"
@ -765,11 +781,6 @@ data Stmt arch ids
| forall tp . WriteMem !(ArchAddrValue arch ids) !(MemRepr tp) !(Value arch ids tp)
-- ^ This denotes a write to memory, and consists of an address to write to, a `MemRepr` defining
-- how the value should be stored in memory, and the value to be written.
| PlaceHolderStmt !([Some (Value arch ids)]) !String
-- ^ A placeholder to indicate something the
-- architecture-specific backend does not support.
--
-- Note that we plan to remove this eventually
| InstructionStart !(ArchAddrWord arch) !Text
-- ^ The start of an instruction
--
@ -792,10 +803,7 @@ ppStmt :: ArchConstraints arch
ppStmt ppOff stmt =
case stmt of
AssignStmt a -> pretty a
WriteMem a _ rhs -> text "*" PP.<> prettyPrec 11 a <+> text ":=" <+> ppValue 0 rhs
PlaceHolderStmt vals name ->
text ("PLACEHOLDER: " ++ name)
<+> parens (hcat $ punctuate comma $ viewSome (ppValue 0) <$> vals)
WriteMem a _ rhs -> text "write_mem" <+> prettyPrec 11 a <+> ppValue 0 rhs
InstructionStart off mnem -> text "#" <+> ppOff off <+> text (Text.unpack mnem)
Comment s -> text $ "# " ++ Text.unpack s
ExecArchStmt s -> ppArchStmt (ppValue 10) s

View File

@ -1,4 +1,5 @@
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE RankNTypes #-}
module Data.Macaw.CFG.DemandSet
@ -86,6 +87,7 @@ addValueDemands v = do
BoolValue{} -> pure ()
BVValue{} -> pure ()
RelocatableValue{} -> pure ()
SymbolValue{} -> pure ()
AssignedValue a -> addAssignmentDemands a
Initial{} -> pure ()
@ -101,8 +103,6 @@ addStmtDemands s =
WriteMem addr _repr val -> do
addValueDemands addr
addValueDemands val
PlaceHolderStmt l _ ->
mapM_ (\(Some v) -> addValueDemands v) l
InstructionStart{} ->
pure ()
Comment _ ->
@ -123,7 +123,6 @@ stmtNeeded demandSet stmt =
case stmt of
AssignStmt a -> Set.member (Some (assignId a)) demandSet
WriteMem{} -> True
PlaceHolderStmt{} -> True
InstructionStart{} -> True
Comment{} -> True
ExecArchStmt{} -> True

View File

@ -240,6 +240,11 @@ rewriteApp app = do
BVAdd w (valueAsApp -> Just (BVSub _ (BVValue _ xc) y)) (BVValue _ zc) -> do
rewriteApp (BVSub w (BVValue w (toUnsigned w (xc + zc))) y)
-- addr a + (c - addr b) => c + (addr a - addr b)
BVAdd w (RelocatableValue _ a) (valueAsApp -> Just (BVSub _ c (RelocatableValue _ b)))
| Just d <- diffAddr a b ->
rewriteApp $ BVAdd w c (BVValue w (toUnsigned w d))
-- x - yc = x + (negate yc)
BVSub w x (BVValue _ yc) -> do
rewriteApp (BVAdd w x (BVValue w (toUnsigned w (negate yc))))
@ -407,6 +412,7 @@ rewriteValue v =
BoolValue b -> pure (BoolValue b)
BVValue w i -> pure (BVValue w i)
RelocatableValue w a -> pure (RelocatableValue w a)
SymbolValue w a -> pure (SymbolValue w a)
AssignedValue (Assignment aid _) -> Rewriter $ do
ref <- gets $ rwctxCache . rwContext
srcMap <- lift $ readSTRef ref
@ -430,9 +436,6 @@ rewriteStmt s =
tgtAddr <- rewriteValue addr
tgtVal <- rewriteValue val
appendRewrittenStmt $ WriteMem tgtAddr repr tgtVal
PlaceHolderStmt args nm -> do
args' <- traverse (traverseSome rewriteValue) args
appendRewrittenStmt $ PlaceHolderStmt args' nm
Comment cmt ->
appendRewrittenStmt $ Comment cmt
InstructionStart off mnem ->

View File

@ -35,7 +35,8 @@ module Data.Macaw.Discovery
, Data.Macaw.Discovery.cfgFromAddrs
, Data.Macaw.Discovery.cfgFromAddrsAndState
, Data.Macaw.Discovery.markAddrsAsFunction
, State.CodeAddrReason(..)
, State.FunctionExploreReason(..)
, State.BlockExploreReason(..)
, Data.Macaw.Discovery.analyzeFunction
, Data.Macaw.Discovery.exploreMemPointers
, Data.Macaw.Discovery.analyzeDiscoveredFunctions
@ -125,24 +126,6 @@ concretizeAbsCodePointers _mem StridedInterval{} = [] -- FIXME: this case doesn'
concretizeAbsCodePointers _mem _ = []
{-
printAddrBacktrace :: Map (ArchMemAddr arch) (FoundAddr arch)
-> ArchMemAddr arch
-> CodeAddrReason (ArchAddrWidth arch)
-> [String]
printAddrBacktrace found_map addr rsn = do
let pp msg = show addr ++ ": " ++ msg
let prev prev_addr =
case Map.lookup prev_addr found_map of
Just found_info -> printAddrBacktrace found_map prev_addr (foundReason found_info)
Nothing -> error $ "Unknown reason for address " ++ show prev_addr
case rsn of
InWrite src -> pp ("Written to memory in block at address " ++ show src ++ ".") : prev src
NextIP src -> pp ("Target IP for " ++ show src ++ ".") : prev src
CallTarget src -> pp ("Target IP of call at " ++ show src ++ ".") : prev src
InitAddr -> [pp "Initial entry point."]
CodePointerInMem src -> [pp ("Memory address " ++ show src ++ " contained code.")]
SplitAt src -> pp ("Split from read of " ++ show src ++ ".") : prev src
-- | Return true if this address was added because of the contents of a global address
-- in memory initially.
--
@ -182,12 +165,6 @@ refineProcStateBounds v isTrue ps =
Left{} -> ps
Right ps' -> ps'
------------------------------------------------------------------------
-- Rewriting block
#ifdef USE_REWRITER
#endif
------------------------------------------------------------------------
-- Demanded subterm utilities
@ -240,7 +217,7 @@ rangeInReadonlySegment mseg size =
-- DiscoveryState utilities
-- | Mark a escaped code pointer as a function entry.
markAddrAsFunction :: CodeAddrReason (ArchAddrWidth arch)
markAddrAsFunction :: FunctionExploreReason (ArchAddrWidth arch)
-- ^ Information about why the code address was discovered
--
-- Used for debugging
@ -257,7 +234,7 @@ markAddrAsFunction rsn addr s
s & unexploredFunctions %~ Map.insertWith (\_ old -> old) addr rsn
_ -> s
-- | Mark a list of addresses as function entries with the same reason.
markAddrsAsFunction :: CodeAddrReason (ArchAddrWidth arch)
markAddrsAsFunction :: FunctionExploreReason (ArchAddrWidth arch)
-> [ArchSegmentOff arch]
-> DiscoveryState arch
-> DiscoveryState arch
@ -268,13 +245,13 @@ markAddrsAsFunction rsn addrs s0 = foldl' (\s a -> markAddrAsFunction rsn a s) s
-- | An address that has been found to be reachable.
data FoundAddr arch
= FoundAddr { foundReason :: !(CodeAddrReason (ArchAddrWidth arch))
= FoundAddr { foundReason :: !(BlockExploreReason (ArchAddrWidth arch))
-- ^ The reason the address was found to be containing code.
, foundAbstractState :: !(AbsBlockState (ArchReg arch))
-- ^ The abstract state formed from post-states that reach this address.
}
foundReasonL :: Lens' (FoundAddr arch) (CodeAddrReason (ArchAddrWidth arch))
foundReasonL :: Lens' (FoundAddr arch) (BlockExploreReason (ArchAddrWidth arch))
foundReasonL = lens foundReason (\old new -> old { foundReason = new })
------------------------------------------------------------------------
@ -282,7 +259,8 @@ foundReasonL = lens foundReason (\old new -> old { foundReason = new })
-- | The state for the function exploration monad (funM)
data FunState arch s ids
= FunState { funNonceGen :: !(NonceGenerator (ST s) ids)
= FunState { funReason :: !(FunctionExploreReason (ArchAddrWidth arch))
, funNonceGen :: !(NonceGenerator (ST s) ids)
, curFunAddr :: !(ArchSegmentOff arch)
, _curFunCtx :: !(DiscoveryState arch)
-- ^ Discovery state without this function
@ -546,6 +524,7 @@ identifyCallTargets absState ip = do
case ip of
BVValue _ x -> segOffAddrs $ resolveAbsoluteAddr mem (fromInteger x)
RelocatableValue _ a -> segOffAddrs $ asSegmentOff mem a
SymbolValue{} -> def
AssignedValue a ->
case assignRhs a of
-- See if we can get a value out of a concrete memory read.
@ -851,8 +830,8 @@ transferBlocks src finfo sz block_map =
, blockStatementList = pblock
}
id %= addFunBlock src pb
curFunCtx %= markAddrsAsFunction (InWrite src) (ps^.writtenCodeAddrs)
. markAddrsAsFunction (CallTarget src) (ps^.newFunctionAddrs)
curFunCtx %= markAddrsAsFunction (PossibleWriteEntry src) (ps^.writtenCodeAddrs)
. markAddrsAsFunction (CallTarget src) (ps^.newFunctionAddrs)
mapM_ (\(addr, abs_state) -> mergeIntraJump src abs_state addr) (ps^.intraJumpTargets)
@ -926,7 +905,7 @@ analyzeBlocks logBlock st =
mkFunState :: NonceGenerator (ST s) ids
-> DiscoveryState arch
-> CodeAddrReason (ArchAddrWidth arch)
-> FunctionExploreReason (ArchAddrWidth arch)
-- ^ Reason to provide for why we are analyzing this function
--
-- This can be used to figure out why we decided a
@ -934,10 +913,11 @@ mkFunState :: NonceGenerator (ST s) ids
-> ArchSegmentOff arch
-> FunState arch s ids
mkFunState gen s rsn addr = do
let faddr = FoundAddr { foundReason = rsn
let faddr = FoundAddr { foundReason = FunctionEntryPoint
, foundAbstractState = mkInitialAbsState (archInfo s) (memory s) addr
}
in FunState { funNonceGen = gen
in FunState { funReason = rsn
, funNonceGen = gen
, curFunAddr = addr
, _curFunCtx = s
, _curFunBlocks = Map.empty
@ -950,10 +930,10 @@ mkFunInfo :: FunState arch s ids -> DiscoveryFunInfo arch ids
mkFunInfo fs =
let addr = curFunAddr fs
s = fs^.curFunCtx
info = archInfo s
nm = withArchConstraints info $
nm = withArchConstraints (archInfo s) $
fromMaybe (BSC.pack (show addr)) (Map.lookup addr (symbolNames s))
in DiscoveryFunInfo { discoveredFunAddr = addr
in DiscoveryFunInfo { discoveredFunReason = funReason fs
, discoveredFunAddr = addr
, discoveredFunName = nm
, _parsedBlocks = fs^.curFunBlocks
}
@ -967,7 +947,7 @@ analyzeFunction :: (ArchSegmentOff arch -> ST s ())
-- ^ Logging function to call when analyzing a new block.
-> ArchSegmentOff arch
-- ^ The address to explore
-> CodeAddrReason (ArchAddrWidth arch)
-> FunctionExploreReason (ArchAddrWidth arch)
-- ^ Reason to provide for why we are analyzing this function
--
-- This can be used to figure out why we decided a
@ -1029,7 +1009,6 @@ exploreMemPointers mem_words info =
$ mem_words
mapM_ (modify . addMemCodePointer) mem_addrs
-- | Construct an empty discovery state and populate it by exploring from a
-- given set of function entry points
cfgFromAddrs ::
@ -1069,7 +1048,7 @@ cfgFromAddrsAndState initial_state init_addrs mem_words =
-- Resolve functions with logging
resolveFuns :: MemWidth (RegAddrWidth (ArchReg arch))
=> (ArchSegmentOff arch -> CodeAddrReason (ArchAddrWidth arch) -> ST s Bool)
=> (ArchSegmentOff arch -> FunctionExploreReason (ArchAddrWidth arch) -> ST s Bool)
-- ^ Callback for discovered functions
--
-- Should return true if we should analyze the function and false otherwise.
@ -1148,6 +1127,16 @@ discoveryLogFn disOpt _ (AnalyzeBlock addr) = ioToST $ do
hFlush stderr
ppFunReason :: MemWidth w => FunctionExploreReason w -> String
ppFunReason rsn =
case rsn of
InitAddr -> ""
UserRequest -> ""
PossibleWriteEntry a -> " (written at " ++ show a ++ ")"
CallTarget a -> " (called at " ++ show a ++ ")"
CodePointerInMem a -> " (in initial memory at " ++ show a ++ ")"
-- | Explore until we have found all functions we can.
--
-- This function is intended to make it easy to explore functions, and
@ -1176,10 +1165,10 @@ completeDiscoveryState ainfo disOpt mem initEntries symMap funPred = stToIO $ wi
| exploreFunctionSymbols disOpt =
initState & markAddrsAsFunction InitAddr (Map.keys symMap)
| otherwise = initState
let analyzeFn addr _rsn = ioToST $ do
let analyzeFn addr rsn = ioToST $ do
let b = funPred addr
when (b && logAtAnalyzeFunction disOpt) $ do
hPutStrLn stderr $ "Analyzing function: " ++ ppSymbol addr symMap
hPutStrLn stderr $ "Analyzing function: " ++ ppSymbol addr symMap ++ ppFunReason rsn
hFlush stderr
pure $! b
let analyzeBlock _ addr = ioToST $ do

View File

@ -78,8 +78,6 @@ absEvalStmt info stmt = withArchConstraints info $
modify $ addAssignment info a
WriteMem addr memRepr v ->
modify $ addMemWrite addr memRepr v
PlaceHolderStmt{} ->
pure ()
InstructionStart _ _ ->
pure ()
Comment{} ->

View File

@ -37,8 +37,9 @@ module Data.Macaw.Discovery.State
-- * DiscoveryFunInfo
, DiscoveryFunInfo(..)
, parsedBlocks
-- * CodeAddrRegion
, CodeAddrReason(..)
-- * Reasons for exploring
, FunctionExploreReason(..)
, BlockExploreReason(..)
-- * DiscoveryState utilities
, RegConstraint
) where
@ -62,26 +63,41 @@ import Data.Macaw.CFG
import Data.Macaw.Types
------------------------------------------------------------------------
-- CodeAddrReason
-- BlockExploreReason
-- | This describes the source of an address that was marked as containing code.
data CodeAddrReason w
= InWrite !(MemSegmentOff w)
-- ^ Exploring because the given block writes it to memory.
| NextIP !(MemSegmentOff w)
-- ^ Exploring because the given block jumps here.
-- | This describes why we started exploring a given function.
data FunctionExploreReason w
= PossibleWriteEntry !(MemSegmentOff w)
-- ^ Exploring because code at the given block writes it to memory.
| CallTarget !(MemSegmentOff w)
-- ^ Exploring because address terminates with a call that jumps here.
| InitAddr
-- ^ Identified as an entry point from initial information
| CodePointerInMem !(MemSegmentOff w)
-- ^ A code pointer that was stored at the given address.
| SplitAt !(MemSegmentOff w) !(CodeAddrReason w)
-- ^ Added because the address split this block after it had been disassembled. Also includes the reason we thought the block should be there before we split it.
| UserRequest
-- ^ The user requested that we analyze this address as a function.
deriving (Eq, Show)
------------------------------------------------------------------------
-- BlockExploreReason
-- | This describes why we are exploring a given block within a function.
data BlockExploreReason w
-- =- InWrite !(MemSegmentOff w)
-- ^ Exploring because the given block writes it to memory.
= NextIP !(MemSegmentOff w)
-- ^ Exploring because the given block jumps here.
| FunctionEntryPoint
-- ^ Identified as an entry point from initial information
| SplitAt !(MemSegmentOff w) !(BlockExploreReason w)
-- ^ Added because the address split this block after it had been
-- disassembled. Also includes the reason we thought the block
-- should be there before we split it.
-- | UserRequest
-- ^ The user requested that we analyze this address as a function.
deriving (Eq, Show)
------------------------------------------------------------------------
-- GlobalDataInfo
@ -215,7 +231,7 @@ data ParsedBlock arch ids
-- ^ Address of region
, blockSize :: !(ArchAddrWord arch)
-- ^ The size of the region of memory covered by this.
, blockReason :: !(CodeAddrReason (ArchAddrWidth arch))
, blockReason :: !(BlockExploreReason (ArchAddrWidth arch))
-- ^ Reason that we marked this address as
-- the start of a basic block.
, blockAbstractState :: !(AbsBlockState (ArchReg arch))
@ -241,7 +257,8 @@ instance ArchConstraints arch
-- | Information discovered about a particular function
data DiscoveryFunInfo arch ids
= DiscoveryFunInfo { discoveredFunAddr :: !(ArchSegmentOff arch)
= DiscoveryFunInfo { discoveredFunReason :: !(FunctionExploreReason (ArchAddrWidth arch))
, discoveredFunAddr :: !(ArchSegmentOff arch)
-- ^ Address of function entry block.
, discoveredFunName :: !BSC.ByteString
-- ^ Name of function should be unique for program
@ -276,7 +293,8 @@ data DiscoveryState arch
-- inferred about it.
, _funInfo :: !(Map (ArchSegmentOff arch) (Some (DiscoveryFunInfo arch)))
-- ^ Map from function addresses to discovered information about function
, _unexploredFunctions :: !(Map (ArchSegmentOff arch) (CodeAddrReason (ArchAddrWidth arch)))
, _unexploredFunctions
:: !(Map (ArchSegmentOff arch) (FunctionExploreReason (ArchAddrWidth arch)))
-- ^ This maps addresses that have been marked as
-- functions, but not yet analyzed to the reason
-- they are analyzed.
@ -333,7 +351,7 @@ globalDataMap = lens _globalDataMap (\s v -> s { _globalDataMap = v })
-- | List of functions to explore next.
unexploredFunctions
:: Simple Lens (DiscoveryState arch) (Map (ArchSegmentOff arch) (CodeAddrReason (ArchAddrWidth arch)))
:: Simple Lens (DiscoveryState arch) (Map (ArchSegmentOff arch) (FunctionExploreReason (ArchAddrWidth arch)))
unexploredFunctions = lens _unexploredFunctions (\s v -> s { _unexploredFunctions = v })
-- | Get information for specific functions

View File

@ -8,6 +8,7 @@ a value without revisiting shared subterms.
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE RankNTypes #-}
@ -15,6 +16,8 @@ a value without revisiting shared subterms.
{-# LANGUAGE UndecidableInstances #-}
module Data.Macaw.Fold
( Data.Parameterized.TraversableFC.FoldableFC(..)
, ValueFold(..)
, emptyValueFold
, foldValueCached
) where
@ -27,39 +30,59 @@ import Data.Parameterized.TraversableFC
import Data.Macaw.CFG
data ValueFold arch ids r = ValueFold
{ foldBoolValue :: !(Bool -> r)
, foldBVValue :: !(forall n . NatRepr n -> Integer -> r)
, foldAddr :: !(ArchMemAddr arch -> r)
, foldIdentifier :: !(SymbolIdentifier -> r)
, foldInput :: !(forall utp . ArchReg arch utp -> r)
, foldAssign :: !(forall utp . AssignId ids utp -> r -> r)
}
-- | Empty value fold returns mempty for each non-recursive fold, and the
-- identify of @foldAssign@
emptyValueFold :: Monoid r => ValueFold arch ids r
emptyValueFold =
ValueFold { foldBoolValue = \_ -> mempty
, foldBVValue = \_ _ -> mempty
, foldAddr = \_ -> mempty
, foldIdentifier = \_ -> mempty
, foldInput = \_ -> mempty
, foldAssign = \_ r -> r
}
-- | This folds over elements of a values in a values.
--
-- It memoizes values so that it only evaluates assignments with the same id
-- once.
foldValueCached :: forall r arch ids tp
. (Monoid r, FoldableFC (ArchFn arch))
=> (forall n. NatRepr n -> Integer -> r)
-- ^ Function for literals
-> (ArchMemAddr arch -> r)
-- ^ Function for memwords
-> (forall utp . ArchReg arch utp -> r)
-- ^ Function for input registers
-> (forall utp . AssignId ids utp -> r -> r)
-- ^ Function for assignments
=> ValueFold arch ids r
-> Value arch ids tp
-> State (Map (Some (AssignId ids)) r) r
foldValueCached litf rwf initf assignf = go
foldValueCached fns = go
where
go :: forall tp'
. Value arch ids tp'
-> State (Map (Some (AssignId ids)) r) r
go v =
case v of
BoolValue b -> return (litf (knownNat :: NatRepr 1) (if b then 1 else 0))
BVValue sz i -> return $ litf sz i
RelocatableValue _ a -> pure $ rwf a
Initial r -> return $ initf r
BoolValue b ->
pure $! foldBoolValue fns b
BVValue sz i ->
pure $! foldBVValue fns sz i
RelocatableValue _ a ->
pure $! foldAddr fns a
SymbolValue _ a ->
pure $! foldIdentifier fns a
Initial r ->
pure $! foldInput fns r
AssignedValue (Assignment a_id rhs) -> do
m <- get
case Map.lookup (Some a_id) m of
Just v' ->
return $ assignf a_id v'
pure $! foldAssign fns a_id v'
Nothing -> do
rhs_v <- foldrFC (\v' mrhs -> mappend <$> go v' <*> mrhs) (pure mempty) rhs
modify' $ Map.insert (Some a_id) rhs_v
return (assignf a_id rhs_v)
pure $! foldAssign fns a_id rhs_v

View File

@ -1,5 +1,5 @@
{-|
Copyright : (c) Galois Inc, 2015-2016
Copyright : (c) Galois Inc, 2015-2018
Maintainer : jhendrix@galois.com
Declares 'Memory', a type for representing segmented memory with permissions.
@ -36,10 +36,14 @@ module Data.Macaw.Memory
, addrWidthClass
-- * Endianness
, Endianness(..)
, bytesToInteger
-- * MemSegment operations
, MemSegment
, RegionIndex
, RelocMap
, AddrOffsetMap
, PresymbolData
, takePresymbolBytes
, ResolveFn
, memSegment
, segmentBase
, segmentOffset
@ -50,9 +54,12 @@ module Data.Macaw.Memory
, ppMemSegment
, segmentSize
, SegmentRange(..)
, Relocation(..)
, module Data.BinarySymbols
, DropError(..)
, dropErrorAsMemError
, dropSegmentRangeListBytes
, takeSegmentPrefix
-- * MemWord
, MemWord
, MemWidth(..)
@ -73,11 +80,15 @@ module Data.Macaw.Memory
, clearSegmentOffLeastBit
, memAsAddrPairs
-- * Symbols
, SymbolRef(..)
, SymbolType(..)
, SymbolPrecedence(..)
, SymbolRequirement(..)
, SymbolInfo(..)
, SymbolVersion(..)
, SymbolBinding(..)
-- ** Defined symbol information
, SymbolPrecedence(..)
, SymbolDefType(..)
-- ** Undefined symbol infomration
, SymbolRequirement(..)
, SymbolUndefType(..)
-- * General purposes addrs
, MemAddr
, addrBase
@ -117,6 +128,8 @@ module Data.Macaw.Memory
) where
import Control.Exception (assert)
import Control.Monad
import Data.BinarySymbols
import Data.Bits
import qualified Data.ByteString as BS
import qualified Data.ByteString.Char8 as BSC
@ -154,9 +167,20 @@ addrWidthNatRepr Addr64 = knownNat
-- Endianness
-- | Indicates whether bytes are stored in big or little endian representation.
--
-- In a big endian representation, the most significant byte is stored first;
-- In a little endian representation, the most significant byte is stored last.
data Endianness = BigEndian | LittleEndian
deriving (Eq, Ord, Show)
-- | Convert a byte string to an integer using the provided
-- endianness.
bytesToInteger :: Endianness -> BS.ByteString -> Integer
bytesToInteger BigEndian = BS.foldl' f 0
where f x w = (x `shiftL` 8) .|. toInteger w
bytesToInteger LittleEndian = BS.foldr' f 0
where f w x = (x `shiftL` 8) .|. toInteger w
------------------------------------------------------------------------
-- Utilities
@ -255,6 +279,8 @@ class (1 <= w) => MemWidth w where
addrRotate :: MemWord w -> Int -> MemWord w
-- | Read an address with the given endianess.
--
-- This returns nothing if the bytestring is too short.
addrRead :: Endianness -> BS.ByteString -> Maybe (MemWord w)
-- | Returns number of bits in address.
@ -337,22 +363,7 @@ addrWidthClass Addr32 x = x
addrWidthClass Addr64 x = x
------------------------------------------------------------------------
-- SegmentRange
-- | Characterized the version information on a symbol
data SymbolVersion
= ObjectSymbol
-- ^ The symbol comes from an object file and hence does not
-- have GNU version information. Version information
-- may be part of the symbol name however.
| VersionedSymbol !BS.ByteString !BS.ByteString
-- ^ A symbol with version information from version information
-- in a shared library or executable.
--
-- The first value is the name of the shared object. The second
-- is the version associated with the symbol.
| UnversionedSymbol
-- ^ The symbol had the default *global* version information.
-- Symbol Information
-- | Describes symbol precedence
data SymbolPrecedence
@ -364,18 +375,46 @@ data SymbolPrecedence
| SymbolWeak
-- ^ Symbol has low precedence
-- | Describes whether symbol is required during linking.
-- | This denotes type information associated with a defined
data SymbolDefType
= SymbolDefUnknown
-- ^ We do not know what type of object this refers to.
| SymbolDefFunc
-- ^ This symbol denotes a defined function.
| SymbolDefObject
-- ^ This symbol denotes a object.
| SymbolDefThreadLocal
-- ^ This symbol denotes a thread local identifier
| SymbolDefIFunc
-- ^ This symbol is a "IFUNC" (e.g., it calls a function to resolve the symbol)
-- | Describes whether an undefined symbol is required during linking.
data SymbolRequirement
= SymbolRequired
-- ^ Undefined symbol must be found during linking
| SymbolOptional
-- ^ Undefined symbol treated as zero if not found during linking.
-- | Flags information about an undefined symbol.
data SymbolUndefType
= SymbolUndefThreadLocal
-- ^ This symbol denotes data stored in a thread.
| SymbolUndefNoType
-- ^ This is stored globally for application, but otherwise has
-- no type information.
--
-- Concretely we have seen this symbol type generated by gcc for
-- external functions and data and _GLOBAL_OFFSET_TABLE_
| SymbolUndefFunc
-- ^ This symbol is intended to denote a function.
| SymbolUndefObject
-- ^ This symbol is intended to denote some data.
-- | This defines information about the symbol related to whether
-- it is defined (and if so how it binds) or undefined (and if so what
-- requiremens there are for a match).
data SymbolType
= DefinedSymbol !SymbolPrecedence
data SymbolBinding
= DefinedSymbol !SymbolPrecedence !SymbolDefType
-- ^ The symbol is defined and globally visible.
--
-- The strong symbol flag controls the precedence. If true, then
@ -383,7 +422,20 @@ data SymbolType
-- and the linker is not allowed to replace the symbol. Is
-- false, then the linker will use a strong symbol if it exists,
-- and one of the weak symbols if it does not.
| UndefinedSymbol !SymbolRequirement
--
-- The address is the address the symbol was loaded at. It may
-- not be a valid segment offset if the original binary used
-- symbols at unexpected addresses.
| SymbolSection !SectionIndex
-- ^ The symbol denotes a section in an object file with the
-- given index. These are primarily intended for relocations.
--
-- The symbol version should be @UnversionedSymbol@ with this.
| SymbolFile !BS.ByteString
-- ^ This symbol denotes a file name with the given string
--
-- The symbol version should be @UnversionedSymbol@ with this.
| UndefinedSymbol !SymbolRequirement !SymbolUndefType
-- ^ An undefined symbol
--
-- The Boolean flag controls whether the symbol must be defined.
@ -392,15 +444,76 @@ data SymbolType
-- the linker cannot find a definition, then it must throw an
-- error.
-- | The name of a symbol along with optional version information.
--
-- Note that this is used for referencing undefined symbols, while
-- @MemSymbol@ is used for defined symbols.
data SymbolRef =
SymbolRef { symbolName :: !BS.ByteString
, symbolVersion :: !SymbolVersion
, symbolType :: !SymbolType
}
-- | This provides information about a symbol in the file.
data SymbolInfo =
SymbolInfo { symbolName :: !SymbolName
-- ^ The name of the symbol
--
-- Symbols are used for many purposes in a file.
-- Symbol names may not be unique, and may even be
-- empty. For example, Elf files uses the empty name
-- for section symbols. On ARM, "$a", "$d" and "$t"
-- are used to indicate regions of ARM code, data, thumb.
, symbolVersion :: !SymbolVersion
-- ^ Version information used to constrain when one
-- symbol matches another.
, symbolDef :: !SymbolBinding
}
------------------------------------------------------------------------
-- Relocation
showEnd :: Endianness -> ShowS
showEnd LittleEndian = showString "LE"
showEnd BigEndian = showString "BE"
-- | Information about a relocation
data Relocation w
= AbsoluteRelocation !SymbolIdentifier !(MemWord w) !Endianness !Int
-- ^ @AbsoluteRelocation addr off end size@ denotes an
-- address of the relocation plus the offset stored
-- with the given endianess.
--
-- The @size@ field is the number of bytes the relocation is stored
-- at, and when inserting the relocation value it should only use
-- that many bytes. If the address + offset is greater than or equal to
-- @2^(8*n)@, then updating the relocation target should fail. This is
-- used to support relocation types such as @R_X86_64_32@. We do not
-- currently support signed versions like @R_X86_64_32S@.
| RelativeRelocation !SymbolIdentifier !(MemWord w) !Endianness !Int
-- ^ @RelativeRelocation addr off end cnt@ denotes a relocation
-- that stores the value of @addr + off - this_addr@ (where
-- @this_addr@ is the address the relocation is stored at as a
-- signed value in @cnt@ bytes with endianess @end@.
-- | Return size of relocation in bytes
relocSize :: forall w . MemWidth w => Relocation w -> MemWord w
relocSize (AbsoluteRelocation _ _ _ cnt) = fromIntegral cnt
relocSize (RelativeRelocation _ _ _ cnt) = fromIntegral cnt
instance Show (Relocation w) where
showsPrec _ (AbsoluteRelocation base off end cnt) =
showString "[areloc,"
. shows base
. showChar ','
. showHex (memWordInteger off)
. showChar ','
. showEnd end
. showChar ','
. shows (8*cnt)
. showChar ']'
showsPrec _ (RelativeRelocation base off end cnt) =
showString "[rreloc,"
. shows base
. showHex (memWordInteger off)
. showChar ','
. showEnd end
. showChar ','
. shows (8*cnt)
. showChar ']'
------------------------------------------------------------------------
-- SegmentRange
-- | Defines a portion of a segment.
--
@ -408,26 +521,75 @@ data SymbolRef =
data SegmentRange (w :: Nat)
= ByteRegion !BS.ByteString
-- ^ A region with specificed bytes
| SymbolicRef !SymbolRef
-- ^ A region containing a symbolic reference.
| RelocationRegion !(Relocation w)
| BSSRegion !(MemWord w)
-- ^ A region containing the given number of zero-initialized bytes.
rangeSize :: forall w . MemWidth w => SegmentRange w -> MemWord w
rangeSize (ByteRegion bs) = fromIntegral (BS.length bs)
rangeSize (SymbolicRef _) = fromIntegral (addrSize (error "rangeSize nat evaluated" :: NatRepr w))
rangeSize (RelocationRegion r) = relocSize r
rangeSize (BSSRegion sz) = sz
ppByte :: Word8 -> String -> String
ppByte w | w < 16 = showChar '0' . showHex w
| otherwise = showHex w
instance Show (SegmentRange w) where
showsPrec _ (ByteRegion bs) = \s -> foldr ppByte s (BS.unpack bs)
where ppByte w | w < 16 = showChar '0' . showHex w
| otherwise = showHex w
showsPrec _ (SymbolicRef s) = shows (BSC.unpack (symbolName s))
showsPrec _ (BSSRegion sz) = showString "bss[" . shows sz . showChar ']'
showsPrec _ (ByteRegion bs) = \s -> foldr ppByte s (BS.unpack bs)
showsPrec p (RelocationRegion r) = showsPrec p r
showsPrec _ (BSSRegion sz) = showString "[bss," . shows sz . showChar ']'
showList [] = id
showList (h : r) = showsPrec 10 h . showList r
takeSegmentPrefix :: MemWidth w => [SegmentRange w] -> MemWord w -> [SegmentRange w]
takeSegmentPrefix _ 0 = []
takeSegmentPrefix rngs c = do
let rest l d | c > d = takeSegmentPrefix l (c - d)
| otherwise = []
case rngs of
[] -> []
ByteRegion b : l ->
ByteRegion (BS.take (fromIntegral c) b)
: rest l (fromIntegral (BS.length b))
RelocationRegion r : l ->
RelocationRegion r
: rest l (relocSize r)
BSSRegion d : l ->
BSSRegion (min d c)
: rest l d
------------------------------------------------------------------------
-- MemoryError
-- | Type of errors that may occur when reading memory.
data MemoryError w
= AccessViolation !(MemAddr w)
-- ^ Memory could not be read, because it was not defined.
| PermissionsError !(MemAddr w)
-- ^ Memory could not be read due to insufficient permissions.
| UnexpectedRelocation !(MemAddr w) !(Relocation w) !String
-- ^ Read from location that partially overlaps a relocated entry
| UnexpectedBSS !(MemAddr w)
-- ^ We unexpectedly encountered a BSS segment/section.
| InvalidAddr !(MemAddr w)
-- ^ The data at the given address did not refer to a valid memory location.
instance MemWidth w => Show (MemoryError w) where
show err =
case err of
AccessViolation a ->
"Access violation at " ++ show a ++ "."
PermissionsError a ->
"Insufficient permissions at " ++ show a ++ "."
UnexpectedRelocation a r msg ->
"Attempt to read an unexpected relocation entry at " ++ show a ++ ":\n"
++ " " ++ show r ++ "\n" ++ msg
UnexpectedBSS a ->
"Attempt to read zero initialized BSS memory at " ++ show a ++ "."
InvalidAddr a ->
"Attempt to interpret an invalid address: " ++ show a ++ "."
------------------------------------------------------------------------
-- SegmentContents
@ -483,8 +645,8 @@ contentsAfterSegmentOff mseg = do
Right $ v : Map.elems post
-- If last segment is a symbolic reference, then the code is asking
-- us to partition a symbolic reference in two, which we cannot do.
Just ((_, SymbolicRef{}),_) ->
Left (UnexpectedRelocation (relativeSegmentAddr mseg))
Just ((_, RelocationRegion r),_) ->
Left (UnexpectedRelocation (relativeSegmentAddr mseg) r "caso")
contentsList :: SegmentContents w -> [(MemWord w, SegmentRange w)]
contentsList (SegmentContents m) = Map.toList m
@ -492,7 +654,6 @@ contentsList (SegmentContents m) = Map.toList m
------------------------------------------------------------------------
-- Code for injecting relocations into segments.
-- | Contents of segment/section before symbol folded in.
data PresymbolData = PresymbolData !L.ByteString !Int64
@ -501,7 +662,6 @@ mkPresymbolData contents0 sz
| sz >= L.length contents0 = PresymbolData contents0 (sz - L.length contents0)
| otherwise = PresymbolData (L.take sz contents0) 0
-- | Convert bytes into a segment range list.
singleSegment :: L.ByteString -> [SegmentRange w]
singleSegment contents | L.null contents = []
@ -519,9 +679,11 @@ allSymbolData (PresymbolData contents bssSize) =
-- | Take the given amount of data out of presymbol data.
takeSegment :: MemWidth w => Int64 -> PresymbolData -> [SegmentRange w]
takeSegment cnt (PresymbolData contents bssSize) =
singleSegment (L.take cnt contents)
++ bssSegment (min (cnt - L.length contents) bssSize)
takeSegment cnt (PresymbolData contents bssSize)
| L.null contents = bssSegment (min cnt bssSize)
| otherwise =
ByteRegion (L.toStrict (L.take cnt contents))
: bssSegment (min (cnt - L.length contents) bssSize)
-- | @dropSegment cnt dta@ drops @cnt@ bytes from @dta@.
dropSegment :: Int64 -> PresymbolData -> PresymbolData
@ -529,48 +691,80 @@ dropSegment cnt (PresymbolData contents bssSize)
| cnt <= L.length contents = PresymbolData (L.drop cnt contents) bssSize
| otherwise = PresymbolData L.empty (bssSize - (cnt - L.length contents))
-- | Return the given bytes
takePresymbolBytes :: Int64 -> PresymbolData -> Maybe BS.ByteString
takePresymbolBytes cnt (PresymbolData contents bssSize)
| toInteger (L.length contents) + toInteger bssSize > toInteger cnt =
Just $ L.toStrict (L.take cnt contents)
<> BS.replicate (fromIntegral cnt - fromIntegral (L.length contents)) 0
| otherwise = Nothing
-- | Maps an address to the symbol that it is associated for.
type RelocMap w = Map w SymbolRef
type AddrOffsetMap w v = Map (MemWord w) v
type ResolveFn v m w = v -> PresymbolData -> m (Maybe (Relocation w, MemWord w))
-- | This takes a list of symbols and an address and coerces into a memory contents.
--
-- If the size is different from the length of file contents, then the file content
-- buffer is truncated or zero-extended as in a BSS.
byteSegments :: forall w
. MemWidth w
=> RelocMap (MemWord w) -- ^ Map from addresses to symbolis
-> MemWord w -- ^ Base address for segment
-> L.ByteString -- ^ File contents for segment.
-> Int64 -- ^ Expected size
-> [SegmentRange w]
byteSegments allSymbols initBase contents0 sz =
bytesToSegmentsAscending symbolPairs initBase (mkPresymbolData contents0 sz)
byteSegments :: forall v m w
. (Monad m, MemWidth w)
=> ResolveFn v m w
-> AddrOffsetMap w v -- ^ Map from addresses to symbolis
-> MemWord w -- ^ Base address for segment
-> L.ByteString -- ^ File contents for segment.
-> Int64 -- ^ Expected size
-> m [SegmentRange w]
byteSegments resolver relocMap initBase contents0 regionSize
| end <= initBase =
error $ "regionSize should be a positive number that does not overflow address space."
| otherwise =
bytesToSegmentsAscending [] symbolPairs initBase (mkPresymbolData contents0 regionSize)
where -- Parse the map to get a list of symbols starting at base0.
symbolPairs :: [(MemWord w, v)]
symbolPairs
= Map.toList
$ Map.dropWhileAntitone (< initBase) allSymbols
$ Map.dropWhileAntitone (< initBase) relocMap
-- Get last address for this region
end :: MemWord w
end = initBase + fromIntegral sz
-- Get size of pointer
ptrSize :: MemWord w
ptrSize = fromIntegral (addrSize initBase)
end = initBase + fromIntegral regionSize
-- Traverse the list of symbols that we should parse.
bytesToSegmentsAscending ::[(MemWord w, SymbolRef)] -- ^ List of symbols within the segment.
-> MemWord w -- ^ The starting address of memory
bytesToSegmentsAscending :: [SegmentRange w]
-> [(MemWord w, v)]
-- ^ List of relocations to process in order.
-> MemWord w
-- ^ Address we are currently at
-- This should be guaranteed to be at most @end@.
-> PresymbolData
-- ^ The remaining bytes in memory including a number extra bss.
-> [SegmentRange w]
bytesToSegmentsAscending ((addr,tgt):rest) base contents | addr < end =
takeSegment (fromIntegral off) contents
++ [SymbolicRef tgt]
++ bytesToSegmentsAscending rest (addr + ptrSize) post
where off = addr - base
post = dropSegment (fromIntegral (off + ptrSize)) contents
bytesToSegmentsAscending _ _ contents = allSymbolData contents
-- ^ The remaining bytes in memory
-- including a number extra bss.
-> m [SegmentRange w]
bytesToSegmentsAscending pre ((addr,v):rest) ioff contents
-- We only consider relocations that are in the range of this segment,
-- so we require the difference between the address and initBase is
-- less than regionSize
| addr < end = do
when (addr < ioff) $ do
error "Encountered overlapping relocations."
mr <- resolver v contents
case mr of
Just (r,rsz) -> do
when (rsz < 1 || ioff + rsz > end) $ do
error $ "Region size " ++ show rsz ++ " is out of range."
-- Get number of bytes between this address offset and the current offset."
let addrDiff = addr - ioff
let post = dropSegment (fromIntegral (addrDiff + rsz)) contents
let pre' = [RelocationRegion r]
++ reverse (takeSegment (fromIntegral addrDiff) contents)
++ pre
bytesToSegmentsAscending pre' rest (addr + rsz) post
_ -> do
-- Skipping relocation
bytesToSegmentsAscending pre rest ioff contents
bytesToSegmentsAscending pre _ _ contents =
pure $ reverse pre ++ allSymbolData contents
------------------------------------------------------------------------
-- MemSegment
@ -598,11 +792,13 @@ data MemSegment w
}
-- | This creates a memory segment.
memSegment :: forall w
. MemWidth w
=> RegionIndex
memSegment :: forall v m w
. (Monad m, MemWidth w)
=> ResolveFn v m w
-- ^ Function for resolving relocation entries.
-> RegionIndex
-- ^ Index of base (0=absolute address)
-> RelocMap (MemWord w)
-> AddrOffsetMap w v
-- ^ Relocations we may need to apply when creating the
-- segment. These are all relative to the given region.
-> MemWord w
@ -613,21 +809,21 @@ memSegment :: forall w
-- ^ File contents for segment.
-> Int64
-- ^ Expected size (must be positive)
-> MemSegment w
memSegment base allSymbols off flags bytes sz
-> m (MemSegment w)
memSegment resolve base allSymbols off flags bytes sz
-- Return nothing if size is not positive
| not (sz > 0) = error $ "Memory segments must have a positive size."
-- Check for overflow in contents end
| toInteger off + toInteger sz > toInteger (maxBound :: MemWord w) =
error "Contents two large for base."
| otherwise =
MemSegment { segmentBase = base
, segmentOffset = off
, segmentFlags = flags
, segmentContents = contents
}
where contentsl = byteSegments allSymbols off bytes sz
contents = contentsFromList contentsl
| otherwise = do
contents <- byteSegments resolve allSymbols off bytes sz
pure $
MemSegment { segmentBase = base
, segmentOffset = off
, segmentFlags = flags
, segmentContents = contentsFromList contents
}
instance Eq (MemSegment w) where
x == y = segmentBase x == segmentBase y
@ -820,7 +1016,7 @@ memAsAddrPairs mem end = addrWidthClass (memAddrWidth mem) $ do
Just val_ref -> do
pure (MemSegmentOff seg off, val_ref)
_ -> []
SymbolicRef{} -> []
RelocationRegion{} -> []
BSSRegion{} -> []
------------------------------------------------------------------------
@ -901,13 +1097,13 @@ type AddrSymMap w = Map.Map (MemSegmentOff w) BSC.ByteString
------------------------------------------------------------------------
-- DropError
-- | An error that occured when droping byes.
data DropError
= DropUnexpectedRelocation
-- | An error that occured when droping bytes.
data DropError w
= DropUnexpectedRelocation !(Relocation w)
| DropInvalidAddr
dropErrorAsMemError :: MemAddr w -> DropError -> MemoryError w
dropErrorAsMemError a DropUnexpectedRelocation = UnexpectedRelocation a
dropErrorAsMemError :: MemAddr w -> DropError w -> MemoryError w
dropErrorAsMemError a (DropUnexpectedRelocation r) = UnexpectedRelocation a r "dropErr"
dropErrorAsMemError a DropInvalidAddr = InvalidAddr a
-- | Given a contiguous list of segment ranges and a number of bytes to drop, this
@ -916,7 +1112,7 @@ dropSegmentRangeListBytes :: forall w
. MemWidth w
=> [SegmentRange w]
-> Int
-> Either DropError [SegmentRange w]
-> Either (DropError w) [SegmentRange w]
dropSegmentRangeListBytes ranges 0 = Right ranges
dropSegmentRangeListBytes (ByteRegion bs : rest) cnt = do
let sz = BS.length bs
@ -924,10 +1120,10 @@ dropSegmentRangeListBytes (ByteRegion bs : rest) cnt = do
Right $ ByteRegion (BS.drop cnt bs) : rest
else
dropSegmentRangeListBytes rest (cnt - sz)
dropSegmentRangeListBytes (SymbolicRef _:rest) cnt = do
let sz = addrSize (error "rangeSize nat evaluated" :: NatRepr w)
dropSegmentRangeListBytes (RelocationRegion r:rest) cnt = do
let sz = fromIntegral (relocSize r)
if sz > cnt then
Left DropUnexpectedRelocation
Left (DropUnexpectedRelocation r)
else
dropSegmentRangeListBytes rest (cnt - sz)
dropSegmentRangeListBytes (BSSRegion sz : rest) cnt =
@ -938,41 +1134,6 @@ dropSegmentRangeListBytes (BSSRegion sz : rest) cnt =
dropSegmentRangeListBytes [] _ =
Left DropInvalidAddr
------------------------------------------------------------------------
-- MemoryError
-- | Type of errors that may occur when reading memory.
data MemoryError w
= UserMemoryError (MemAddr w) !String
-- ^ the memory reader threw an unspecified error at the given location.
| InvalidInstruction (MemAddr w) ![SegmentRange w]
-- ^ The memory reader could not parse the value starting at the given address.
| AccessViolation (MemAddr w)
-- ^ Memory could not be read, because it was not defined.
| PermissionsError (MemAddr w)
-- ^ Memory could not be read due to insufficient permissions.
| UnexpectedRelocation (MemAddr w)
-- ^ Read from location that partially overlaps a relocated entry
| UnexpectedBSS (MemAddr w)
-- ^ We unexpectedly encountered a BSS segment/section.
| InvalidAddr (MemAddr w)
-- ^ The data at the given address did not refer to a valid memory location.
instance MemWidth w => Show (MemoryError w) where
show (UserMemoryError _ msg) = msg
show (InvalidInstruction start contents) =
"Invalid instruction at " ++ show start ++ ": " ++ showList contents ""
show (AccessViolation a) =
"Access violation at " ++ show a ++ "."
show (PermissionsError a) =
"Insufficient permissions at " ++ show a ++ "."
show (UnexpectedRelocation a) =
"Attempt to read an unexpected relocation entry at " ++ show a ++ "."
show (UnexpectedBSS a) =
"Attempt to read zero initialized BSS memory at " ++ show a ++ "."
show (InvalidAddr a) =
"Attempt to interpret an invalid address: " ++ show a ++ "."
------------------------------------------------------------------------
-- Memory symbol
@ -1006,14 +1167,21 @@ addrContentsAfter mem addr = do
addrWidthClass (memAddrWidth mem) $
contentsAfterSegmentOff =<< resolveMemAddr mem addr
-- | Read a bytestring from a sequence of statements.
--
-- This is a helper method for @readByteString@ below.
readByteString' :: MemWidth w
=> BS.ByteString
-- ^ Bytestring read so far (prepended to output)
-> [SegmentRange w]
-- ^ Remaining segments to read from.
-> MemAddr w
-- ^ Address we are reading from (used for error reporting)
-> Word64
-- ^ Number of bytes to read.
-> Either (MemoryError w) BS.ByteString
readByteString' _ _ _ 0 = pure BS.empty
readByteString' _ [] addr _ = Left (InvalidAddr addr)
readByteString' _ [] addr _ = Left $! InvalidAddr addr
readByteString' prev (ByteRegion bs:rest) addr sz =
if toInteger sz <= toInteger (BS.length bs) then
pure $ prev <> BS.take (fromIntegral sz) bs
@ -1021,23 +1189,26 @@ readByteString' prev (ByteRegion bs:rest) addr sz =
let addr' = incAddr (fromIntegral (BS.length bs)) addr
let sz' = sz - fromIntegral (BS.length bs)
readByteString' (prev <> bs) rest addr' sz'
readByteString' _ (SymbolicRef{}:_) addr _ = do
Left (UnexpectedRelocation addr)
readByteString' _ (RelocationRegion r:_) addr _ = do
Left $! UnexpectedRelocation addr r "readBS"
readByteString' prev (BSSRegion cnt:rest) addr sz =
if toInteger sz <= toInteger cnt then
pure $ prev <> BS.replicate (fromIntegral sz) 0
else do
let addr' = incAddr (toInteger sz) addr
let sz' = sz - fromIntegral cnt
readByteString' (prev <> BS.replicate (fromIntegral cnt) 0) rest addr' sz'
seq addr' $
readByteString' (prev <> BS.replicate (fromIntegral cnt) 0) rest addr' sz'
-- | Attemtp to read a bytestring of the given length
readByteString :: Memory w -> MemAddr w -> Word64 -> Either (MemoryError w) BS.ByteString
readByteString mem addr sz = do
l <- addrContentsAfter mem addr
addrWidthClass (memAddrWidth mem) $ readByteString' BS.empty l addr sz
readByteString mem addr sz = addrWidthClass (memAddrWidth mem) $ do
segOff <- resolveMemAddr mem addr
l <- contentsAfterSegmentOff segOff
readByteString' BS.empty l addr sz
-- | Read an address from the value in the segment or report a memory error.
-- | Read an address from the value in the segment or report a memory
-- error.
readAddr :: Memory w
-> Endianness
-> MemAddr w
@ -1045,10 +1216,11 @@ readAddr :: Memory w
readAddr mem end addr = addrWidthClass (memAddrWidth mem) $ do
let sz = fromIntegral (addrSize addr)
bs <- readByteString mem addr sz
let Just val = addrRead end bs
Right $ MemAddr 0 val
case addrRead end bs of
Just val -> Right $ MemAddr 0 val
Nothing -> error $ "readAddr internal error: readByteString result too short."
-- | Read a big endian word16
-- | Read a single byte.
readWord8 :: Memory w -> MemAddr w -> Either (MemoryError w) Word8
readWord8 mem addr = bsWord8 <$> readByteString mem addr 1

View File

@ -1,5 +1,5 @@
{-|
Copyright) Galois Inc, 2016
Copyright : Galois Inc, 2016
Maintainer : jhendrix@galois.com
Operations for creating a view of memory from an elf file.
@ -15,10 +15,11 @@ Operations for creating a view of memory from an elf file.
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
module Data.Macaw.Memory.ElfLoader
( SectionIndexMap
, memoryForElf
, MemLoadWarning
, MemLoadWarning(..)
, resolveElfFuncSymbols
, resolveElfFuncSymbolsAny
, resolveElfContents
@ -35,9 +36,7 @@ import qualified Data.ByteString.Char8 as BSC
import qualified Data.ByteString.Lazy as L
import Data.Either
import Data.ElfEdit
( ElfIntType
, ElfWordType
( ElfWordType
, Elf
, elfSections
, elfLayout
@ -64,16 +63,17 @@ import Data.ElfEdit
, ElfSymbolTableEntry
)
import qualified Data.ElfEdit as Elf
import Data.Foldable
import Data.IntervalMap.Strict (Interval(..), IntervalMap)
import qualified Data.IntervalMap.Strict as IMap
import Data.Map.Strict (Map)
import qualified Data.Map.Strict as Map
import Data.Maybe
import Data.Monoid
import Data.Parameterized.Some
import Data.Set (Set)
import qualified Data.Set as Set
import qualified Data.Vector as V
import Data.Word
import Numeric (showHex)
import Data.Macaw.Memory
@ -138,7 +138,6 @@ data RegionAdjust
-- MemLoader
type SectionName = B.ByteString
type SymbolName = B.ByteString
data MemLoadWarning
= SectionNotAlloc !SectionName
@ -146,9 +145,20 @@ data MemLoadWarning
| MultipleDynamicSegments
| OverlappingLoadableSegments
| RelocationParseFailure !String
| DynamicRelaAndRelPresent
-- ^ Issued if the dynamic section contains table for DT_REL and
-- DT_RELA.
| DuplicateRelocationSections !B.ByteString
-- ^ @DuplicateRelocationSections nm@ is issued if we encounter
-- both section ".rela$nm" and ".rel$nm".
| UnsupportedSection !SectionName
| UnknownDefinedSymbolBinding !SymbolName Elf.ElfSymbolBinding
| UnknownDefinedSymbolType !SymbolName Elf.ElfSymbolType
| UnknownUndefinedSymbolBinding !SymbolName Elf.ElfSymbolBinding
| UnknownUndefinedSymbolType !SymbolName Elf.ElfSymbolType
| ExpectedSectionSymbolNameEmpty !SymbolName
| ExpectedSectionSymbolLocal
| InvalidSectionSymbolIndex !Elf.ElfSectionIndex
| UnsupportedProcessorSpecificSymbolIndex !SymbolName !ElfSectionIndex
| IgnoreRelocation !RelocationError
@ -167,20 +177,40 @@ instance Show MemLoadWarning where
"File segments containing overlapping addresses; skipping relocations."
show (RelocationParseFailure msg) =
"Error parsing relocations: " ++ msg
show DynamicRelaAndRelPresent =
"Dynamic section contains contain offsets for both DT_REL and DT_RELA relocation tables; "
++ " Using only DT_RELA relocations."
show (DuplicateRelocationSections (BSC.unpack -> nm)) =
"File contains both .rela" ++ nm ++ " and .rel" ++ nm
++ " sections; Using only .rela" ++ nm ++ " sections."
show (UnsupportedSection nm) =
"Do not support section " ++ BSC.unpack nm
show (UnknownDefinedSymbolBinding nm bnd) =
"Unsupported binding " ++ show bnd ++ " for defined " ++ ppSymbol nm
++ "; Treating as a strong symbol."
show (UnknownDefinedSymbolType nm tp) =
"Unsupported type " ++ show tp ++ " for defined " ++ ppSymbol nm
++ "; Treating as a strong symbol."
show (UnknownUndefinedSymbolBinding nm bnd) =
"Unsupported binding " ++ show bnd ++ " for undefined " ++ ppSymbol nm
++ "; Treating as a required symbol."
show (UnknownUndefinedSymbolType nm tp) =
"Unsupported type " ++ show tp ++ " for undefined " ++ ppSymbol nm
++ "; Treating as a strong symbol."
show (ExpectedSectionSymbolNameEmpty nm) =
"Expected section symbol to have empty name instead of " ++ ppSymbol nm ++ "."
show ExpectedSectionSymbolLocal =
"Expected section symbol to have local visibility."
show (InvalidSectionSymbolIndex idx) =
"Expected section symbol to have a valid index instead of " ++ show idx ++ "."
show (UnsupportedProcessorSpecificSymbolIndex nm idx) =
"Could not resolve symbol index " ++ show idx ++ " for symbol " ++ BSC.unpack nm ++ "."
show (IgnoreRelocation err) =
"Ignoring relocation: " ++ show err
data MemLoaderState w = MLS { _mlsMemory :: !(Memory w)
, mlsEndianness :: !Endianness
-- ^ Endianness of elf file
, _mlsIndexMap :: !(SectionIndexMap w)
, mlsWarnings :: ![MemLoadWarning]
}
@ -200,22 +230,22 @@ type MemLoader w = StateT (MemLoaderState w) (Except (LoadError w))
data RelocationError
= RelocationZeroSymbol
-- ^ A relocation refers to the symbol index 0.
| RelocationNonZeroAddend
-- ^ A relocation entry had a non-zero addend.
| RelocationBadSymbolIndex !Int
-- ^ A relocation entry referenced a bad symbol index.
| RelocationUnsupportedType !String
-- ^ We do not support relocations with this architecture.
| RelocationFileUnsupported
-- ^ We do not allow relocations to refer to the "file" as in Elf.
instance Show RelocationError where
show RelocationZeroSymbol =
"A relocation entry referred to invalid 0 symbol index."
show RelocationNonZeroAddend =
"Binary analysis framework does not yet support non-zero addend."
show (RelocationBadSymbolIndex idx) =
"A relocation entry referred to invalid symbol index " ++ show idx ++ "."
show (RelocationUnsupportedType tp) =
"Do not yet support relocation type " ++ tp ++ "."
show RelocationFileUnsupported =
"Do not support relocations referring to file entry."
data LoadError w
= LoadInsertError !String !(InsertError w)
@ -237,11 +267,15 @@ instance MemWidth w => Show (LoadError w) where
show (RelocationDuplicateOffsets o) =
"Multiple relocations at offset " ++ show o ++ "."
runMemLoader :: Memory w -> MemLoader w () -> Either String (SectionIndexMap w, Memory w, [MemLoadWarning])
runMemLoader mem m =
runMemLoader :: Endianness
-> Memory w
-> MemLoader w ()
-> Either String (SectionIndexMap w, Memory w, [MemLoadWarning])
runMemLoader end mem m =
let s = MLS { _mlsMemory = mem
, _mlsIndexMap = Map.empty
, mlsWarnings = []
, mlsEndianness = end
}
in case runExcept $ execStateT m s of
Left e -> Left $ addrWidthClass (memAddrWidth mem) (show e)
@ -261,189 +295,332 @@ loadMemSegment nm seg =
type ElfFileSectionMap v = IntervalMap v (ElfSection v)
------------------------------------------------------------------------
-- Symbol information.
------------------------------------------------------------------------
-- RelocMap
-- | Information about a symbol after it has been resolved by an
-- architecture specific function.
data ResolvedRelocationTarget
= TargetSymbol !SymbolRef
| TargetCopy
-- ^ This denotes that the symbol should be copied into fresh
-- space in the application's BSS section.
--
-- Note that we currently ignore these symbols, and
| TargetError !RelocationError
-- ^ Indicates an error occured when resolving a relocation target.
-- ResolveTarget
-- | Map from symbol indices to the associated resolved symbol.
--
-- This drops the first symbol in Elf since that refers to no symbol
newtype SymbolVector = SymbolVector (V.Vector SymbolRef)
newtype SymbolVector = SymbolVector (V.Vector SymbolInfo)
type RelocResolver = Either RelocationError
relocError :: RelocationError -> RelocResolver a
relocError = Left
-- | A function that resolves the architecture-specific relocation-type
-- into a symbol reference. The input
type RelocationResolver tp
= SymbolVector
-> Elf.RelaEntry tp
-> ResolvedRelocationTarget
-> Elf.RelEntry tp
-> MemWord (Elf.RelocationWidth tp)
-> RelocResolver (Relocation (Elf.RelocationWidth tp))
data SomeRelocationResolver w
= forall tp
. (Elf.IsRelocationType tp, w ~ Elf.RelocationWidth tp)
=> SomeRelocationResolver (RelocationResolver tp)
-- | Attempts to resolve a relocation entry into a specific target.
resolveSymbol :: ( Eq (ElfIntType (Elf.RelocationWidth tp))
, Num (ElfIntType (Elf.RelocationWidth tp))
)
=> SymbolVector
resolveSymbol :: SymbolVector
-- ^ A vector mapping symbol indices to the
-- associated symbol information.
-> Elf.RelaEntry tp
-- ^ A relocation entry
-> ResolvedRelocationTarget
resolveSymbol (SymbolVector symtab) rel
| Elf.r_addend rel /= 0 =
TargetError $ RelocationNonZeroAddend
| Elf.r_sym rel == 0 =
TargetError $ RelocationZeroSymbol
| otherwise =
case symtab V.!? fromIntegral (Elf.r_sym rel - 1) of
Nothing -> TargetError $ RelocationBadSymbolIndex $ fromIntegral (Elf.r_sym rel)
Just sym -> TargetSymbol sym
-> Word32
-- ^ Offset of symbol
-> RelocResolver SymbolInfo
resolveSymbol (SymbolVector symtab) symIdx = do
when (symIdx == 0) $
relocError $ RelocationZeroSymbol
case symtab V.!? fromIntegral (symIdx - 1) of
Nothing ->
relocError $ RelocationBadSymbolIndex $ fromIntegral symIdx
Just sym -> pure $ sym
resolveRelocationAddr :: SymbolVector
-- ^ A vector mapping symbol indices to the
-- associated symbol information.
-> Elf.RelEntry tp
-- ^ A relocation entry
-> RelocResolver SymbolIdentifier
resolveRelocationAddr symtab rel = do
sym <- resolveSymbol symtab (Elf.relSym rel)
case symbolDef sym of
DefinedSymbol{} -> do
pure $ SymbolRelocation (symbolName sym) (symbolVersion sym)
SymbolSection idx -> do
pure $ SectionBaseRelocation idx
SymbolFile _ -> do
relocError $ RelocationFileUnsupported
UndefinedSymbol{} -> do
pure $ SymbolRelocation (symbolName sym) (symbolVersion sym)
-- | Attempt to resolve an X86_64 specific symbol.
relaTargetX86_64 :: RelocationResolver Elf.X86_64_RelocationType
relaTargetX86_64 symtab rel =
case Elf.r_type rel of
Elf.R_X86_64_GLOB_DAT -> resolveSymbol symtab rel
Elf.R_X86_64_COPY -> TargetCopy
Elf.R_X86_64_JUMP_SLOT -> resolveSymbol symtab rel
tp -> TargetError (RelocationUnsupportedType (show tp))
relaTargetX86_64 :: SomeRelocationResolver 64
relaTargetX86_64 = SomeRelocationResolver $ \symtab rel off ->
case Elf.relType rel of
-- JHX Note. These have been commented out until we can validate them.
-- Elf.R_X86_64_GLOB_DAT -> do
-- checkZeroAddend
-- TargetSymbol <$> resolveSymbol symtab rel
-- Elf.R_X86_64_COPY -> TargetCopy
-- Elf.R_X86_64_JUMP_SLOT -> do
-- checkZeroAddend
-- TargetSymbol <$> resolveSymbol symtab rel
Elf.R_X86_64_PC32 -> do
addr <- resolveRelocationAddr symtab rel
pure $ RelativeRelocation addr off LittleEndian 4
Elf.R_X86_64_32 -> do
addr <- resolveRelocationAddr symtab rel
pure $ AbsoluteRelocation addr off LittleEndian 4
Elf.R_X86_64_64 -> do
addr <- resolveRelocationAddr symtab rel
pure $ AbsoluteRelocation addr off LittleEndian 8
-- Jhx Note. These will be needed to support thread local variables.
-- Elf.R_X86_64_TPOFF32 -> undefined
-- Elf.R_X86_64_GOTTPOFF -> undefined
tp -> relocError $ RelocationUnsupportedType (show tp)
{-
This has been diabled until we get actual ARM support.
-- | Attempt to resolve an ARM specific symbol.
relaTargetARM :: RelocationResolver Elf.ARM_RelocationType
relaTargetARM symtab rel =
case Elf.r_type rel of
Elf.R_ARM_GLOB_DAT -> resolveSymbol symtab rel
Elf.R_ARM_COPY -> TargetCopy
Elf.R_ARM_JUMP_SLOT -> resolveSymbol symtab rel
tp -> TargetError (RelocationUnsupportedType (show tp))
relaTargetARM :: SomeRelocationResolver 32
relaTargetARM = SomeRelocationResolver $ \_symtab rel _maddend ->
case Elf.relType rel of
-- Elf.R_ARM_GLOB_DAT -> do
-- checkZeroAddend rel
-- TargetSymbol <$> resolveSymbol symtab rel
-- Elf.R_ARM_COPY -> pure $ TargetCopy
-- Elf.R_ARM_JUMP_SLOT -> do
-- checkZeroAddend rel
-- TargetSymbol <$> resolveSymbol symtab rel
tp -> relocError $ RelocationUnsupportedType (show tp)
-}
-- | Creates a relocation map from the contents of a dynamic section.
withRelocationResolver
:: forall w a
. Elf.ElfHeader w
-> (forall tp
. (w ~ Elf.RelocationWidth tp, Elf.IsRelocationType tp)
=> RelocationResolver tp
-> (SomeRelocationResolver w
-> MemLoader w a)
-> MemLoader w a
withRelocationResolver hdr f =
case (Elf.headerClass hdr, Elf.headerMachine hdr) of
(Elf.ELFCLASS64, Elf.EM_X86_64) -> f relaTargetX86_64
(Elf.ELFCLASS32, Elf.EM_ARM) -> f relaTargetARM
-- (Elf.ELFCLASS32, Elf.EM_ARM) -> f relaTargetARM
(_,mach) -> throwError $ UnsupportedArchitecture (show mach)
-- | Creates a map that forwards addresses to be relocated to their appropriate target.
addRelocEntry :: ( w ~ Elf.RelocationWidth tp
, MemWidth w
, Integral (Elf.RelocationWord tp)
)
=> RelocationResolver tp
-> SymbolVector
-> RelocMap (MemWord w)
-> Elf.RelaEntry tp
-> MemLoader w (RelocMap (MemWord w))
addRelocEntry relaTarget symtab relocMap rel =
case relaTarget symtab rel of
TargetSymbol tgt -> do
let off = memWord (fromIntegral (Elf.r_offset rel))
let (prev, newMap) = Map.insertLookupWithKey (\_ _n o -> o) off tgt relocMap
case prev of
Nothing -> pure ()
Just _ -> throwError $ RelocationDuplicateOffsets off
pure newMap
TargetCopy -> pure relocMap
TargetError e -> do
addWarning (IgnoreRelocation e)
pure relocMap
data RelocMap w v = RelocMap !(AddrOffsetMap w v) !(ResolveFn v (MemLoader w) w)
emptyRelocMap :: RelocMap w ()
emptyRelocMap = RelocMap Map.empty (\_ _ -> pure Nothing)
-- | This checks a computation that returns a dynamic error or succeeds.
runDynamic :: Either Elf.DynamicError a -> MemLoader w a
runDynamic (Left e) = throwError (FormatDynamicError e)
runDynamic (Right r) = pure r
mkRelocMap :: Elf.ElfHeader w
resolveRela :: ( MemWidth w
, Elf.RelocationWidth tp ~ w
, Elf.IsRelocationType tp
, Integral (Elf.ElfIntType w)
)
=> SymbolVector
-> RelocationResolver tp
-> ResolveFn (Elf.RelaEntry tp) (MemLoader w) w
resolveRela symtab resolver rela _presym =
case resolver symtab (Elf.relaToRel rela) (fromIntegral (Elf.relaAddend rela)) of
Left e -> do
addWarning (IgnoreRelocation e)
pure Nothing
Right r -> do
let tp = Elf.relaType rela
let cnt = Elf.relocTargetBits tp
pure $ Just (r, fromIntegral $ (cnt + 7) `shiftR` 3)
resolveRel :: ( MemWidth w
, Elf.RelocationWidth tp ~ w
, Elf.IsRelocationType tp
)
=> Endianness -- ^ Endianness of Elf file
-> SymbolVector
-> RelocationResolver tp
-> ResolveFn (Elf.RelEntry tp) (MemLoader w) w
resolveRel end symtab resolver rel presym = do
-- Get the number of bytes being relocated.
let tp = Elf.relType rel
let bits = Elf.relocTargetBits tp
let cnt = (bits + 7) `shiftR` 3
-- Get the bytes that we will be overwriting.
case takePresymbolBytes (fromIntegral cnt) presym of
Nothing ->
pure Nothing
Just bytes -> do
-- Update the resolver.
let mask = (1 `shiftL` (bits - 1)) - 1
let uaddend = bytesToInteger end bytes .&. mask
let saddend | uaddend `testBit` (bits - 1) =
uaddend - (1 `shiftL` bits)
| otherwise =
uaddend
case resolver symtab rel (fromInteger saddend) of
Left e -> do
addWarning (IgnoreRelocation e)
pure Nothing
Right r -> do
pure $ Just (r, fromIntegral cnt)
mkRelocMap :: Elf.ElfData
-> Elf.ElfHeader w
-- ^ format for Elf file
-> SymbolVector
-- ^ Map from symbol indices to associated symbol
-> L.ByteString
-> Maybe L.ByteString
-- ^ Buffer containing relocation entries in Rel format
-> Maybe L.ByteString
-- ^ Buffer containing relocation entries in Rela format
-> MemLoader w (RelocMap (MemWord w))
mkRelocMap hdr symtab relaBuffer = do
-> MemLoader w (Some (RelocMap w))
mkRelocMap _dta _hdr _symtab Nothing Nothing = do
pure $! Some $ emptyRelocMap
mkRelocMap dta hdr symtab _mrelBuffer (Just relaBuffer) = do
w <- uses mlsMemory memAddrWidth
reprConstraints w $ do
withRelocationResolver hdr $ \resolver -> do
let dta = Elf.headerData hdr
withRelocationResolver hdr $ \(SomeRelocationResolver resolver) -> do
case Elf.elfRelaEntries dta relaBuffer of
Left msg -> do
addWarning (RelocationParseFailure msg)
pure Map.empty
pure $ Some emptyRelocMap
Right relocs -> do
-- Create the relocation map using the above information
foldlM (addRelocEntry resolver symtab) Map.empty relocs
let m = Map.fromList [ (fromIntegral (Elf.relaOffset r), r) | r <- relocs ]
pure $ Some $ RelocMap m (resolveRela symtab resolver)
mkRelocMap dta hdr symtab (Just relBuffer) Nothing = do
w <- uses mlsMemory memAddrWidth
reprConstraints w $ do
withRelocationResolver hdr $ \(SomeRelocationResolver resolver) -> do
case Elf.elfRelEntries dta relBuffer of
Left msg -> do
addWarning (RelocationParseFailure msg)
pure $ Some emptyRelocMap
Right relocs -> do
-- Create the relocation map using the above information
let m = Map.fromList [ (fromIntegral (Elf.relOffset r), r) | r <- relocs ]
end <- gets mlsEndianness
pure $ Some $ RelocMap m (resolveRel end symtab resolver)
resolveUndefinedSymbolReq :: SymbolName
-> Elf.ElfSymbolBinding
-> MemLoader w SymbolRequirement
resolveUndefinedSymbolReq _ Elf.STB_WEAK =
pure $ SymbolOptional
resolveUndefinedSymbolReq _ Elf.STB_GLOBAL =
pure $ SymbolRequired
resolveUndefinedSymbolReq nm bnd = do
addWarning $ UnknownUndefinedSymbolBinding nm bnd
pure $ SymbolRequired
resolvedDefinedSymbolPrec :: SymbolName -> Elf.ElfSymbolBinding -> MemLoader w SymbolPrecedence
resolvedDefinedSymbolPrec _ Elf.STB_LOCAL =
resolveDefinedSymbolPrec :: SymbolName -> Elf.ElfSymbolBinding -> MemLoader w SymbolPrecedence
resolveDefinedSymbolPrec _ Elf.STB_LOCAL =
pure $ SymbolLocal
resolvedDefinedSymbolPrec _ Elf.STB_WEAK =
resolveDefinedSymbolPrec _ Elf.STB_WEAK =
pure $ SymbolWeak
resolvedDefinedSymbolPrec _ Elf.STB_GLOBAL =
resolveDefinedSymbolPrec _ Elf.STB_GLOBAL =
pure $ SymbolStrong
resolvedDefinedSymbolPrec nm bnd = do
resolveDefinedSymbolPrec nm bnd = do
addWarning $ UnknownDefinedSymbolBinding nm bnd
pure $ SymbolStrong
resolveUndefinedSymbolType :: SymbolName -> Elf.ElfSymbolType -> MemLoader w SymbolUndefType
resolveUndefinedSymbolType nm tp =
case tp of
Elf.STT_NOTYPE -> pure SymbolUndefNoType
Elf.STT_OBJECT -> pure SymbolUndefObject
Elf.STT_FUNC -> pure SymbolUndefFunc
Elf.STT_TLS -> pure SymbolUndefThreadLocal
_ -> do
addWarning $ UnknownUndefinedSymbolType nm tp
pure $ SymbolUndefNoType
mkDefinedSymbol :: SymbolName
-> Elf.ElfSymbolBinding
-> SymbolDefType
-> MemLoader w SymbolBinding
mkDefinedSymbol nm bnd tp = do
prec <- resolveDefinedSymbolPrec nm bnd
pure $! DefinedSymbol prec tp
symbolDefTypeMap :: Map Elf.ElfSymbolType SymbolDefType
symbolDefTypeMap = Map.fromList
[ (,) Elf.STT_OBJECT SymbolDefObject
, (,) Elf.STT_FUNC SymbolDefFunc
, (,) Elf.STT_TLS SymbolDefThreadLocal
, (,) Elf.STT_GNU_IFUNC SymbolDefIFunc
]
resolveDefinedSymbolDef :: ElfSymbolTableEntry wtp
-> MemLoader w SymbolBinding
resolveDefinedSymbolDef sym = do
let nm = Elf.steName sym
let bnd = Elf.steBind sym
let idx = Elf.steIndex sym
case Elf.steType sym of
Elf.STT_SECTION
| idx < Elf.SHN_LOPROC -> do
when (nm /= "") $ do
addWarning $ ExpectedSectionSymbolNameEmpty nm
when (bnd /= Elf.STB_LOCAL) $ do
addWarning $ ExpectedSectionSymbolLocal
pure $ SymbolSection (Elf.fromElfSectionIndex idx)
| otherwise -> do
addWarning $ InvalidSectionSymbolIndex idx
mkDefinedSymbol nm bnd SymbolDefUnknown
Elf.STT_FILE -> do
pure $ SymbolFile nm
tp -> do
dtp <-
case Map.lookup tp symbolDefTypeMap of
Just dtp ->
pure dtp
Nothing -> do
addWarning $ UnknownDefinedSymbolType nm tp
pure SymbolDefUnknown
mkDefinedSymbol nm bnd dtp
-- | Create a symbol ref from Elf versioned symbol from a shared
-- object or executable.
mkSymbolRef :: ElfSymbolTableEntry wtp
-> SymbolVersion
-> MemLoader w SymbolRef
-> MemLoader w SymbolInfo
mkSymbolRef sym ver = do
let nm = Elf.steName sym
tp <-
def <-
case Elf.steIndex sym of
Elf.SHN_UNDEF -> do
req <-
case Elf.steBind sym of
Elf.STB_WEAK -> do
pure $ SymbolOptional
Elf.STB_GLOBAL -> do
pure $ SymbolRequired
bnd -> do
addWarning $ UnknownUndefinedSymbolBinding nm bnd
pure $ SymbolRequired
pure $! UndefinedSymbol req
UndefinedSymbol
<$> resolveUndefinedSymbolReq nm (Elf.steBind sym)
<*> resolveUndefinedSymbolType nm (Elf.steType sym)
Elf.SHN_ABS -> do
DefinedSymbol <$> resolvedDefinedSymbolPrec nm (Elf.steBind sym)
resolveDefinedSymbolDef sym
Elf.SHN_COMMON -> do
DefinedSymbol <$> resolvedDefinedSymbolPrec nm (Elf.steBind sym)
resolveDefinedSymbolDef sym
idx | idx < Elf.SHN_LOPROC -> do
DefinedSymbol <$> resolvedDefinedSymbolPrec nm (Elf.steBind sym)
resolveDefinedSymbolDef sym
idx -> do
addWarning $ UnsupportedProcessorSpecificSymbolIndex nm idx
pure $ UndefinedSymbol SymbolRequired
UndefinedSymbol SymbolRequired
<$> resolveUndefinedSymbolType nm (Elf.steType sym)
pure $
SymbolRef { symbolName = Elf.steName sym
, symbolVersion = ver
, symbolType = tp
}
SymbolInfo { symbolName = Elf.steName sym
, symbolVersion = ver
, symbolDef = def
}
-- | Create a symbol ref from Elf versioned symbol from a shared
-- object or executable.
mkDynamicSymbolRef :: Elf.VersionedSymbol tp
-> MemLoader w SymbolRef
mkDynamicSymbolRef :: Elf.VersionedSymbol wtp
-> MemLoader w SymbolInfo
mkDynamicSymbolRef (sym, mverId) = do
let ver = case mverId of
Elf.VersionLocal -> UnversionedSymbol
@ -455,10 +632,10 @@ mkDynamicSymbolRef (sym, mverId) = do
dynamicRelocationMap :: Elf.ElfHeader w
-> [Elf.Phdr w]
-> L.ByteString
-> MemLoader w (RelocMap (MemWord w))
dynamicRelocationMap hdr ph contents = do
-> MemLoader w (Some (RelocMap w))
dynamicRelocationMap hdr ph contents =
case filter (Elf.hasSegmentType Elf.PT_DYNAMIC . Elf.phdrSegment) ph of
[] -> pure Map.empty
[] -> pure $ Some emptyRelocMap
dynPhdr:dynRest -> do
when (not (null dynRest)) $ do
addWarning $ MultipleDynamicSegments
@ -467,7 +644,7 @@ dynamicRelocationMap hdr ph contents = do
case Elf.virtAddrMap contents ph of
Nothing -> do
addWarning OverlappingLoadableSegments
pure Map.empty
pure $! Some emptyRelocMap
Just virtMap -> do
let dynContents = sliceL (Elf.phdrFileRange dynPhdr) contents
-- Find th dynamic section from the contents.
@ -476,32 +653,40 @@ dynamicRelocationMap hdr ph contents = do
symentries <- runDynamic (Elf.dynSymTable dynSection)
symtab <-
SymbolVector <$> traverse mkDynamicSymbolRef (V.drop 1 symentries)
maybeRelaBuf <- runDynamic $ Elf.dynRelaBuffer dynSection
case maybeRelaBuf of
Nothing -> pure Map.empty
Just relaBuf -> mkRelocMap hdr symtab relaBuf
mRelBuffer <- runDynamic $ Elf.dynRelBuffer dynSection
mRelaBuffer <- runDynamic $ Elf.dynRelaBuffer dynSection
when (isJust mRelBuffer && isJust mRelaBuffer) $ do
addWarning $ DynamicRelaAndRelPresent
mkRelocMap (Elf.headerData hdr) hdr symtab mRelBuffer mRelaBuffer
------------------------------------------------------------------------
-- Elf segment loading
reprConstraints :: AddrWidthRepr w
-> ((Bits (ElfWordType w), Integral (ElfWordType w), Show (ElfWordType w), MemWidth w) => a)
-> ((Bits (ElfWordType w)
, Integral (Elf.ElfIntType w)
, Integral (ElfWordType w)
, Show (ElfWordType w)
, MemWidth w) => a)
-> a
reprConstraints Addr32 x = x
reprConstraints Addr64 x = x
-- let f r contents = pure $ Just (r, relocSize r)
-- | Return a memory segment for elf segment if it loadable.
memSegmentForElfSegment :: (MemWidth w, Integral (ElfWordType w))
=> RegionAdjust -- ^ Index for segment
memSegmentForElfSegment :: (MemWidth w, Monad m, Integral (ElfWordType w))
=> ResolveFn v m w
-> RegionAdjust -- ^ Index for segment
-> L.ByteString
-- ^ Complete contents of Elf file.
-> RelocMap (MemWord w)
-> AddrOffsetMap w v
-- ^ Relocation map
-> Elf.Phdr w
-- ^ Program header entry
-> MemSegment w
memSegmentForElfSegment regAdj contents relocMap phdr =
memSegment (regionIndex regAdj) relocMap (fromInteger base) flags dta sz
-> m (MemSegment w)
memSegmentForElfSegment resolver regAdj contents relocMap phdr =
memSegment resolver (regionIndex regAdj) relocMap (fromInteger base) flags dta sz
where seg = Elf.phdrSegment phdr
dta = sliceL (Elf.phdrFileRange phdr) contents
sz = fromIntegral $ Elf.phdrMemSize phdr
@ -513,15 +698,15 @@ insertElfSegment :: RegionAdjust
-- ^ Where to load region
-> ElfFileSectionMap (ElfWordType w)
-> L.ByteString
-> RelocMap (MemWord w)
-> RelocMap w v
-- ^ Relocations to apply in loading section.
-> Elf.Phdr w
-> MemLoader w ()
insertElfSegment regAdj shdrMap contents relocMap phdr = do
insertElfSegment regAdj shdrMap contents (RelocMap relocMap resolver) phdr = do
w <- uses mlsMemory memAddrWidth
reprConstraints w $ do
when (Elf.phdrMemSize phdr > 0) $ do
let seg = memSegmentForElfSegment regAdj contents relocMap phdr
seg <- memSegmentForElfSegment resolver regAdj contents relocMap phdr
let seg_idx = elfSegmentIndex (Elf.phdrSegment phdr)
loadMemSegment ("Segment " ++ show seg_idx) seg
let phdr_offset = Elf.fromFileOffset (Elf.phdrFileStart phdr)
@ -552,7 +737,7 @@ memoryForElfSegments regAdj e = do
let ph = Elf.allPhdrs l
let contents = elfLayoutBytes l
-- Create relocation map
relocMap <-
Some relocMap <-
dynamicRelocationMap hdr ph contents
let intervals :: ElfFileSectionMap (ElfWordType w)
@ -589,7 +774,9 @@ allowedSectionNames = Set.fromList
-- | Map from section names to information about them.
type SectionNameMap w = Map SectionName [ElfSection (ElfWordType w)]
findSection :: SectionNameMap w -> SectionName -> MemLoader w (Maybe (ElfSection (ElfWordType w)))
findSection :: SectionNameMap w
-> SectionName
-> MemLoader w (Maybe (ElfSection (ElfWordType w)))
findSection sectionMap nm =
case Map.lookup nm sectionMap of
Nothing -> pure Nothing
@ -612,15 +799,11 @@ insertAllocatedSection hdr symtab sectionMap regIdx nm = do
case msec of
Nothing -> pure ()
Just sec -> do
mRelocSec <- findSection sectionMap (".rela" <> nm)
mRelBuffer <- fmap (fmap (L.fromStrict . elfSectionData)) $
findSection sectionMap (".rel" <> nm)
mRelaBuffer <- fmap (fmap (L.fromStrict . elfSectionData)) $
findSection sectionMap (".rela" <> nm)
-- Build relocation map
relocMap <-
case mRelocSec of
Nothing ->
pure Map.empty
Just relSec -> do
let relaBuffer = L.fromStrict (elfSectionData relSec)
mkRelocMap hdr symtab relaBuffer
-- Get size of section
let secSize = fromIntegral (Elf.elfSectionSize sec)
-- Check if we should load section
@ -634,7 +817,12 @@ insertAllocatedSection hdr symtab sectionMap regIdx nm = do
-- Get bytes as a lazy bytesize
let bytes = L.fromStrict (elfSectionData sec)
-- Create memory segment
let seg = memSegment regIdx relocMap (fromIntegral base) flags bytes secSize
when (isJust mRelBuffer && isJust mRelaBuffer) $ do
addWarning $ DuplicateRelocationSections nm
Some (RelocMap relocMap resolver) <-
mkRelocMap (Elf.headerData hdr) hdr symtab mRelBuffer mRelaBuffer
seg <-
memSegment resolver regIdx relocMap (fromIntegral base) flags bytes secSize
-- Load memory segment.
loadMemSegment ("Section " ++ BSC.unpack (elfSectionName sec)) seg
-- Add entry to map elf section index to start in segment.
@ -653,9 +841,7 @@ symtabSymbolVector e =
let entries = Elf.elfSymbolTableEntries elfSymTab
-- let lclCnt = fromIntegral $ Elf.elfSymbolTableLocalEntries elfSymTab
-- Create an unversioned symbol from symbol table.
let mk :: ElfSymbolTableEntry wtp -> MemLoader w SymbolRef
mk ent = mkSymbolRef ent ObjectSymbol
SymbolVector <$> traverse mk (V.drop 1 entries)
SymbolVector <$> traverse (`mkSymbolRef` ObjectSymbol) (V.drop 1 entries)
-- | Load allocated Elf sections into memory.
--
@ -708,7 +894,10 @@ memoryForElf :: LoadOptions
-> Elf w
-> Either String (SectionIndexMap w, Memory w, [MemLoadWarning])
memoryForElf opt e = do
runMemLoader (emptyMemory (elfAddrWidth (elfClass e))) $ do
let end = case Elf.elfData e of
Elf.ELFDATA2LSB -> LittleEndian
Elf.ELFDATA2MSB -> BigEndian
runMemLoader end (emptyMemory (elfAddrWidth (elfClass e))) $ do
case Elf.elfType e of
Elf.ET_REL ->
memoryForElfSections e
@ -725,16 +914,56 @@ memoryForElf opt e = do
data SymbolResolutionError
= EmptySymbolName !Int !Elf.ElfSymbolType
-- ^ Symbol names must be non-empty
| UndefSymbol !BSC.ByteString
-- ^ Symbol was in the undefined section.
| CouldNotResolveAddr !BSC.ByteString
-- ^ Symbol address could not be resolved.
| MultipleSymbolTables
-- ^ The elf file contained multiple symbol tables
instance Show SymbolResolutionError where
show (EmptySymbolName idx tp ) = "Symbol Num " ++ show idx ++ " " ++ show tp ++ " has an empty name."
show (EmptySymbolName idx tp ) =
"Symbol Num " ++ show idx ++ " " ++ show tp ++ " has an empty name."
show (UndefSymbol nm) = "Symbol " ++ BSC.unpack nm ++ " is in the text section."
show (CouldNotResolveAddr sym) = "Could not resolve address of " ++ BSC.unpack sym ++ "."
show MultipleSymbolTables = "Elf contains multiple symbol tables."
-- | Find an absolute symbol, of any time, not just function.
resolveElfFuncSymbolAny' ::
Memory w -- ^ Memory object from Elf file.
-> SectionIndexMap w -- ^ Section index mp from memory
-> Int -- ^ Index of symbol
-> ElfSymbolTableEntry (ElfWordType w)
-> Either SymbolResolutionError (MemSymbol w)
resolveElfFuncSymbolAny' mem secMap idx ste
-- Check symbol is defined
| Elf.steIndex ste == Elf.SHN_UNDEF = Left $ UndefSymbol (Elf.steName ste)
-- Check symbol name is non-empty
| Elf.steName ste == "" = Left $ EmptySymbolName idx (Elf.steType ste)
-- Lookup absolute symbol
| Elf.steIndex ste == Elf.SHN_ABS = reprConstraints (memAddrWidth mem) $ do
let val = Elf.steValue ste
case resolveAddr mem 0 (fromIntegral val) of
Just addr -> Right $
MemSymbol { memSymbolName = Elf.steName ste
, memSymbolStart = addr
, memSymbolSize = fromIntegral (Elf.steSize ste)
}
Nothing -> Left $ CouldNotResolveAddr (Elf.steName ste)
-- Lookup symbol stored in specific section
| otherwise = reprConstraints (memAddrWidth mem) $ do
let val = Elf.steValue ste
case Map.lookup (Elf.steIndex ste) secMap of
Just (base,sec)
| elfSectionAddr sec <= val && val < elfSectionAddr sec + Elf.elfSectionSize sec
, off <- toInteger val - toInteger (elfSectionAddr sec)
, Just addr <- incSegmentOff base off -> do
Right $ MemSymbol { memSymbolName = Elf.steName ste
, memSymbolStart = addr
, memSymbolSize = fromIntegral (Elf.steSize ste)
}
_ -> Left $ CouldNotResolveAddr (Elf.steName ste)
-- | Find an absolute symbol, of any time, not just function.
resolveElfFuncSymbolAny ::
Memory w -- ^ Memory object from Elf file.
@ -743,37 +972,8 @@ resolveElfFuncSymbolAny ::
-> ElfSymbolTableEntry (ElfWordType w)
-> Maybe (Either SymbolResolutionError (MemSymbol w))
resolveElfFuncSymbolAny mem secMap idx ste
-- Check symbol is defined
| Elf.steIndex ste == Elf.SHN_UNDEF = Nothing
-- Check symbol name is non-empty
| Elf.steName ste == "" = Just $ Left $ EmptySymbolName idx (Elf.steType ste)
-- Lookup absolute symbol
| Elf.steIndex ste == Elf.SHN_ABS = reprConstraints (memAddrWidth mem) $ do
let val = Elf.steValue ste
case resolveAddr mem 0 (fromIntegral val) of
Just addr -> Just $ Right $
MemSymbol { memSymbolName = Elf.steName ste
, memSymbolStart = addr
, memSymbolSize = fromIntegral (Elf.steSize ste)
}
Nothing -> Just $ Left $ CouldNotResolveAddr (Elf.steName ste)
-- Lookup symbol stored in specific section
| otherwise = reprConstraints (memAddrWidth mem) $ do
let val = Elf.steValue ste
case Map.lookup (Elf.steIndex ste) secMap of
Just (base,sec)
| elfSectionAddr sec <= val && val < elfSectionAddr sec + Elf.elfSectionSize sec
, off <- toInteger val - toInteger (elfSectionAddr sec)
, Just addr <- incSegmentOff base off -> do
Just $ Right $ MemSymbol { memSymbolName = Elf.steName ste
, memSymbolStart = addr
, memSymbolSize = fromIntegral (Elf.steSize ste)
}
_ -> Just $ Left $ CouldNotResolveAddr (Elf.steName ste)
| otherwise = Just (resolveElfFuncSymbolAny' mem secMap idx ste)
-- | This resolves an Elf symbol into a MemSymbol if it is likely a
-- pointer to a resolved function.
@ -790,30 +990,8 @@ resolveElfFuncSymbol mem secMap idx ste
-- Check symbol is defined
| Elf.steIndex ste == Elf.SHN_UNDEF = Nothing
-- Check symbol name is non-empty
| Elf.steName ste == "" = Just $ Left $ EmptySymbolName idx (Elf.steType ste)
-- Lookup absolute symbol
| Elf.steIndex ste == Elf.SHN_ABS = reprConstraints (memAddrWidth mem) $ do
let val = Elf.steValue ste
case resolveAddr mem 0 (fromIntegral val) of
Just addr -> Just $ Right $
MemSymbol { memSymbolName = Elf.steName ste
, memSymbolStart = addr
, memSymbolSize = fromIntegral (Elf.steSize ste)
}
Nothing -> Just $ Left $ CouldNotResolveAddr (Elf.steName ste)
-- Lookup symbol stored in specific section
| otherwise = reprConstraints (memAddrWidth mem) $ do
let val = Elf.steValue ste
case Map.lookup (Elf.steIndex ste) secMap of
Just (base,sec)
| elfSectionAddr sec <= val && val < elfSectionAddr sec + Elf.elfSectionSize sec
, off <- toInteger val - toInteger (elfSectionAddr sec)
, Just addr <- incSegmentOff base off -> do
Just $ Right $ MemSymbol { memSymbolName = Elf.steName ste
, memSymbolStart = addr
, memSymbolSize = fromIntegral (Elf.steSize ste)
}
_ -> Just $ Left $ CouldNotResolveAddr (Elf.steName ste)
| Elf.steName ste == "" = Just $ (resolveElfFuncSymbolAny' mem secMap idx ste)
| otherwise = Just (resolveElfFuncSymbolAny' mem secMap idx ste)
-- | Resolve symbol table entries defined in this Elf file to
-- a mem symbol
@ -887,7 +1065,7 @@ resolveElfContents :: LoadOptions
, Maybe (MemSegmentOff w) -- Entry point(s)
, [MemSymbol w] -- Function symbols
)
resolveElfContents loadOpts e = do
resolveElfContents loadOpts e =
case Elf.elfType e of
Elf.ET_REL -> do
(secMap, mem, warnings) <- memoryForElf loadOpts e

View File

@ -920,9 +920,6 @@ addMacawStmt stmt =
cval <- valueToCrucible val
w <- archAddrWidth
void $ evalMacawStmt (MacawWriteMem w repr caddr cval)
M.PlaceHolderStmt _vals msg -> do
cmsg <- crucibleValue (C.TextLit (Text.pack msg))
addTermStmt (CR.ErrorStmt cmsg)
M.InstructionStart off _ -> do
-- Update the position
modify $ \s -> s { codeOff = off }

View File

@ -60,7 +60,6 @@ import Data.Parameterized.Some
import Data.Sequence (Seq)
import qualified Data.Sequence as Seq
import qualified Data.Set as Set
import Data.Text (Text)
import qualified Data.Text as Text
import qualified Flexdis86 as F
import Text.PrettyPrint.ANSI.Leijen (Pretty(..), text)
@ -89,7 +88,6 @@ import Data.Macaw.CFG.DemandSet
import qualified Data.Macaw.Memory.Permissions as Perm
import Data.Macaw.Types
( n8
, n64
, HasRepr(..)
)
import Data.Macaw.X86.ArchTypes
@ -129,7 +127,7 @@ rootLoc ip = ExploreLoc { loc_ip = ip
initX86State :: ExploreLoc -- ^ Location to explore from.
-> RegState X86Reg (Value X86_64 ids)
initX86State loc = mkRegState Initial
& curIP .~ RelocatableValue knownNat (relativeSegmentAddr (loc_ip loc))
& curIP .~ RelocatableValue Addr64 (relativeSegmentAddr (loc_ip loc))
& boundValue X87_TopReg .~ mkLit knownNat (toInteger (loc_x87_top loc))
& boundValue DF .~ BoolValue (loc_df_flag loc)
@ -152,42 +150,15 @@ initGenState nonce_gen mem addr s =
, _blockState = emptyPreBlock s 0 addr
, genAddr = addr
, genMemory = mem
, _genRegUpdates = MapF.empty
, avxMode = False
, _genRegUpdates = MapF.empty
}
-- | Describes the reason the translation error occured.
data X86TranslateErrorReason
= DecodeError (MemoryError 64)
-- ^ A memory error occured in decoding with Flexdis
| UnsupportedInstruction F.InstructionInstance
-- ^ The instruction is not supported by the translator
| ExecInstructionError F.InstructionInstance Text
-- ^ An error occured when trying to translate the instruction
-- | Describes an error that occured in translation
data X86TranslateError = X86TranslateError { transErrorAddr :: !(MemSegmentOff 64)
, transErrorReason :: !X86TranslateErrorReason
}
instance Show X86TranslateError where
show err =
case transErrorReason err of
DecodeError me ->
"Memory error at " ++ addr ++ ": " ++ show me
UnsupportedInstruction i ->
"Unsupported instruction at " ++ addr ++ ": " ++ show i
ExecInstructionError i msg ->
"Error in interpretting instruction at " ++ addr ++ ": " ++ show i ++ "\n "
++ Text.unpack msg
where addr = show (transErrorAddr err)
returnWithError :: GenState st_s ids
-> X86TranslateErrorReason
-> ST st_s (BlockSeq ids, MemWord 64, Maybe X86TranslateError)
returnWithError gs rsn =
-> X86TranslateError 64
-> ST st_s (BlockSeq ids, MemWord 64, Maybe (X86TranslateError 64))
returnWithError gs err =
let curIPAddr = genAddr gs
err = X86TranslateError curIPAddr rsn
term = (`TranslateError` Text.pack (show err))
b = finishBlock' (gs^.blockState) term
res = seq b $ gs^.blockSeq & frontierBlocks %~ (Seq.|> b)
@ -202,32 +173,32 @@ disassembleBlockImpl :: forall st_s ids
-- ^ Maximum offset for this addr.
-> [SegmentRange 64]
-- ^ List of contents to read next.
-> ST st_s (BlockSeq ids, MemWord 64, Maybe X86TranslateError)
-> ST st_s (BlockSeq ids, MemWord 64, Maybe (X86TranslateError 64))
disassembleBlockImpl gs max_offset contents = do
let curIPAddr = genAddr gs
case readInstruction' curIPAddr contents of
Left msg -> do
returnWithError gs (DecodeError msg)
returnWithError gs msg
Right (i, next_ip_off) -> do
let seg = msegSegment curIPAddr
let off = msegOffset curIPAddr
let next_ip :: MemAddr 64
next_ip = relativeAddr seg next_ip_off
let next_ip_val :: BVValue X86_64 ids 64
next_ip_val = RelocatableValue n64 next_ip
next_ip_val = RelocatableValue Addr64 next_ip
case execInstruction (ValueExpr next_ip_val) i of
Nothing -> do
returnWithError gs (UnsupportedInstruction i)
returnWithError gs (UnsupportedInstruction (genAddr gs) i)
Just exec -> do
gsr <-
runExceptT $ runX86Generator (\() s -> pure (mkGenResult s)) gs $ do
let next_ip_word = fromIntegral $ segmentOffset seg + off
let line = show curIPAddr ++ ": " ++ show (F.ppInstruction next_ip_word i)
addStmt (Comment (Text.pack line))
asAtomicStateUpdate (relativeSegmentAddr curIPAddr) exec
exec
case gsr of
Left msg -> do
returnWithError gs (ExecInstructionError i msg)
returnWithError gs (ExecInstructionError (genAddr gs) i msg)
Right res -> do
case resState res of
-- If IP after interpretation is the next_ip, there are no blocks, and we
@ -247,10 +218,11 @@ disassembleBlockImpl gs max_offset contents = do
, _genRegUpdates = _genRegUpdates gs
, avxMode = avxMode gs
}
case dropSegmentRangeListBytes contents (fromIntegral (next_ip_off - off)) of
Left msg -> do
let err = dropErrorAsMemError (relativeSegmentAddr curIPAddr) msg
returnWithError gs (DecodeError err)
returnWithError gs (FlexdisMemoryError err)
Right contents' ->
disassembleBlockImpl gs2 max_offset contents'
_ -> do
@ -265,7 +237,7 @@ disassembleBlock :: forall s
-> ExploreLoc
-> MemWord 64
-- ^ Maximum number of bytes in ths block.
-> ST s ([Block X86_64 s], MemWord 64, Maybe X86TranslateError)
-> ST s ([Block X86_64 s], MemWord 64, Maybe (X86TranslateError 64))
disassembleBlock mem nonce_gen loc max_size = do
let addr = loc_ip loc
let gs = initGenState nonce_gen mem addr (initX86State loc)
@ -273,7 +245,7 @@ disassembleBlock mem nonce_gen loc max_size = do
(gs', next_ip_off, maybeError) <-
case addrContentsAfter mem (relativeSegmentAddr addr) of
Left msg ->
returnWithError gs (DecodeError msg)
returnWithError gs (FlexdisMemoryError msg)
Right contents ->
disassembleBlockImpl gs sz contents
assert (next_ip_off > msegOffset addr) $ do
@ -386,7 +358,7 @@ tryDisassembleBlockFromAbsState mem nonce_gen addr max_size ab = do
(gs', next_ip_off, maybeError) <- lift $
case addrContentsAfter mem (relativeSegmentAddr addr) of
Left msg ->
returnWithError gs (DecodeError msg)
returnWithError gs (FlexdisMemoryError msg)
Right contents -> do
disassembleBlockImpl gs (off + max_size) contents
assert (next_ip_off > off) $ do
@ -499,6 +471,10 @@ postX86TermStmtAbsState preservePred mem s regs tstmt =
}
Just (nextIP, absEvalCall params s nextIP)
_ -> error $ "Sycall could not interpret next IP"
Hlt ->
Nothing
UD2 ->
Nothing
-- | Common architecture information for X86_64

View File

@ -38,7 +38,6 @@ module Data.Macaw.X86.ArchTypes
) where
import Data.Bits
import Data.Int
import Data.Word(Word8)
import Data.Macaw.CFG
import Data.Macaw.CFG.Rewriter
@ -95,10 +94,20 @@ repValSizeByteCount = memReprBytes . repValSizeMemRepr
------------------------------------------------------------------------
-- X86TermStmt
data X86TermStmt ids = X86Syscall
data X86TermStmt ids
= X86Syscall
-- ^ A system call
| Hlt
-- ^ The halt instruction.
--
-- In protected mode outside ring 0, this just raised a GP(0) exception.
| UD2
-- ^ This raises a invalid opcode instruction.
instance PrettyF X86TermStmt where
prettyF X86Syscall = text "x86_syscall"
prettyF Hlt = text "hlt"
prettyF UD2 = text "ud2"
------------------------------------------------------------------------
-- X86PrimLoc
@ -155,7 +164,7 @@ data SSE_Cmp
-- ^ Neither value is a NaN, no signalling on QNaN
deriving (Eq, Ord)
sseCmpEntries :: [(Int8, SSE_Cmp, String)]
sseCmpEntries :: [(Word8, SSE_Cmp, String)]
sseCmpEntries =
[ (0, EQ_OQ, "EQ_OQ")
, (1, LT_OS, "LT_OS")
@ -167,7 +176,7 @@ sseCmpEntries =
, (7, ORD_Q, "ORD_Q")
]
sseIdxCmpMap :: Map.Map Int8 SSE_Cmp
sseIdxCmpMap :: Map.Map Word8 SSE_Cmp
sseIdxCmpMap = Map.fromList [ (idx,val) | (idx, val, _) <- sseCmpEntries ]
sseCmpNameMap :: Map.Map SSE_Cmp String
@ -180,7 +189,7 @@ instance Show SSE_Cmp where
-- The nothing case should never occur.
Nothing -> "Unexpected name"
lookupSSECmp :: Int8 -> Maybe SSE_Cmp
lookupSSECmp :: Word8 -> Maybe SSE_Cmp
lookupSSECmp i = Map.lookup i sseIdxCmpMap
-- | A binary SSE operation
@ -871,3 +880,5 @@ rewriteX86TermStmt :: X86TermStmt src -> Rewriter X86_64 s src tgt (X86TermStmt
rewriteX86TermStmt f =
case f of
X86Syscall -> pure X86Syscall
Hlt -> pure Hlt
UD2 -> pure UD2

View File

@ -11,6 +11,7 @@ Macaw memory object.
{-# LANGUAGE UndecidableInstances #-}
module Data.Macaw.X86.Flexdis
( MemoryByteReader
, X86TranslateError(..)
, runMemoryByteReader
, readInstruction
, readInstruction'
@ -18,8 +19,12 @@ module Data.Macaw.X86.Flexdis
import Control.Monad.Except
import Control.Monad.State.Strict
import Data.Bits
import qualified Data.ByteString as BS
import Data.Word
import Data.Int
import Data.Text (Text)
import Data.Text as Text
import Data.Word
import Data.Macaw.Memory
import qualified Data.Macaw.Memory.Permissions as Perm
@ -30,28 +35,12 @@ import Flexdis86.ByteReader
------------------------------------------------------------------------
-- MemStream
data PrevData w = PrevData { prevBytes :: [Word8]
, prevRanges :: [SegmentRange w]
}
emptyPrevData :: PrevData w
emptyPrevData = PrevData { prevBytes = [], prevRanges = [] }
consByte :: Word8 -> PrevData w -> PrevData w
consByte w pd = pd { prevBytes = w:prevBytes pd
}
prevSegments :: PrevData w -> [SegmentRange w]
prevSegments pd | null (prevBytes pd) = reverse (prevRanges pd)
| otherwise = reverse (prevRanges pd) ++ [ByteRegion (BS.pack (prevBytes pd))]
-- | A stream of memory
data MemStream w = MS { msSegment :: !(MemSegment w)
data MemStream w = MS { msInitial :: ![SegmentRange w]
, msSegment :: !(MemSegment w)
-- ^ The current segment
, msStart :: !(MemWord w)
-- ^ The initial offset for the stream.
, msPrev :: !(PrevData w)
-- ^ The values read so far.
, msOffset :: !(MemWord w)
-- ^ The current address
, msNext :: ![SegmentRange w]
@ -59,18 +48,45 @@ data MemStream w = MS { msSegment :: !(MemSegment w)
}
msStartAddr :: MemWidth w => MemStream w -> MemAddr w
msStartAddr ms = relativeSegmentAddr segOff
where Just segOff = resolveSegmentOff (msSegment ms) (msStart ms)
msStartAddr ms = relativeAddr (msSegment ms) (msStart ms)
msAddr :: MemWidth w => MemStream w -> MemAddr w
msAddr ms = relativeSegmentAddr segOff
where Just segOff = resolveSegmentOff (msSegment ms) (msOffset ms)
msAddr ms = relativeAddr (msSegment ms) (msOffset ms)
------------------------------------------------------------------------
-- MemoryByteReader
newtype MemoryByteReader w a = MBR { unMBR :: ExceptT (MemoryError w) (State (MemStream w)) a }
deriving (Functor, Applicative, MonadError (MemoryError w))
-- | Describes the reason the translation error occured.
data X86TranslateError w
= FlexdisMemoryError !(MemoryError w)
-- ^ A memory error occured in decoding with Flexdis
| InvalidInstruction !(MemAddr w) ![SegmentRange w]
-- ^ The memory reader could not parse the value starting at the given address
-- the last byte read was at the offset.
| UserMemoryError !(MemAddr w) !String
-- ^ the memory reader threw an unspecified error at the given location.
| UnsupportedInstruction !(MemSegmentOff w) !Flexdis.InstructionInstance
-- ^ The instruction is not supported by the translator
| ExecInstructionError !(MemSegmentOff w) !Flexdis.InstructionInstance Text
-- ^ An error occured when trying to translate the instruction
instance MemWidth w => Show (X86TranslateError w) where
show err =
case err of
FlexdisMemoryError me ->
show me
InvalidInstruction start rng ->
"Invalid instruction at " ++ show start ++ ": " ++ show rng
UserMemoryError addr msg ->
"Memory error " ++ show addr ++ ": " ++ msg
UnsupportedInstruction addr i ->
"Unsupported instruction at " ++ show addr ++ ": " ++ show i
ExecInstructionError addr i msg ->
"Error in interpretting instruction at " ++ show addr ++ ": " ++ show i ++ "\n "
++ Text.unpack msg
newtype MemoryByteReader w a = MBR { unMBR :: ExceptT (X86TranslateError w) (State (MemStream w)) a }
deriving (Functor, Applicative, MonadError (X86TranslateError w))
instance MemWidth w => Monad (MemoryByteReader w) where
return = MBR . return
@ -83,11 +99,11 @@ instance MemWidth w => Monad (MemoryByteReader w) where
runMemoryByteReader' :: MemSegmentOff w -- ^ Starting segment
-> [SegmentRange w] -- ^ Data to read next.
-> MemoryByteReader w a -- ^ Byte reader to read values from.
-> Either (MemoryError w) (a, MemWord w)
-> Either (X86TranslateError w) (a, MemWord w)
runMemoryByteReader' addr contents (MBR m) = do
let ms0 = MS { msSegment = msegSegment addr
let ms0 = MS { msInitial = contents
, msSegment = msegSegment addr
, msStart = msegOffset addr
, msPrev = emptyPrevData
, msOffset = msegOffset addr
, msNext = contents
}
@ -105,15 +121,73 @@ runMemoryByteReader :: Memory w
-- Added so we can check for read and/or execute permission.
-> MemSegmentOff w -- ^ Starting segment
-> MemoryByteReader w a -- ^ Byte reader to read values from.
-> Either (MemoryError w) (a, MemWord w)
-> Either (X86TranslateError w) (a, MemWord w)
runMemoryByteReader mem reqPerm addr m =
addrWidthClass (memAddrWidth mem) $ do
let seg = msegSegment addr
if not (segmentFlags seg `Perm.hasPerm` reqPerm) then
Left $ PermissionsError (relativeSegmentAddr addr)
else do
contents <- addrContentsAfter mem (relativeSegmentAddr addr)
runMemoryByteReader' addr contents m
Left $ FlexdisMemoryError $ PermissionsError (relativeSegmentAddr addr)
else
case addrContentsAfter mem (relativeSegmentAddr addr) of
Right contents -> runMemoryByteReader' addr contents m
Left e -> Left (FlexdisMemoryError e)
throwMemoryError :: MemoryError w -> MemoryByteReader w a
throwMemoryError e = MBR $ throwError (FlexdisMemoryError e)
sbyte :: (Bits w, Num w) => Word8 -> Int -> w
sbyte w o = fromIntegral i8 `shiftL` (8*o)
where i8 :: Int8
i8 = fromIntegral w
ubyte :: (Bits w, Num w) => Word8 -> Int -> w
ubyte w o = fromIntegral w `shiftL` (8*o)
jsizeCount :: Flexdis.JumpSize -> Int
jsizeCount Flexdis.JSize8 = 1
jsizeCount Flexdis.JSize16 = 2
jsizeCount Flexdis.JSize32 = 4
getUnsigned32 :: MemWidth w => BS.ByteString -> MemoryByteReader w Word32
getUnsigned32 s =
case BS.unpack s of
w0:w1:w2:w3:_ -> do
pure $! ubyte w3 3 .|. ubyte w2 2 .|. ubyte w1 1 .|. ubyte w0 0
_ -> do
ms <- MBR get
throwMemoryError $ AccessViolation (msAddr ms)
getJumpBytes :: MemWidth w => BS.ByteString -> Flexdis.JumpSize -> MemoryByteReader w (Int64, Int)
getJumpBytes s sz =
case (sz, BS.unpack s) of
(Flexdis.JSize8, w0:_) -> do
pure (sbyte w0 0, 1)
(Flexdis.JSize16, w0:w1:_) -> do
pure (sbyte w1 1 .|. ubyte w0 0, 2)
(Flexdis.JSize32, _) -> do
v <- getUnsigned32 s
pure (fromIntegral (fromIntegral v :: Int32), 4)
_ -> do
ms <- MBR get
throwMemoryError $ AccessViolation (msAddr ms)
updateMSByteString :: MemWidth w
=> MemStream w
-> BS.ByteString
-> [SegmentRange w]
-> MemWord w
-> MemoryByteReader w ()
updateMSByteString ms bs rest c = do
let bs' = BS.drop (fromIntegral (memWordInteger c)) bs
let ms' = ms { msOffset = msOffset ms + c
, msNext =
if BS.null bs' then
rest
else
ByteRegion bs' : rest
}
seq ms' $ MBR $ put ms'
instance MemWidth w => ByteReader (MemoryByteReader w) where
readByte = do
@ -121,26 +195,82 @@ instance MemWidth w => ByteReader (MemoryByteReader w) where
-- If remaining bytes are empty
case msNext ms of
[] ->
MBR $ throwError $ AccessViolation (msAddr ms)
throwMemoryError $ AccessViolation (msAddr ms)
-- Throw error if we try to read a relocation as a symbolic reference
BSSRegion _:_ -> do
MBR $ throwError $ UnexpectedRelocation (msAddr ms)
SymbolicRef{}:_ -> do
MBR $ throwError $ UnexpectedBSS (msAddr ms)
throwMemoryError $ UnexpectedBSS (msAddr ms)
RelocationRegion r:_ -> do
throwMemoryError $ UnexpectedRelocation (msAddr ms) r "byte0"
ByteRegion bs:rest -> do
if BS.null bs then do
throwError $ AccessViolation (msAddr ms)
throwMemoryError $ AccessViolation (msAddr ms)
else do
let v = BS.head bs
let ms' = ms { msPrev = consByte v (msPrev ms)
, msOffset = msOffset ms + 1
, msNext = ByteRegion (BS.tail bs) : rest
}
MBR $ v <$ put ms'
updateMSByteString ms bs rest 1
pure $! v
readDImm = do
ms <- MBR get
-- If remaining bytes are empty
case msNext ms of
[] ->
throwMemoryError $ AccessViolation (msAddr ms)
-- Throw error if we try to read a relocation as a symbolic reference
BSSRegion _:_ -> do
throwMemoryError $ UnexpectedBSS (msAddr ms)
RelocationRegion r:rest -> do
case r of
AbsoluteRelocation sym off end szCnt -> do
unless (szCnt == 4 && end == LittleEndian) $ do
throwMemoryError $ UnexpectedRelocation (msAddr ms) r "dimm0"
let ms' = ms { msOffset = msOffset ms + 4
, msNext = rest
}
seq ms' $ MBR $ put ms'
pure $ Flexdis.Imm32SymbolOffset sym (fromIntegral off)
-- RelativeOffset addr ioff (fromIntegral off)
RelativeRelocation _addr _off _end _szCnt -> do
throwMemoryError $ UnexpectedRelocation (msAddr ms) r "dimm1"
ByteRegion bs:rest -> do
v <- getUnsigned32 bs
updateMSByteString ms bs rest 4
pure $! Flexdis.Imm32Concrete v
readJump sz = do
ms <- MBR get
-- If remaining bytes are empty
case msNext ms of
[] ->
throwMemoryError $ AccessViolation (msAddr ms)
-- Throw error if we try to read a relocation as a symbolic reference
BSSRegion _:_ -> do
throwMemoryError $ UnexpectedBSS (msAddr ms)
RelocationRegion r:rest -> do
case r of
AbsoluteRelocation{} -> do
throwMemoryError $ UnexpectedRelocation (msAddr ms) r "jump0"
RelativeRelocation addr off end szCnt -> do
when (szCnt /= jsizeCount sz) $ do
throwMemoryError $ UnexpectedRelocation (msAddr ms) r "jump1"
when (end /= LittleEndian) $ do
throwMemoryError $ UnexpectedRelocation (msAddr ms) r "jump2"
let ms' = ms { msOffset = msOffset ms + fromIntegral (jsizeCount sz)
, msNext = rest
}
seq ms' $ MBR $ put ms'
let ioff = fromIntegral $ msOffset ms - msStart ms
pure $ Flexdis.RelativeOffset addr ioff (fromIntegral off)
ByteRegion bs:rest -> do
(v,c) <- getJumpBytes bs sz
updateMSByteString ms bs rest (fromIntegral c)
pure (Flexdis.FixedOffset v)
invalidInstruction = do
ms <- MBR $ get
throwError $ InvalidInstruction (msStartAddr ms) (prevSegments (msPrev ms))
throwError $ InvalidInstruction (msStartAddr ms)
(takeSegmentPrefix (msInitial ms) (msOffset ms - msStart ms))
------------------------------------------------------------------------
-- readInstruction
@ -150,12 +280,12 @@ instance MemWidth w => ByteReader (MemoryByteReader w) where
readInstruction' :: MemSegmentOff 64
-- ^ Address to read from.
-> [SegmentRange 64] -- ^ Data to read next.
-> Either (MemoryError 64)
-> Either (X86TranslateError 64)
(Flexdis.InstructionInstance, MemWord 64)
readInstruction' addr contents = do
let seg = msegSegment addr
if not (segmentFlags seg `Perm.hasPerm` Perm.execute) then
Left $ PermissionsError (relativeSegmentAddr addr)
Left $ FlexdisMemoryError $ PermissionsError (relativeSegmentAddr addr)
else do
runMemoryByteReader' addr contents Flexdis.disassembleInstruction
@ -163,8 +293,9 @@ readInstruction' addr contents = do
readInstruction :: Memory 64
-> MemSegmentOff 64
-- ^ Address to read from.
-> Either (MemoryError 64)
-> Either (X86TranslateError 64)
(Flexdis.InstructionInstance, MemWord 64)
readInstruction mem addr = do
readInstruction' addr
=<< addrContentsAfter mem (relativeSegmentAddr addr)
case addrContentsAfter mem (relativeSegmentAddr addr) of
Left e -> Left (FlexdisMemoryError e)
Right l -> readInstruction' addr l

View File

@ -26,6 +26,7 @@ module Data.Macaw.X86.Generator
, evalAssignRhs
, shiftX86GCont
, asAtomicStateUpdate
, getState
-- * GenResult
, GenResult(..)
, finishBlock
@ -321,6 +322,7 @@ runX86Generator :: X86GCont st_s ids a
-> ExceptT Text (ST st_s) (GenResult ids)
runX86Generator k st (X86G m) = runReaderT (runContT m (ReaderT . k)) st
-- | Capture the current continuation and 'GenState' in an 'X86Generator'
shiftX86GCont :: (X86GCont st_s ids a
-> GenState st_s ids

View File

@ -20,13 +20,16 @@ module Data.Macaw.X86.Getters
, getBVValue
, getSignExtendedValue
, truncateBVValue
, getCallTarget
, getJumpTarget
, HasRepSize(..)
, getAddrRegOrSegment
, getAddrRegSegmentOrImm
, readXMMValue
, readYMMValue
, getImm32
-- * Utilities
, reg8Loc
, reg16Loc
, reg32Loc
, reg64Loc
@ -50,8 +53,7 @@ import Data.Parameterized.Some
import qualified Flexdis86 as F
import GHC.TypeLits (KnownNat)
import Data.Macaw.CFG (MemRepr(..))
import Data.Macaw.Memory (Endianness(..))
import Data.Macaw.CFG
import Data.Macaw.Types (BVType, n8, n16, n32, n64, typeWidth)
import Data.Macaw.X86.Generator
import Data.Macaw.X86.Monad
@ -81,11 +83,15 @@ xmmMemRepr = BVMemRepr (knownNat :: NatRepr 16) LittleEndian
ymmMemRepr :: MemRepr (BVType 256)
ymmMemRepr = BVMemRepr (knownNat :: NatRepr 32) LittleEndian
------------------------------------------------------------------------
-- Utilities
-- | Return a location from a 16-bit register
reg8Loc :: F.Reg8 -> Location addr (BVType 8)
reg8Loc (F.LowReg8 r) = reg_low8 $ X86_GP $ F.Reg64 r
reg8Loc (F.HighReg8 r) = reg_high8 $ X86_GP $ F.Reg64 r
reg8Loc _ = error "internal: Unepxected byteReg"
-- | Return a location from a 16-bit register
reg16Loc :: F.Reg16 -> Location addr (BVType 16)
reg16Loc = reg_low16 . X86_GP . F.reg16_reg
@ -98,7 +104,6 @@ reg32Loc = reg_low32 . X86_GP . F.reg32_reg
reg64Loc :: F.Reg64 -> Location addr (BVType 64)
reg64Loc = fullRegister . X86_GP
------------------------------------------------------------------------
-- Getters
@ -120,8 +125,9 @@ getBVAddress ar =
let offset = uext n64 (base .+ scale .+ bvLit n32 (toInteger (F.displacementInt i32)))
mk_absolute seg offset
F.IP_Offset_32 _seg _i32 -> fail "IP_Offset_32"
F.Offset_32 _seg _w32 -> fail "Offset_32"
F.Offset_64 seg w64 -> do
F.Offset_32 _seg _w32 ->
fail "Offset_32"
F.Offset_64 seg w64 -> do
mk_absolute seg (bvLit n64 (toInteger w64))
F.Addr_64 seg m_r64 m_int_r64 i32 -> do
base <- case m_r64 of
@ -147,7 +153,8 @@ getBVAddress ar =
-- We could nevertheless call 'getSegmentBase' in all cases
-- here, but that adds a lot of noise to the AST in the common
-- case of segments other than FS or GS.
| seg == F.CS || seg == F.DS || seg == F.ES || seg == F.SS = return offset
| seg == F.CS || seg == F.DS || seg == F.ES || seg == F.SS =
return offset
-- The FS and GS segments can be non-zero based in 64-bit mode.
| otherwise = do
base <- getSegmentBase seg
@ -217,16 +224,17 @@ getSomeBVLocation v =
F.FPMem32 ar -> getBVAddress ar >>= mk . (`MemoryAddr` (floatMemRepr SingleFloatRepr))
F.FPMem64 ar -> getBVAddress ar >>= mk . (`MemoryAddr` (floatMemRepr DoubleFloatRepr))
F.FPMem80 ar -> getBVAddress ar >>= mk . (`MemoryAddr` (floatMemRepr X86_80FloatRepr))
F.ByteReg (F.LowReg8 r) -> mk $ reg_low8 $ X86_GP $ F.Reg64 r
F.ByteReg (F.HighReg8 r) -> mk $ reg_high8 $ X86_GP $ F.Reg64 r
F.ByteReg _ -> error "internal: getSomeBVLocation illegal ByteReg"
F.WordReg r -> mk (reg16Loc r)
F.DWordReg r -> mk (reg32Loc r)
F.QWordReg r -> mk (reg64Loc r)
F.ByteReg r -> mk $ reg8Loc r
F.WordReg r -> mk $ reg16Loc r
F.DWordReg r -> mk $ reg32Loc r
F.QWordReg r -> mk $ reg64Loc r
F.ByteImm _ -> noImm
F.WordImm _ -> noImm
F.DWordImm _ -> noImm
F.QWordImm _ -> noImm
F.ByteSignedImm _ -> noImm
F.WordSignedImm _ -> noImm
F.DWordSignedImm _ -> noImm
F.JumpOffset{} -> fail "Jump Offset is not a location."
where
noImm :: Monad m => m a
@ -244,15 +252,23 @@ getBVLocation l expected = do
Nothing ->
fail $ "Widths aren't equal: " ++ show (typeWidth v) ++ " and " ++ show expected
getImm32 :: F.Imm32 -> X86Generator st ids (BVExpr ids 32)
getImm32 (F.Imm32Concrete w) =
pure $ bvLit n32 (toInteger w)
getImm32 (F.Imm32SymbolOffset sym off) = do
let symExpr = ValueExpr $ SymbolValue Addr64 sym
let offExpr = bvLit n64 (toInteger off)
pure $ bvTrunc' n32 (symExpr .+ offExpr)
-- | Return a bitvector value.
getSomeBVValue :: F.Value -> X86Generator st ids (SomeBV (Expr ids))
getSomeBVValue v =
case v of
F.ByteImm w -> return $ SomeBV $ bvLit n8 $ toInteger w
F.WordImm w -> return $ SomeBV $ bvLit n16 $ toInteger w
F.DWordImm w -> return $ SomeBV $ bvLit n32 $ toInteger w
F.QWordImm w -> return $ SomeBV $ bvLit n64 $ toInteger w
F.JumpOffset _ off -> return $ SomeBV $ bvLit n64 $ toInteger off
F.ByteImm w -> pure $! SomeBV $ bvLit n8 $ toInteger w
F.WordImm w -> pure $! SomeBV $ bvLit n16 $ toInteger w
F.DWordImm i -> SomeBV <$> getImm32 i
F.QWordImm w -> pure $! SomeBV $ bvLit n64 $ toInteger w
F.JumpOffset _ _ -> fail "Jump Offset should not be treated as a BVValue."
_ -> do
SomeBV l <- getSomeBVLocation v
SomeBV <$> get l
@ -284,20 +300,30 @@ getSignExtendedValue v out_w =
F.Mem64 ar -> mk =<< getBV64Addr ar
F.Mem128 ar -> mk =<< getBV128Addr ar
F.Mem256 ar -> mk =<< getBV256Addr ar
F.ByteReg (F.LowReg8 r) -> mk $ reg_low8 $ X86_GP $ F.Reg64 r
F.ByteReg (F.HighReg8 r) -> mk $ reg_high8 $ X86_GP $ F.Reg64 r
F.WordReg r -> mk (reg16Loc r)
F.DWordReg r -> mk (reg32Loc r)
F.QWordReg r -> mk (reg64Loc r)
F.XMMReg r -> mk (xmm_avx r)
F.YMMReg r -> mk (ymm r)
F.ByteImm i -> return $! bvLit out_w (toInteger i)
F.WordImm i -> return $! bvLit out_w (toInteger i)
F.DWordImm i -> return $! bvLit out_w (toInteger i)
F.QWordImm i -> return $! bvLit out_w (toInteger i)
F.ByteImm i
| Just Refl <- testEquality n8 out_w ->
pure $! bvLit n8 (toInteger i)
F.WordImm i
| Just Refl <- testEquality n16 out_w ->
pure $! bvLit n16 (toInteger i)
F.DWordImm (F.Imm32Concrete i)
| Just Refl <- testEquality n32 out_w ->
pure $! bvLit n32 (toInteger i)
F.QWordImm i
| Just Refl <- testEquality n64 out_w ->
pure $! bvLit n64 (toInteger i)
F.ByteSignedImm i -> pure $! bvLit out_w (toInteger i)
F.WordSignedImm i -> pure $! bvLit out_w (toInteger i)
F.DWordSignedImm i -> pure $! bvLit out_w (toInteger i)
F.ByteReg r -> mk $ reg8Loc r
F.WordReg r -> mk $ reg16Loc r
F.DWordReg r -> mk $ reg32Loc r
F.QWordReg r -> mk $ reg64Loc r
_ -> fail $ "getSignExtendedValue given unexpected width: " ++ show v
where
@ -322,14 +348,34 @@ truncateBVValue n (SomeBV v)
| otherwise =
fail $ "Widths isn't >=: " ++ show (typeWidth v) ++ " and " ++ show n
resolveJumpOffset :: F.JumpOffset -> X86Generator s ids (BVExpr ids 64)
resolveJumpOffset (F.FixedOffset off) =
pure $ bvLit n64 (toInteger off)
resolveJumpOffset (F.RelativeOffset symId insOff off) = do
arepr <- memAddrWidth . genMemory <$> getState
let symVal = ValueExpr (SymbolValue arepr symId)
addrOff <- genAddr <$> getState
let relocAddr = relativeAddr (msegSegment addrOff) (msegOffset addrOff + fromIntegral insOff)
pure $ symVal .+ bvLit n64 (toInteger off) .- ValueExpr (RelocatableValue arepr relocAddr)
-- | Return the target of a call or jump instruction.
getCallTarget :: F.Value
-> X86Generator st ids (BVExpr ids 64)
getCallTarget v =
case v of
F.Mem64 ar -> get =<< getBV64Addr ar
F.QWordReg r -> get (reg64Loc r)
F.JumpOffset _ joff -> do
(.+) <$> get rip <*> resolveJumpOffset joff
_ -> fail "Unexpected argument"
-- | Return the target of a call or jump instruction.
getJumpTarget :: F.Value
-> X86Generator st ids (BVExpr ids 64)
getJumpTarget v =
case v of
F.Mem64 ar -> get =<< getBV64Addr ar
F.QWordReg r -> get (reg64Loc r)
F.JumpOffset _ off -> (bvLit n64 (toInteger off) .+) <$> get rip
F.JumpOffset _ joff -> do
(.+) <$> get rip <*> resolveJumpOffset joff
_ -> fail "Unexpected argument"
------------------------------------------------------------------------
@ -350,11 +396,10 @@ getAddrRegOrSegment v =
F.Mem32 ar -> Some . HasRepSize DWordRepVal <$> getBV32Addr ar
F.Mem64 ar -> Some . HasRepSize QWordRepVal <$> getBV64Addr ar
F.ByteReg (F.LowReg8 r) -> pure $ Some $ HasRepSize ByteRepVal $ reg_low8 $ X86_GP $ F.Reg64 r
F.ByteReg (F.HighReg8 r) -> pure $ Some $ HasRepSize ByteRepVal $ reg_high8 $ X86_GP $ F.Reg64 r
F.WordReg r -> pure $ Some $ HasRepSize WordRepVal (reg16Loc r)
F.DWordReg r -> pure $ Some $ HasRepSize DWordRepVal (reg32Loc r)
F.QWordReg r -> pure $ Some $ HasRepSize QWordRepVal (reg64Loc r)
F.ByteReg r -> pure $ Some $ HasRepSize ByteRepVal $ reg8Loc r
F.WordReg r -> pure $ Some $ HasRepSize WordRepVal $ reg16Loc r
F.DWordReg r -> pure $ Some $ HasRepSize DWordRepVal $ reg32Loc r
F.QWordReg r -> pure $ Some $ HasRepSize QWordRepVal $ reg64Loc r
_ -> fail $ "Argument " ++ show v ++ " not supported."
-- | Gets a value that can be pushed.
@ -362,10 +407,10 @@ getAddrRegOrSegment v =
getAddrRegSegmentOrImm :: F.Value -> X86Generator st ids (Some (HasRepSize (Expr ids)))
getAddrRegSegmentOrImm v =
case v of
F.ByteImm w -> return $ Some $ HasRepSize ByteRepVal $ bvLit n8 (toInteger w)
F.WordImm w -> return $ Some $ HasRepSize WordRepVal $ bvLit n16 (toInteger w)
F.DWordImm w -> return $ Some $ HasRepSize DWordRepVal $ bvLit n32 (toInteger w)
F.QWordImm w -> return $ Some $ HasRepSize QWordRepVal $ bvLit n64 (toInteger w)
F.ByteImm w -> pure $ Some $ HasRepSize ByteRepVal $ bvLit n8 (toInteger w)
F.WordImm w -> pure $ Some $ HasRepSize WordRepVal $ bvLit n16 (toInteger w)
F.DWordImm i -> Some . HasRepSize DWordRepVal <$> getImm32 i
F.QWordImm w -> pure $ Some $ HasRepSize QWordRepVal $ bvLit n64 (toInteger w)
_ -> do
Some (HasRepSize rep l) <- getAddrRegOrSegment v
Some . HasRepSize rep <$> get l
@ -384,6 +429,3 @@ readYMMValue :: F.Value -> X86Generator st ids (Expr ids (BVType 256))
readYMMValue (F.YMMReg r) = get (ymm r)
readYMMValue (F.Mem256 a) = readBVAddress a ymmMemRepr
readYMMValue _ = fail "YMM Instruction given unexpected value."

View File

@ -163,8 +163,6 @@ module Data.Macaw.X86.Monad
, even_parity
, fnstcw
, getSegmentBase
, exception
, ExceptionClass(..)
, x87Push
, x87Pop
, bvQuotRem
@ -906,7 +904,7 @@ mux c x y
-- | Construct a literal bit vector. The result is undefined if the
-- literal does not fit withint the given number of bits.
bvLit :: 1 <= n => NatRepr n -> Integer -> Expr ids (BVType n)
bvLit n v = ValueExpr $ mkLit n (toInteger v)
bvLit n v = ValueExpr $ mkLit n v
-- | Add two bitvectors together dropping overflow.
(.+) :: 1 <= n => Expr ids (BVType n) -> Expr ids (BVType n) -> Expr ids (BVType n)
@ -1543,18 +1541,6 @@ infixl 6 .+
infixl 6 .-
infix 4 .=
------------------------------------------------------------------------
-- Monadic definition
data ExceptionClass
= DivideError -- #DE
| FloatingPointError
| SIMDFloatingPointException
| GeneralProtectionException Int
| UndefinedInstructionError -- basically for ud2
-- ^ A general protection exception with the given error code.
-- -- | AlignmentCheck
deriving (Eq, Ord, Show)
------------------------------------------------------------------------
-- Semantics
@ -1822,15 +1808,6 @@ getSegmentBase seg =
_ ->
error $ "X86_64 getSegmentBase " ++ show seg ++ ": unimplemented!"
-- | raises an exception if the predicate is true and the mask is false
exception :: Expr ids BoolType -- mask
-> Expr ids BoolType -- predicate
-> ExceptionClass
-> X86Generator st ids ()
exception m p c =
when_ (boolNot m .&&. p)
(addStmt (PlaceHolderStmt [] $ "Exception " ++ (show c)))
-- FIXME: those should also mutate the underflow/overflow flag and
-- related state.

View File

@ -21,7 +21,6 @@ module Data.Macaw.X86.Semantics
import Control.Monad (when)
import qualified Data.Bits as Bits
import Data.Foldable
import Data.Int
import Data.Map.Strict (Map)
import qualified Data.Map.Strict as M
import Data.Parameterized.Classes
@ -29,6 +28,7 @@ import qualified Data.Parameterized.List as P
import Data.Parameterized.NatRepr
import Data.Parameterized.Some
import Data.Proxy
import Data.Word
import qualified Flexdis86 as F
import Data.Macaw.CFG ( MemRepr(..)
@ -291,8 +291,118 @@ def_cqo = defNullary "cqo" $ do
-- FIXME: special segment stuff?
-- FIXME: CR and debug regs?
exec_mov :: Location (Addr ids) (BVType n) -> BVExpr ids n -> X86Generator st ids ()
exec_mov l v = l .= v
def_mov :: InstructionDef
def_mov =
defBinary "mov" $ \_ loc val -> do
case (loc, val) of
(F.ByteReg r, F.ByteReg src) -> do
v <- get $ reg8Loc src
reg8Loc r .= v
(F.ByteReg r, F.ByteImm i) -> do
reg8Loc r .= bvLit n8 (toInteger i)
(F.ByteReg r, F.Mem8 src) -> do
v <- get =<< getBV8Addr src
reg8Loc r .= v
(F.Mem8 a, F.ByteReg src) -> do
l <- getBV8Addr a
v <- get $ reg8Loc src
l .= v
(F.Mem8 a, F.ByteImm i) -> do
l <- getBV8Addr a
l .= bvLit n8 (toInteger i)
(F.WordReg r, F.WordReg src) -> do
v <- get $ reg16Loc src
reg16Loc r .= v
(F.WordReg r, F.WordSignedImm i) -> do
reg16Loc r .= bvLit n16 (toInteger i)
(F.WordReg r, F.WordImm i) -> do
reg16Loc r .= bvLit n16 (toInteger i)
(F.WordReg r, F.Mem16 src) -> do
v <- get =<< getBV16Addr src
reg16Loc r .= v
(F.Mem16 a, F.WordReg src) -> do
l <- getBV16Addr a
v <- get $ reg16Loc src
l .= v
(F.Mem16 a, F.WordSignedImm i) -> do
l <- getBV16Addr a
l .= bvLit n16 (toInteger i)
(F.DWordReg r, F.DWordReg src) -> do
v <- get $ reg32Loc src
reg32Loc r .= v
(F.DWordReg r, F.DWordSignedImm i) -> do
reg32Loc r .= bvLit n32 (toInteger i)
(F.DWordReg r, F.DWordImm i) -> do
(reg32Loc r .=) =<< getImm32 i
(F.DWordReg r, F.Mem32 src) -> do
v <- get =<< getBV32Addr src
reg32Loc r .= v
(F.Mem32 a, F.DWordReg src) -> do
l <- getBV32Addr a
v <- get $ reg32Loc src
l .= v
(F.Mem32 a, F.DWordSignedImm i) -> do
l <- getBV32Addr a
l .= bvLit n32 (toInteger i)
(F.QWordReg r, F.QWordReg src) -> do
v <- get $ reg64Loc src
reg64Loc r .= v
(F.QWordReg r, F.Mem64 src) -> do
v <- get =<< getBV64Addr src
reg64Loc r .= v
(F.QWordReg r, F.QWordImm i) -> do
reg64Loc r .= bvLit n64 (toInteger i)
(F.QWordReg r, F.DWordSignedImm i) -> do
reg64Loc r .= bvLit n64 (toInteger i)
(F.Mem64 a, F.DWordSignedImm i) -> do
l <- getBV64Addr a
l .= bvLit n64 (toInteger i)
(F.Mem64 a, F.QWordReg src) -> do
l <- getBV64Addr a
v <- get $ reg64Loc src
l .= v
(F.Mem16 a, F.SegmentValue s) -> do
v <- get (SegmentReg s)
l <- getBV16Addr a
l .= v
(F.WordReg r, F.SegmentValue s) -> do
v <- get (SegmentReg s)
reg16Loc r .= v
(F.DWordReg r, F.SegmentValue s) -> do
v <- get (SegmentReg s)
reg_low16 (R.X86_GP (F.reg32_reg r)) .= v
(F.QWordReg r, F.SegmentValue s) -> do
v <- get (SegmentReg s)
fullRegister (R.X86_GP r) .= uext' n64 v
(F.SegmentValue s, F.Mem16 a) -> do
v <- get =<< getBV16Addr a
SegmentReg s .= v
(F.SegmentValue s, F.WordReg r) -> do
v <- get (fullRegister (R.X86_GP (F.reg16_reg r)))
SegmentReg s .= bvTrunc' n16 v
(F.SegmentValue s, F.DWordReg r) -> do
v <- get (fullRegister (R.X86_GP (F.reg32_reg r)))
SegmentReg s .= bvTrunc' n16 v
(F.SegmentValue s, F.QWordReg r) -> do
v <- get (fullRegister (R.X86_GP r))
SegmentReg s .= bvTrunc' n16 v
(_, F.ControlReg _) -> do
error "Do not support moving from/to control registers."
(F.ControlReg _, _) -> do
error "Do not support moving from/to control registers."
(_, F.DebugReg _) -> do
error "Do not support moving from/to debug registers."
(F.DebugReg _, _) -> do
error "Do not support moving from/to debug registers."
_ -> do
error $ "Unexpected arguments to mov: " ++ show loc ++ " " ++ show val
regLocation :: NatRepr n -> X86Reg (BVType 64) -> Location addr (BVType n)
regLocation sz
@ -486,7 +596,7 @@ def_idiv = defUnaryV "idiv" $ \d -> do
--
-- This code assumes that we are not running in kernel mode.
def_hlt :: InstructionDef
def_hlt = defNullary "hlt" $ exception false true (GeneralProtectionException 0)
def_hlt = defNullary "hlt" $ addArchTermStmt Hlt
def_inc :: InstructionDef
def_inc = defUnaryLoc "inc" $ \dst -> do
@ -1004,7 +1114,7 @@ def_call = defUnary "call" $ \_ v -> do
old_pc <- getReg R.X86_IP
push addrRepr old_pc
-- Set IP
tgt <- getJumpTarget v
tgt <- getCallTarget v
rip .= tgt
-- | Conditional jumps
@ -1014,9 +1124,8 @@ def_jcc_list =
defUnary mnem $ \_ v -> do
a <- cc
when_ a $ do
old_pc <- getReg R.X86_IP
off <- getBVValue v knownNat
rip .= old_pc .+ off
tgt <- getJumpTarget v
rip .= tgt
def_jmp :: InstructionDef
def_jmp = defUnary "jmp" $ \_ v -> do
@ -2058,7 +2167,7 @@ def_pselect mnem op sz = defBinaryLV mnem $ \l v -> do
-- PEXTRW Extract word
-- | PINSRW Insert word
exec_pinsrw :: Location (Addr ids) XMMType -> BVExpr ids 16 -> Int8 -> X86Generator st ids ()
exec_pinsrw :: Location (Addr ids) XMMType -> BVExpr ids 16 -> Word8 -> X86Generator st ids ()
exec_pinsrw l v off = do
lv <- get l
-- FIXME: is this the right way around?
@ -2598,7 +2707,7 @@ all_instructions =
, def_imul
, def_inc
, def_leave
, defBinaryLV "mov" $ exec_mov
, def_mov
, defUnaryV "mul" $ exec_mul
, def_neg
, defNullary "nop" $ return ()
@ -2623,7 +2732,7 @@ all_instructions =
, def_xadd
, defBinaryLV "xor" exec_xor
, defNullary "ud2" $ exception false true UndefinedInstructionError
, defNullary "ud2" $ addArchTermStmt UD2
-- Primitive instructions
, def_syscall

View File

@ -2,7 +2,6 @@
module Data.Macaw.X86.Semantics.AVX (all_instructions) where
import Data.Word(Word8)
import Data.Int(Int8)
import Control.Monad(forM_)
import Data.Parameterized.NatRepr
@ -53,7 +52,7 @@ avx3 m k = defInstruction m $ \ii ->
avx4 :: String ->
(forall st ids.
F.Value -> F.Value -> F.Value -> Int8 -> X86Generator st ids ()) ->
F.Value -> F.Value -> F.Value -> Word8 -> X86Generator st ids ()) ->
InstructionDef
avx4 m k = defInstruction m $ \ii ->
case F.iiArgs ii of
@ -229,5 +228,3 @@ all_instructions =
, avxInsert "vpinsrq"
]

View File

@ -1,101 +0,0 @@
flags:
time-locale-compat:
old-locale: false
packages:
- ../../base/
- ../
- ../../symbolic/
- submodules/dwarf
- submodules/elf-edit/
- submodules/flexdis86/
- submodules/parameterized-utils/
extra-deps:
- Cabal-2.0.0.2
- IntervalMap-0.5.2.0
- QuickCheck-2.10.0.1
- StateVar-1.1.0.4
- adjunctions-4.3
- ansi-terminal-0.6.3.1
- ansi-wl-pprint-0.6.8.1
- async-2.1.1.1
- base-orphans-0.6
- bifunctors-5.4.2
- binary-0.8.5.1
- call-stack-0.1.0
- clock-0.7.2
- comonad-5.0.2
- containers-0.5.10.2
- contravariant-1.4
- distributive-0.5.3
- exceptions-0.8.3
- fail-4.9.0.0
- filemanip-0.3.6.3
- free-4.12.4
- hashable-1.2.6.1
- hashtables-1.2.1.1
- kan-extensions-5.0.2
- lens-4.15.4
- mtl-2.2.1
- optparse-applicative-0.14.0.0
- parallel-3.2.1.1
- parsec-3.1.11
- prelude-extras-0.4.0.3
- primitive-0.6.2.0
- profunctors-5.2.1
- random-1.1
- reflection-2.1.2
- regex-base-0.93.2
- regex-tdfa-1.2.2
- semigroupoids-5.2.1
- semigroups-0.18.3
- stm-2.4.4.1
- tagged-0.8.5
- tasty-0.11.2.5
- tasty-hunit-0.9.2
- temporary-1.2.1.1
- text-1.2.2.2
- tf-random-0.5
- th-abstraction-0.2.5.0
- time-locale-compat-0.1.1.3
- transformers-compat-0.5.1.4
- unbounded-delays-0.1.1.0
- unix-compat-0.4.3.1
- unliftio-0.1.0.0
- unliftio-core-0.1.0.0
- unordered-containers-0.2.8.0
- utf8-string-1.0.1.1
- vector-0.12.0.1
- vector-th-unbox-0.2.1.6
- void-0.7.2
- xml-1.3.14
- zlib-0.6.1.2
- zlib-bindings-0.1.1.5
- conduit-1.2.12.1
- conduit-extra-1.1.17
- fast-logger-2.4.10
- lifted-base-0.2.3.11
- mmorph-1.1.0
- monad-control-1.0.2.2
- monad-loops-0.4.3
- old-locale-1.0.0.7
- stm-chans-3.0.0.4
- transformers-base-0.4.4
- auto-update-0.1.4
- easy-file-0.2.1
- streaming-commons-0.1.18
- unix-time-0.3.7
- old-time-1.1.0.3
- base16-bytestring-0.1.1.6
- cereal-0.5.4.0
- cabal-doctest-1.0.3
- pretty-hex-1.0
- tasty-ant-xml-1.1.1
- tasty-quickcheck-0.9.1
- generic-deriving-1.12
resolver: ghc-8.0.2

View File

@ -0,0 +1,15 @@
flags:
time-locale-compat:
old-locale: false
packages:
- ../../base/
- ../
- submodules/dwarf
- submodules/elf-edit/
- submodules/flexdis86/
- submodules/flexdis86/binary-symbols
- submodules/parameterized-utils/
resolver: lts-11.5
allow-newer: true

View File

@ -1 +1 @@
stack.ghc-8.0.2.yaml
stack.ghc-8.2.2.yaml

@ -1 +1 @@
Subproject commit 6e79f23efb4d5ff656cf107893d53565df0ba4de
Subproject commit 81891986f31838cbfe622fb894e643b14ad21a1f

@ -1 +1 @@
Subproject commit 71c32ec99d503f8aae234b3716aff6c3d217bf50
Subproject commit 497854b1eef4e477a11c808ac21a659dbd757ea5

@ -1 +1 @@
Subproject commit d70ece92e67e10b2092bc3f062b2447ac3d1b19f
Subproject commit 3e6a0e87567c7bff8412f451a44bc5b850c3f8ee