mirror of
https://github.com/Helsinki-NLP/OPUS-MT-train.git
synced 2024-11-27 11:03:13 +03:00
159 lines
5.9 KiB
Makefile
159 lines
5.9 KiB
Makefile
# -*-makefile-*-
|
|
#
|
|
# train and test Opus-MT models using MarianNMT
|
|
#
|
|
#--------------------------------------------------------------------
|
|
#
|
|
# make all
|
|
#
|
|
# make data ............... create training data
|
|
# make train .............. train NMT model
|
|
# make translate .......... translate test set
|
|
# make eval ............... evaluate
|
|
#
|
|
# make all-job ............ create config, data and submit training job
|
|
# make train-job .......... submit training job
|
|
#
|
|
#--------------------------------------------------------------------
|
|
# general parameters / variables (see lib/config.mk)
|
|
#
|
|
# * most essential parameters (language IDs used in OPUS):
|
|
#
|
|
# SRCLANGS ................ set of source languages
|
|
# TRGLANGS ................ set of target languages
|
|
#
|
|
# * other important parameters (can leave defaults)
|
|
#
|
|
# MODELTYPE ............... transformer|transformer-align
|
|
# TRAINSET ................ set of corpora used for training (default = all of OPUS)
|
|
# TESTSET ................. test set corpus (default - subset of Tatoeba with some fallbacks)
|
|
# DEVSET .................. validation corpus (default - another subset of TESTSET)
|
|
#
|
|
# DEVSIZE ................. nr of sentences in validation data
|
|
# TESTSIZE ................ nr of sentences in test data
|
|
#
|
|
# TESTSMALLSIZE ........... reduced size for low-resource settings
|
|
# DEVSMALLSIZE ............ reduced size for low-resource settings
|
|
# DEVMINSIZE .............. minimum size for validation data
|
|
#--------------------------------------------------------------------
|
|
# lib/generic.mk
|
|
#
|
|
# There are implicit targets that define certain frequent tasks
|
|
# They typically modify certain settings and make another target
|
|
# with those modifiction. They can be used by adding a suffix to
|
|
# the actual target that needs to be done. For example,
|
|
# adding -RL triggers right-to-left models:
|
|
#
|
|
# make train-RL
|
|
# make eval-RL
|
|
#
|
|
# Another example would be to run something over a number of models,
|
|
# for example, translate and evaluate with those models:
|
|
#
|
|
# make eval-allmodels.submit
|
|
# make eval-allbilingual.submit # only bilingual models
|
|
# make eval-allmultlingual.submit # only multilingual models
|
|
#--------------------------------------------------------------------
|
|
# lib/slurm.mk
|
|
#
|
|
# Defines generic targets for submitting jobs. They work in the
|
|
# same way as the generic targets in lib/generic.mk but submit a
|
|
# job using SLURM sbatch. This only works if the SLURM parameters
|
|
# are correctly set. Check lib/env.mk, lib/config.mk and lib/slurm.mk
|
|
#
|
|
# %.submit ........ job on GPU nodes (for train and translate)
|
|
# %.submitcpu ..... job on CPU nodes (for translate and eval)
|
|
#
|
|
# They can be combined with any other target, even with generic
|
|
# extensions described above. For exaple, subkit a job to train
|
|
# an en-ru right-to-left model for 24 hours you can run
|
|
#
|
|
# make WALLTIME=24 SRCLANGS=en TRGLANGS=ru train-RL.submit
|
|
#
|
|
# Other extensions can be added to modify the SLURM job, for example
|
|
# to submit the same job to run on multiple GPUs on one node:
|
|
#
|
|
# make WALLTIME=24 SRCLANGS=en TRGLANGS=ru train-RL.submit-multigpu
|
|
#
|
|
# There can also be targets that submit jobs via SLURM, for exampl
|
|
# the train-job target. This can be combined with starting a CPU
|
|
# job to create the data sets, which will then submit the train
|
|
# job on GPUs once the training data are ready. For example, to
|
|
# submit a job with 4 threads (using make -j 4) that will run
|
|
# the train-job target on a CPU node allocating 4 CPU cores you
|
|
# can do:
|
|
#
|
|
# make HPC_CORES=4 SRCLANGS=en TRGLANGS=ru train-job-RL.submitcpu
|
|
#
|
|
#--------------------------------------------------------------------
|
|
# lib/dist.mk
|
|
#
|
|
# Targets to create and upload packages of trained models
|
|
#
|
|
#--------------------------------------------------------------------
|
|
# There are various special targets for specific and generic tasks.
|
|
# Look into the makefiles in lib/generic.mk and lib/models/*.mk
|
|
# Many of those targets can be further adjusted by setting certain variables
|
|
# Some examples are below but all of those things are subject to change ....
|
|
#
|
|
#
|
|
# * submit job to train a model in one specific translation direction
|
|
# (make data on CPU and then start a job on a GPU node with 4 GPUs)
|
|
# make SRCLANGS=en TRGLANGS=de unidrectional.submitcpu
|
|
#
|
|
# * submit jobs to train a model in both translation directions
|
|
# (make data on CPU, reverse data and start 2 jobs on a GPU nodes with 4 GPUs each)
|
|
# make SRCLANGS=en TRGLANGS=de bilingual.submitcpu
|
|
#
|
|
# * same as bilingual but guess some HPC settings based on data size
|
|
# make SRCLANGS=en TRGLANGS=de bilingual-dynamic.submitcpu
|
|
#
|
|
# * submit jobs for all OPUS languages to PIVOT language in both directions using bilingual-dynamic
|
|
# make PIVOT=en allopus2pivot # run loop on command line
|
|
# make PIVOT=en allopus2pivot.submitcpu # submit the same as CPU-based job
|
|
# make all2en.submitcpu # short form of the same
|
|
#
|
|
# * submit jobs for all combinations of OPUS languages (this is huge!)
|
|
# (only if there is no train.submit in the workdir of the language pair)
|
|
# make PIVOT=en allopus.submitcpu
|
|
#
|
|
# * submit a job to train a multilingual model with the same languages on both sides
|
|
# make LANGS="en de fr" multilingual.submitcpu
|
|
#
|
|
#--------------------------------------------------------------------
|
|
# Ensembles: One can train a number of models and ensemble them.
|
|
# NOTE: make sure that the data files and vocabularies exist before
|
|
# training models. Otherwise, thete could be a racing situation
|
|
# when those jobs start simultaneously!!!
|
|
#
|
|
#
|
|
# make data
|
|
# make vocab
|
|
# make NR=1 train.submit
|
|
# make NR=2 train.submit
|
|
# make NR=3 train.submit
|
|
#
|
|
# make NR=1 eval.submit
|
|
# make NR=2 eval.submit
|
|
# make NR=3 eval.submit
|
|
#
|
|
# make eval-ensemble.submit
|
|
#
|
|
#--------------------------------------------------------------------
|
|
|
|
include lib/env.mk
|
|
include lib/config.mk
|
|
include lib/tasks.mk
|
|
include lib/projects.mk
|
|
|
|
.PHONY: all
|
|
all:
|
|
${MAKE} rawdata
|
|
${MAKE} local-config
|
|
${MAKE} data
|
|
${MAKE} train
|
|
${MAKE} eval
|
|
${MAKE} compare
|
|
${MAKE} eval-testsets
|
|
|