21366abc23
The `Data.Macaw.Symbolic.Memory` module provides a default memory model and initial memory setup that is suitable for many symbolic execution workloads. However, the defaults cannot handle dynamically-linked programs, as it calls `error` when it attempts to determine an initial value for relocations it finds in memory. There are no good defaults for this, as what those values should be depend a lot on what the verifier wants to prove. This commit adds some hooks to configure this behavior in the verifier, and is designed to be extensible and enable other configuration choices where reasonable. The original API is unchanged, as it calls the added `newGlobalMemoryWith` function with a default set of hooks. Callers with special memory handling needs are directed to use that function. |
||
---|---|---|
.github | ||
base | ||
deps | ||
doc | ||
macaw-aarch32 | ||
macaw-aarch32-symbolic | ||
macaw-ppc | ||
macaw-ppc-symbolic | ||
macaw-semmc | ||
refinement | ||
scripts | ||
symbolic | ||
utils/compare-dwarfdump | ||
x86 | ||
x86_symbolic | ||
.gitignore | ||
.gitmodules | ||
cabal.project.dist | ||
cabal.project.freeze.ghc-8.6.5 | ||
cabal.project.freeze.ghc-8.8.4 | ||
cabal.project.freeze.ghc-8.10.4 | ||
cabal.project.werror | ||
LICENSE | ||
README.md |
This is the main repository for the Macaw binary analysis framework. This framework is implemented to offer extensible support for architectures.
Overview
The main algorithm implemented so far is a code discovery procedure
which will discover reachable code in the binary given one or more
entry points such as _start
or the current symbols.
The Macaw libraries are:
- macaw-base -- The core architecture-independent operations and algorithms.
- macaw-symbolic -- Library that provides symbolic simulation of Macaw programs via Crucible.
- macaw-x86 -- Provides definitions enabling Macaw to be used on X86_64 programs.
- macaw-x86-symbolic -- Adds Macaw-symbolic extensions needed to support x86.
- macaw-semmc -- Contains the architecture-independent components of the translation from semmc semantics into macaw IR. This provides the shared infrastructure for all of our backends; this will include the Template Haskell function to create a state transformer function from learned semantics files provided by the semmc library.
- macaw-arm -- Enables macaw for ARM (32-bit) binaries by reading the semantics files generated by semmc and using Template Haskell to generate a function that transforms machine states according to the learned semantics.
- macaw-arm-symbolic -- Enables macaw/crucible symbolic simulation for ARM (32-bit) architectures.
- macaw-ppc -- Enables macaw for PPC (32-bit and 64-bit) binaries by reading the semantics files generated by semmc and using Template Haskell to generate a function that transforms machine states according to the learned semantics..
- macaw-ppc-symbolic -- Enables macaw/crucible symbolic simulation for PPC architectures
- macaw-refinement -- Enables additional architecture-independent refinement of code discovery. This can enable discovery of more functionality than is revealed by the analysis in macaw-base.
The libraries that make up Macaw are released under the BSD license.
These Macaw core libraries depend on a number of different supporting libraries, including:
- elf-edit -- loading and parsing of ELF binary files
- galois-dwarf -- retrieval of Dwarf debugging information from binary files
- flexdis86 -- disassembly and semantics for x86 architectures
- dismantle -- disassembly for ARM and PPC architectures
- semmc -- semantics definitions for ARM and PPC architectures
- crucible -- Symbolic execution and analysis
- what4 -- Symbolic representation for the crucible backend
- parameterized-utils -- utilities for working with parameterized types
Building
Preparation
Dependencies for building Macaw that are not obtained from Hackage are supported via Git submodules:
$ git submodule update --init
Building with Cabal
The Macaw libraries can be individually built with Cabal v1, but as a group and more easily with Cabal v2:
$ ln -s cabal.project.dist cabal.project
$ cabal v2-configure
$ cabal v2-build all
To build a single library, either specify that library name instaed of
all
, or change to that library's subdirectory before building:
$ cabal v2-build macaw-refinement
or
$ cd refinement
$ cabal v2-build
Building with Stack
To build with Stack, first create a top-level stack.yaml
file by
symlinking to one of the provided stack-ghc-<version>.yaml
files. E.g.
$ ln -s stack-ghc-8.6.3.yaml stack.yaml
$ stack build
Status
This codebase is a work in progress. Support for PowerPC support (both 32 and 64 bit) and X86_64 is reasonably robust. Support for ARM is ongoing.
License
This code is made available under the BSD3 license and without any support.