OPUS-MT-train/lib/config.mk
2020-06-29 12:26:45 +03:00

551 lines
17 KiB
Makefile

# -*-makefile-*-
#
# model configurations
#
## various ways of setting the model languages
## (1) explicitly set source and target languages, for example:
## SRCLANGS="da no sv" TRGLANGS="fi da"
##
## (2) specify language pairs, for example:
## LANGPAIRS="de-en fi-sv da-es"
## this will set SRCLANGS="de fi da" TRGLANGS="en sv es"
##
## if LANGPAIRS are set and the model is not supposed to be SYMMETRIC
## then set SRCLANGS and TRGLANGS to the languages in LANGPAIRS
ifdef LANGPAIRS
SRCLANGS ?= ${sort ${shell echo "${LANGPAIRS}" | tr ' ' "\n" | cut -f1 -d '-'}}
TRGLANGS ?= ${sort ${shell echo "${LANGPAIRS}" | tr ' ' "\n" | cut -f2 -d '-'}}
endif
## final default is sv-fi
SRCLANGS ?= sv
TRGLANGS ?= fi
## set SRC and TRG unless they are specified already
ifneq (${words ${SRCLANGS}},1)
SRC ?= multi
else
SRC = ${SRCLANGS}
endif
ifneq (${words ${TRGLANGS}},1)
TRG ?= multi
else
TRG = ${TRGLANGS}
endif
## OLD: set to first and last lang
## --> this makes the evaluation look like it is one lang-pair
##
# SRC ?= ${firstword ${SRCLANGS}}
# TRG ?= ${lastword ${TRGLANGS}}
## SKIP_LANGPAIRS can be used to skip certain language pairs
## in data preparation for multilingual models
## ---> this can be good to skip BIG language pairs
## that would very much dominate all the data
## must be a pattern that can be matched by egrep
## e.g. en-de|en-fr
SKIP_LANGPAIRS ?= "nothing"
## set SHUFFLE_DATA if you want to shuffle data for
## each language pair to be added to the training data
## --> especially useful in connection with FIT_DATA_SIZE
##
# SHUFFLE_DATA = 1
## set FIT_DATA_SIZE to a specific value to fit the training data
## to a certain number of lines for each language pair in the collection
## --> especially useful for multilingual models for balancing the
## the size for each language pair
## the script does both, over- and undersampling
##
# FIT_DATA_SIZE = 100000
## maximum number of repeating the same data set
## in oversampling
MAX_OVER_SAMPLING ?= 50
## set CHECK_TRAINDATA_SIZE if you want to check that each
## bitext has equal number of lines in source and target
## ---> this only prints a warning if not
##
# CHECK_TRAINDATA_SIZE
# sorted languages and langpair used to match resources in OPUS
SORTLANGS = $(sort ${SRC} ${TRG})
SPACE = $(empty) $(empty)
LANGPAIR = ${firstword ${SORTLANGS}}-${lastword ${SORTLANGS}}
LANGSRCSTR = ${subst ${SPACE},+,$(SRCLANGS)}
LANGTRGSTR = ${subst ${SPACE},+,$(TRGLANGS)}
LANGPAIRSTR = ${LANGSRCSTR}-${LANGTRGSTR}
## for monolingual things
LANGS ?= ${SRCLANGS}
LANGID ?= ${firstword ${LANGS}}
LANGSTR ?= ${subst ${SPACE},+,$(LANGS)}
## for same language pairs: add numeric extension
## (this is neccessary to keep source and target files separate)
ifeq (${SRC},$(TRG))
SRCEXT = ${SRC}1
TRGEXT = ${SRC}2
else
SRCEXT = ${SRC}
TRGEXT = ${TRG}
endif
## set a flag to use target language labels
## in multi-target models
ifneq (${words ${TRGLANGS}},1)
USE_TARGET_LABELS = 1
endif
## set additional argument options for opus_read (if it is used)
## e.g. OPUSREAD_ARGS = -a certainty -tr 0.3
OPUSREAD_ARGS =
## ELRA corpora
ELRA_CORPORA = ${patsubst %/latest/xml/${LANGPAIR}.xml.gz,%,\
${patsubst ${OPUSHOME}/%,%,\
${shell ls ${OPUSHOME}/ELRA-*/latest/xml/${LANGPAIR}.xml.gz 2>/dev/null}}}
## exclude certain data sets
## TODO: include ELRA corpora
EXCLUDE_CORPORA ?= WMT-News MPC1 ${ELRA_CORPORA}
## all of OPUS (NEW: don't require MOSES format)
OPUSCORPORA = $(filter-out ${EXCLUDE_CORPORA} ,${patsubst %/latest/xml/${LANGPAIR}.xml.gz,%,\
${patsubst ${OPUSHOME}/%,%,\
${shell ls ${OPUSHOME}/*/latest/xml/${LANGPAIR}.xml.gz 2>/dev/null}}})
## monolingual data
OPUSMONOCORPORA = $(filter-out ${EXCLUDE_CORPORA} ,${patsubst %/latest/mono/${LANGID}.txt.gz,%,\
${patsubst ${OPUSHOME}/%,%,\
${shell ls ${OPUSHOME}/*/latest/mono/${LANGID}.txt.gz}}})
## all languages in OPUS (requires the opus-langs.txt file)
ifneq (${wildcard opus-langs.txt},)
OPUSLANGS = ${filter-out simple,${shell head -1 opus-langs.txt}}
endif
ALL_LANG_PAIRS = ${shell ls ${WORKHOME} | grep -- '-' | grep -v old}
ALL_BILINGUAL_MODELS = ${shell echo '${ALL_LANG_PAIRS}' | tr ' ' "\n" | grep -v -- '\+'}
ALL_MULTILINGUAL_MODELS = ${shell echo '${ALL_LANG_PAIRS}' | tr ' ' "\n" | grep -- '\+'}
## size of dev data, test data and BPE merge operations
## NEW default size = 2500 (keep more for training for small languages)
DEVSIZE = 2500
TESTSIZE = 2500
## NEW: significantly reduce devminsize
## (= absolute minimum we need as devdata)
## NEW: define an alternative small size for DEV and TEST
## OLD DEVMINSIZE:
# DEVMINSIZE = 1000
DEVSMALLSIZE = 1000
TESTSMALLSIZE = 1000
DEVMINSIZE = 250
##----------------------------------------------------------------------------
## train/dev/test data
##----------------------------------------------------------------------------
## dev/test data: default = Tatoeba otherwise, GlobalVoices, JW300, GNOME or bibl-uedin
## - check that data exist
## - check that there are at least 2 x DEVMINSIZE examples
## TODO: this does not work well for multilingual models!
## TODO: find a better solution than looking into *.info files (use OPUS API?)
## ---> query for corpora bigger than a certain size and look for a suitable test/dev corpus
ifneq ($(wildcard ${OPUSHOME}/Tatoeba/latest/moses/${LANGPAIR}.txt.zip),)
ifeq ($(shell if (( `head -1 ${OPUSHOME}/Tatoeba/latest/info/${LANGPAIR}.txt.info` \
> $$((${DEVMINSIZE} + ${DEVMINSIZE})) )); then echo "ok"; fi),ok)
DEVSET = Tatoeba
endif
endif
## backoff to GlobalVoices
ifndef DEVSET
ifneq ($(wildcard ${OPUSHOME}/GlobalVoices/latest/moses/${LANGPAIR}.txt.zip),)
ifeq ($(shell if (( `head -1 ${OPUSHOME}/GlobalVoices/latest/info/${LANGPAIR}.txt.info` \
> $$((${DEVMINSIZE} + ${DEVMINSIZE})) )); then echo "ok"; fi),ok)
DEVSET = GlobalVoices
endif
endif
endif
## backoff to infopankki
ifndef DEVSET
ifneq ($(wildcard ${OPUSHOME}/infopankki/latest/moses/${LANGPAIR}.txt.zip),)
ifeq ($(shell if (( `head -1 ${OPUSHOME}/infopankki/latest/info/${LANGPAIR}.txt.info` \
> $$((${DEVMINSIZE} + ${DEVMINSIZE})) )); then echo "ok"; fi),ok)
DEVSET = infopankki
endif
endif
endif
## backoff to JW300
ifndef DEVSET
ifneq ($(wildcard ${OPUSHOME}/JW300/latest/xml/${LANGPAIR}.xml.gz),)
ifeq ($(shell if (( `sed -n 2p ${OPUSHOME}/JW300/latest/info/${LANGPAIR}.info` \
> $$((${DEVMINSIZE} + ${DEVMINSIZE})) )); then echo "ok"; fi),ok)
DEVSET = JW300
endif
endif
endif
## otherwise: bible-uedin
ifndef DEVSET
DEVSET = bible-uedin
endif
## increase dev/test sets for Tatoeba (very short sentences!)
ifeq (${DEVSET},Tatoeba)
DEVSIZE = 5000
TESTSIZE = 5000
endif
## in case we want to use some additional data sets
# EXTRA_TRAINSET =
## TESTSET= DEVSET, TRAINSET = OPUS - WMT-News,DEVSET.TESTSET
TESTSET ?= ${DEVSET}
TRAINSET ?= $(filter-out ${EXCLUDE_CORPORA} ${DEVSET} ${TESTSET},${OPUSCORPORA} ${EXTRA_TRAINSET})
MONOSET ?= $(filter-out ${EXCLUDE_CORPORA} ${DEVSET} ${TESTSET},${OPUSMONOCORPORA} ${EXTRA_TRAINSET})
## 1 = use remaining data from dev/test data for training
USE_REST_DEVDATA ?= 1
##----------------------------------------------------------------------------
## pre-processing and vocabulary
##----------------------------------------------------------------------------
BPESIZE ?= 32000
SRCBPESIZE ?= ${BPESIZE}
TRGBPESIZE ?= ${BPESIZE}
VOCABSIZE ?= $$((${SRCBPESIZE} + ${TRGBPESIZE} + 1000))
## for document-level models
CONTEXT_SIZE = 100
## pre-processing type
# PRE = norm
PRE = simple
PRE_SRC = spm${SRCBPESIZE:000=}k
PRE_TRG = spm${TRGBPESIZE:000=}k
##-------------------------------------
## default name of the data set (and the model)
##-------------------------------------
ifndef DATASET
DATASET = opus
endif
ifndef BPEMODELNAME
BPEMODELNAME = opus
endif
##-------------------------------------
## OLD OLD OLD
## name of the data set (and the model)
## - single corpus = use that name
## - multiple corpora = opus
## add also vocab size to the name
##-------------------------------------
ifndef OLDDATASET
ifeq (${words ${TRAINSET}},1)
OLDDATASET = ${TRAINSET}
else
OLDDATASET = opus
endif
endif
## DATADIR = directory where the train/dev/test data are
## WORKDIR = directory used for training
DATADIR = ${WORKHOME}/data
WORKDIR = ${WORKHOME}/${LANGPAIRSTR}
MODELDIR = ${WORKHOME}/models/${LANGPAIRSTR}
SPMDIR = ${WORKHOME}/SentencePieceModels
## data sets
TRAIN_BASE = ${WORKDIR}/train/${DATASET}
TRAIN_SRC = ${TRAIN_BASE}.src
TRAIN_TRG = ${TRAIN_BASE}.trg
TRAIN_ALG = ${TRAIN_BASE}${TRAINSIZE}.${PRE_SRC}-${PRE_TRG}.src-trg.alg.gz
## training data in local space
LOCAL_TRAIN_SRC = ${TMPDIR}/${LANGPAIRSTR}/train/${DATASET}.src
LOCAL_TRAIN_TRG = ${TMPDIR}/${LANGPAIRSTR}/train/${DATASET}.trg
LOCAL_MONO_DATA = ${TMPDIR}/${LANGSTR}/train/${DATASET}.mono
## dev and test data come from one specific data set
## if we have a bilingual model
ifeq (${words ${SRCLANGS}},1)
ifeq (${words ${TRGLANGS}},1)
DEV_SRC = ${WORKDIR}/val/${DEVSET}.src
DEV_TRG = ${WORKDIR}/val/${DEVSET}.trg
TEST_SRC = ${WORKDIR}/test/${TESTSET}.src
TEST_TRG = ${WORKDIR}/test/${TESTSET}.trg
TESTSET_NAME = ${TESTSET}
endif
endif
## otherwise we give them a generic name
DEVSET_NAME ?= opus-dev
TESTSET_NAME ?= opus-test
DEV_SRC ?= ${WORKDIR}/val/${DEVSET_NAME}.src
DEV_TRG ?= ${WORKDIR}/val/${DEVSET_NAME}.trg
TEST_SRC ?= ${WORKDIR}/test/${TESTSET_NAME}.src
TEST_TRG ?= ${WORKDIR}/test/${TESTSET_NAME}.trg
MODEL_SUBDIR =
MODEL = ${MODEL_SUBDIR}${DATASET}${TRAINSIZE}.${PRE_SRC}-${PRE_TRG}
MODELTYPE = transformer-align
NR = 1
MODEL_BASENAME = ${MODEL}.${MODELTYPE}.model${NR}
MODEL_VALIDLOG = ${MODEL}.${MODELTYPE}.valid${NR}.log
MODEL_TRAINLOG = ${MODEL}.${MODELTYPE}.train${NR}.log
MODEL_START = ${WORKDIR}/${MODEL_BASENAME}.npz
MODEL_FINAL = ${WORKDIR}/${MODEL_BASENAME}.npz.best-perplexity.npz
MODEL_VOCABTYPE = yml
MODEL_VOCAB = ${WORKDIR}/${MODEL}.vocab.${MODEL_VOCABTYPE}
MODEL_DECODER = ${MODEL_FINAL}.decoder.yml
## test set translation and scores
TEST_TRANSLATION = ${WORKDIR}/${TESTSET_NAME}.${MODEL}${NR}.${MODELTYPE}.${SRC}.${TRG}
TEST_EVALUATION = ${TEST_TRANSLATION}.eval
TEST_COMPARISON = ${TEST_TRANSLATION}.compare
## parameters for running Marian NMT
MARIAN_GPUS = 0
MARIAN_EXTRA =
MARIAN_VALID_FREQ = 10000
MARIAN_SAVE_FREQ = ${MARIAN_VALID_FREQ}
MARIAN_DISP_FREQ = ${MARIAN_VALID_FREQ}
MARIAN_EARLY_STOPPING = 10
MARIAN_VALID_MINI_BATCH = 16
MARIAN_MAXI_BATCH = 500
MARIAN_DROPOUT = 0.1
MARIAN_MAX_LENGTH = 500
MARIAN_DECODER_GPU = -b 12 -n1 -d ${MARIAN_GPUS} --mini-batch 8 --maxi-batch 32 --maxi-batch-sort src \
--max-length ${MARIAN_MAX_LENGTH} --max-length-crop
MARIAN_DECODER_CPU = -b 12 -n1 --cpu-threads ${HPC_CORES} --mini-batch 8 --maxi-batch 32 --maxi-batch-sort src \
--max-length ${MARIAN_MAX_LENGTH} --max-length-crop
MARIAN_DECODER_FLAGS = ${MARIAN_DECODER_GPU}
## TODO: currently marianNMT crashes with workspace > 26000
ifeq (${GPU},p100)
MARIAN_WORKSPACE = 13000
else ifeq (${GPU},v100)
# MARIAN_WORKSPACE = 30000
# MARIAN_WORKSPACE = 26000
MARIAN_WORKSPACE = 24000
# MARIAN_WORKSPACE = 18000
# MARIAN_WORKSPACE = 16000
else
MARIAN_WORKSPACE = 10000
endif
## check whether we have GPUs available
## if not: use CPU mode for decoding
NVIDIA_SMI = ${shell which nvidia-smi 2>dev/null}
ifdef NVIDIA_SMI
ifeq (${shell nvidia-smi | grep failed | wc -l},1)
MARIAN = ${MARIANCPU}
MARIAN_DECODER_FLAGS = ${MARIAN_DECODER_CPU}
MARIAN_EXTRA = --cpu-threads ${HPC_CORES}
endif
else
MARIAN = ${MARIANCPU}
MARIAN_DECODER_FLAGS = ${MARIAN_DECODER_CPU}
MARIAN_EXTRA = --cpu-threads ${HPC_CORES}
endif
## weights associated with training examples
ifneq ("$(wildcard ${TRAIN_WEIGHTS})","")
MARIAN_TRAIN_WEIGHTS = --data-weighting ${TRAIN_WEIGHTS}
endif
### training a model with Marian NMT
##
## NR allows to train several models for proper ensembling
## (with shared vocab)
##
## DANGER: if several models are started at the same time
## then there is some racing issue with creating the vocab!
ifdef NR
SEED=${NR}${NR}${NR}${NR}
else
SEED=1234
endif
## list of all languages in OPUS
opus-langs.txt:
wget -O $@.tmp http://opus.nlpl.eu/opusapi/?languages=true
grep '",' $@.tmp | tr '",' ' ' | sort | tr "\n" ' ' | sed 's/ */ /g' > $@
rm -f $@.tmp
## make some data size-specific configuration parameters
## TODO: is it OK to delete LOCAL_TRAIN data?
.PHONY: local-config
local-config: ${WORKDIR}/config.mk
SMALLEST_TRAINSIZE = 10000
SMALL_TRAINSIZE = 100000
MEDIUM_TRAINSIZE = 500000
LARGE_TRAINSIZE = 1000000
LARGEST_TRAINSIZE = 10000000
${WORKDIR}/config.mk:
mkdir -p ${dir $@}
if [ -e ${TRAIN_SRC}.clean.${PRE_SRC}${TRAINSIZE}.gz ]; then \
${MAKE} ${TRAIN_SRC}.clean.${PRE_SRC}${TRAINSIZE}.charfreq \
${TRAIN_TRG}.clean.${PRE_TRG}${TRAINSIZE}.charfreq; \
s=`zcat ${TRAIN_SRC}.clean.${PRE_SRC}${TRAINSIZE}.gz | head -10000001 | wc -l`; \
S=`cat ${TRAIN_SRC}.clean.${PRE_SRC}${TRAINSIZE}.charfreq | wc -l`; \
T=`cat ${TRAIN_TRG}.clean.${PRE_TRG}${TRAINSIZE}.charfreq | wc -l`; \
else \
${MAKE} ${LOCAL_TRAIN_SRC}; \
${MAKE} ${LOCAL_TRAIN_SRC}.charfreq ${LOCAL_TRAIN_TRG}.charfreq; \
s=`head -10000001 ${LOCAL_TRAIN_SRC} | wc -l`; \
S=`cat ${LOCAL_TRAIN_SRC}.charfreq | wc -l`; \
T=`cat ${LOCAL_TRAIN_TRG}.charfreq | wc -l`; \
fi; \
if [ $$s -gt ${LARGEST_TRAINSIZE} ]; then \
echo "# ${LANGPAIRSTR} training data bigger than 10 million" > $@; \
echo "GPUJOB_HPC_MEM = 8g" >> $@; \
echo "GPUJOB_SUBMIT = -multigpu" >> $@; \
echo "BPESIZE = ${BPESIZE}" >> $@; \
echo "DEVSIZE = ${DEVSIZE}" >> $@; \
echo "TESTSIZE = ${TESTSIZE}" >> $@; \
echo "DEVMINSIZE = ${DEVMINSIZE}" >> $@; \
elif [ $$s -gt ${LARGE_TRAINSIZE} ]; then \
echo "# ${LANGPAIRSTR} training data bigger than 1 million" > $@; \
echo "GPUJOB_HPC_MEM = 8g" >> $@; \
echo "GPUJOB_SUBMIT = " >> $@; \
echo "MARIAN_VALID_FREQ = 2500" >> $@; \
echo "BPESIZE = ${BPESIZE}" >> $@; \
echo "DEVSIZE = ${DEVSIZE}" >> $@; \
echo "TESTSIZE = ${TESTSIZE}" >> $@; \
echo "DEVMINSIZE = ${DEVMINSIZE}" >> $@; \
elif [ $$s -gt ${MEDIUM_TRAINSIZE} ]; then \
echo "# ${LANGPAIRSTR} training data bigger than 500k" > $@; \
echo "GPUJOB_HPC_MEM = 4g" >> $@; \
echo "GPUJOB_SUBMIT = " >> $@; \
echo "MARIAN_VALID_FREQ = 2500" >> $@; \
echo "MARIAN_WORKSPACE = 10000" >> $@; \
echo "BPESIZE = 12000" >> $@; \
echo "DEVSIZE = ${DEVSIZE}" >> $@; \
echo "TESTSIZE = ${TESTSIZE}" >> $@; \
echo "DEVMINSIZE = ${DEVMINSIZE}" >> $@; \
elif [ $$s -gt ${SMALL_TRAINSIZE} ]; then \
echo "# ${LANGPAIRSTR} training data bigger than 100k" > $@; \
echo "GPUJOB_HPC_MEM = 4g" >> $@; \
echo "GPUJOB_SUBMIT = " >> $@; \
echo "MARIAN_VALID_FREQ = 1000" >> $@; \
echo "MARIAN_WORKSPACE = 5000" >> $@; \
echo "MARIAN_VALID_MINI_BATCH = 8" >> $@; \
echo "BPESIZE = 4000" >> $@; \
echo "DEVSIZE = 1000" >> $@; \
echo "TESTSIZE = 1000" >> $@; \
echo "DEVMINSIZE = 250" >> $@; \
elif [ $$s -gt ${SMALLEST_TRAINSIZE} ]; then \
echo "# ${LANGPAIRSTR} training data less than 100k" > $@; \
echo "GPUJOB_HPC_MEM = 4g" >> $@; \
echo "GPUJOB_SUBMIT = " >> $@; \
echo "MARIAN_VALID_FREQ = 1000" >> $@; \
echo "MARIAN_WORKSPACE = 3500" >> $@; \
echo "MARIAN_DROPOUT = 0.5" >> $@; \
echo "MARIAN_VALID_MINI_BATCH = 4" >> $@; \
echo "BPESIZE = 1000" >> $@; \
echo "DEVSIZE = 500" >> $@; \
echo "TESTSIZE = 1000" >> $@; \
echo "DEVMINSIZE = 100" >> $@; \
else \
echo "${LANGPAIRSTR} too small"; \
fi; \
if [ -e $@ ]; then \
if [ $$S -gt 1000 ]; then \
echo "SRCBPESIZE = 32000" >> $@; \
fi; \
if [ $$T -gt 1000 ]; then \
echo "TRGBPESIZE = 32000" >> $@; \
fi; \
fi
echo "SRCLANGS = ${SRCLANGS}" >> $@
echo "TRGLANGS = ${TRGLANGS}" >> $@
echo "SKIPLANGS = ${SKIPLANGS}" >> $@
echo "LANGPAIRSTR = ${LANGPAIRSTR}" >> $@
echo "DATASET = ${DATASET}" >> $@
echo "TRAINSET = ${TRAINSET}" >> $@
echo "DEVSET = ${DEVSET}" >> $@
echo "TESTSET = ${TESTSET}" >> $@
echo "PRE = ${PRE}" >> $@
echo "PRE_SRC = ${PRE_SRC}" >> $@
echo "PRE_TRG = ${PRE_TRG}" >> $@
ifdef SHUFFLE_DATA
echo "SHUFFLE_DATA = ${SHUFFLE_DATA}" >> $@
endif
ifdef FIT_DATA_SIZE
echo "FIT_DATA_SIZE = ${FIT_DATA_SIZE}" >> $@
endif
echo "MAX_OVER_SAMPLING = ${MAX_OVER_SAMPLING}" >> $@
echo "USE_REST_DEVDATA = ${USE_REST_DEVDATA}" >> $@
ifdef USE_TARGET_LABELS
echo "USE_TARGET_LABELS = ${USE_TARGET_LABELS}" >> $@
endif