macaw/symbolic
Ryan Scott ce10bc9243 Drop support for GHC 8.6
This allows us to remove gobs of CPP as a consequence.
2022-01-10 16:40:23 -05:00
..
examples Add optional override for MacawArchStmtExtensions to genArchVals (#230) 2021-09-14 18:24:47 -07:00
src/Data/Macaw Drop support for GHC 8.6 2022-01-10 16:40:23 -05:00
test This commit re-implements the memory model used by macaw symbolic 2020-02-11 09:58:53 -08:00
ChangeLog.md Update crucible, semmc submodules; adapt to GaloisInc/crucible#906 2021-11-22 18:27:46 -05:00
LICENSE Update license information. 2017-09-27 15:59:06 -07:00
macaw-symbolic.cabal Drop support for GHC 8.6 2022-01-10 16:40:23 -05:00
README.org Clean up and document the macaw-symbolic API 2019-01-10 18:20:54 -08:00

Overview

The macaw-symbolic library provides a mechanism for translating machine code functions discovered by macaw into Crucible CFGs that can then be symbolically simulated.

The core macaw-symbolic library supports translating generic macaw into crucible, but is not a standalone library. To translate actual machine code, an architecture-specific backend is required. For example, macaw-x86-symbolic can be used to translate x86_64 binaries into crucible. Examples for using macaw-symbolic (and architecture-specific backends) are available in Data.Macaw.Symbolic.

In order to avoid API bloat, the definitions required to implement a new architecture-specific backend are exported through the Data.Macaw.Symbolic.Backend module.

An additional module, Data.Macaw.Symbolic.Memory, provides an example of how to handle memory address translation in the simulator for machine code programs. There are other possible ways to translate memory addresses, but this module provides a versatile example that can serve many common use cases.