It also cannot handle the UNPACK pragma, which could probably be
removed since -funbox-small-strict-fields is on by default, but
haddock would still fail for the strictness annotation.
By moving the haddocks to the constructor instead of the individual
fields the strictness restriction can be avoided.
The goal is to support a jumptable testcase that is not supported by
the current jump bounds check. The jump bounds check needs to be
augmented so that it understands equality relationships between stack
values and registers, and bounds on both.
This patch tracks when a register points to a concrete stack offset.
As part of this, we droped the AbsDomain instance for AbsBlockState.
Clients should now likely use `fnStartAbsBlockState` in lieu of `top`.
The other client visible change is that the ClassifyFailure
constructor now has an extra argument with details about why
classification failure occured.
Update to API changes in macaw-base in macaw-ppc and macaw-arm
The "block label" abstraction (used during arch-specific disassembly) was removed some time ago in the base macaw library. This change updates macaw-ppc and macaw-arm to remove uses of block labels. The major change is that the disassembly function only returns a single block at a time instead of a sequence of blocks.
To facilitate this, the handling of the PowerPC conditional trap instruction (trap doubleword) is now an architecture-specific terminator instruction instead of encoding the logic of conditional trapping. We will now have to encode the conditional trapping logic in macaw-ppc-symbolic. Note that we have not done so yet.
This commit also updates the expected results of the PowerPC tests; the number of discovered blocks is different, but not significantly so. It is hard to tell if this is a regression or an improvement.
Most of the interface functions took a map from addresses to segments, however this map
was never actually used in macaw-symbolic.
The migration for this change is simply to remove the unused parameter from all
call sites in client code.
This introduces a new datatype CValue for representing constants
in Macaw programs, modifies the existing Value datatype to use then,
and introduces patterns for compatibility with existing datatypes.
The patch also updates the function argument analysis to use more
explicit argument passing rather than monadic updates. The intent is
to help clarify when data is initialized rather than updated.
Finally this updates a README and does some minor updates.