Generating the type of the register structure on demand was causing
`TypeRepr` to be the biggest chunk of the heap. Similarly, we only need
to create a new `Position` when we change the offset.
This cleanup consolidates the interface to macaw symbolic into two (and a half)
modules:
- Data.Macaw.Symbolic for clients who just need to symbolically simulate
machine code
- Data.Macaw.Symbolic.Backend for clients that need to implement new
architectures
- Data.Macaw.Symbolic.Memory provides a reusable example implementation of
machine pointer to LLVM memory model pointer mapping
Most functions are now documented and are grouped by use case. There are two
worked (compiling) examples in the haddocks that show how to translate Macaw
into Crucible and then symbolically simulate the results (including setting up
all aspects of Crucible). The examples are included in the symbolic/examples
directory and can be loaded with GHCi to type check them.
The Data.Macaw.Symbolic.Memory module still needs a worked example.
There were very few changes to actual code as part of this overhaul, but there
are a few places where complicated functions were hidden behind newtypes, as
users never need to construct the values themselves (e.g., MacawArchEvalFn and
MacawSymbolicArchFunctions). There was also a slight consolidation of
constraint synonyms to reduce duplication. All callers will have to be updated.
There is also now a README for macaw-symbolic that explains its purpose and
includes pointers to the new haddocks.
This commit also fixes up the (minor) breakage in the macaw-x86-symbolic
implementation from the API changes.
Previously we were asserting that some bogus-y things don't happen.
Unfortunately, these expressions can occur in code that was not
directly written by the user (e.g., comparisons for setting various
machine flags). To allow for that, we allow the expressions, but
give them undefined values. So the proof will succeed only if it
does not depend on the values of these bogus comparisons.