OPUS-MT-train/lib/sentencepiece.mk
2022-02-17 09:43:50 +02:00

356 lines
13 KiB
Makefile

# -*-makefile-*-
#
# create sentence piece models
#
# - create models from each part of a bitext
# - individual models for each language in each language pair
# - do not create new models if the data changes
# ---> models need to use the same segmentation/vocab
#
# TODO: should we do that for monolingual files instead
# for creating them from the bilingual data only?
# ---> could use more data
# ---> don't need to re-create models for each language pair
#
.INTERMEDIATE: ${LOCAL_MONO_DATA}.${PRE}.charfreq
.INTERMEDIATE: ${LOCAL_TRAIN_SRC}.charfreq ${LOCAL_TRAIN_TRG}.charfreq
##----------------------------------------------
## sentence piece
##----------------------------------------------
spm-models: ${SPMSRCMODEL} ${SPMTRGMODEL}
# SPMEXTRA = --split_by_whitespace=false
SPMEXTRA =
## set to 1 if you want to generate SPM vocab file
GENERATE_SPM_VOC = 0
# SPM_INPUT_SIZE = 10000000
SPM_INPUT_SIZE = 2000000
SPM_SHUFFLE_INPUT = 0
ifneq (${DATA_IS_SHUFFLED},1)
SPM_PREPROCESS = grep . | ${SHUFFLE}
else
SPM_PREPROCESS = grep .
endif
##-------------------------------------------
## simple trick to use a joint subword model:
## just duplicate the model to work for
## source and target language texts
##-------------------------------------------
ifeq ($(USE_JOINT_SUBWORD_MODEL),1)
${SPMSRCMODEL}: ${SPM_MODEL}
ln -s $< $@
ln -s $<.vocab $@.vocab
${SPMTRGMODEL}: ${SPM_MODEL}
ln -s $< $@
ln -s $<.vocab $@.vocab
else
##-------------------------------------------
## source and target side specific subword models:
##
## we keep the dependency on LOCAL_TRAIN_SRC
## to make multi-threaded make calls behave properly
## --> otherwise there can be multiple threads writing to the same file!
##-------------------------------------------
${SPMSRCMODEL}: ${LOCAL_TRAIN_SRC}
ifneq (${wildcard ${SPMSRCMODEL}},)
@echo "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"
@echo "!!!!!!!! $@ already exists!"
@echo "!!!!!!!! re-use the old one even if there is new training data"
@echo "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"
@echo "!!!!!!!! back-date $<"
touch -r $@ $<
else
mkdir -p ${dir $@}
ifeq (${USE_TARGET_LABELS},1)
cut -f2- -d ' ' ${LOCAL_TRAIN_SRC} | ${SPM_PREPROCESS} | head -${SPM_INPUT_SIZE} > ${LOCAL_TRAIN_SRC}.text
else
cat ${LOCAL_TRAIN_SRC} | ${SPM_PREPROCESS} | head -${SPM_INPUT_SIZE} > ${LOCAL_TRAIN_SRC}.text
endif
${MAKE} ${LOCAL_TRAIN_SRC}.charfreq
if [ `cat ${LOCAL_TRAIN_SRC}.charfreq | wc -l` -gt 1000 ]; then \
${SPM_TRAIN} ${SPMEXTRA} \
--model_prefix=$@ --vocab_size=$(SUBWORD_SRCVOCAB_SIZE) --input=${LOCAL_TRAIN_SRC}.text \
--input_sentence_size ${SPM_INPUT_SIZE} --shuffle_input_sentence ${SPM_SHUFFLE_INPUT} \
--character_coverage=0.9995 --hard_vocab_limit=false; \
else \
${SPM_TRAIN} ${SPMEXTRA} \
--model_prefix=$@ --vocab_size=$(SUBWORD_SRCVOCAB_SIZE) --input=${LOCAL_TRAIN_SRC}.text \
--input_sentence_size ${SPM_INPUT_SIZE} --shuffle_input_sentence ${SPM_SHUFFLE_INPUT} \
--character_coverage=1.0 --hard_vocab_limit=false; \
fi
mv $@.model $@
ifeq (${GENERATE_SPM_VOC},1)
${SPM_ENCODE} --model=$@ --generate_vocabulary < ${LOCAL_TRAIN_SRC}.text > $@.voc
endif
rm -f ${LOCAL_TRAIN_SRC}.text
endif
## no labels on the target language side
${SPMTRGMODEL}: ${LOCAL_TRAIN_TRG}
ifneq (${wildcard ${SPMTRGMODEL}},)
@echo "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"
@echo "!!!!!!!! $@ already exists!"
@echo "!!!!!!!! re-use the old one even if there is new training data"
@echo "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"
@echo "!!!!!!!! back-date $<"
touch -r $@ $<
else
mkdir -p ${dir $@}
cat ${LOCAL_TRAIN_TRG} | ${SPM_PREPROCESS} | head -${SPM_INPUT_SIZE} > ${LOCAL_TRAIN_TRG}.text
${MAKE} ${LOCAL_TRAIN_TRG}.charfreq
if [ `cat ${LOCAL_TRAIN_TRG}.charfreq | wc -l` -gt 1000 ]; then \
${SPM_TRAIN} ${SPMEXTRA} \
--model_prefix=$@ --vocab_size=$(SUBWORD_TRGVOCAB_SIZE) --input=${LOCAL_TRAIN_TRG}.text \
--input_sentence_size ${SPM_INPUT_SIZE} --shuffle_input_sentence ${SPM_SHUFFLE_INPUT} \
--character_coverage=0.9995 --hard_vocab_limit=false; \
else \
${SPM_TRAIN} ${SPMEXTRA} \
--model_prefix=$@ --vocab_size=$(SUBWORD_TRGVOCAB_SIZE) --input=${LOCAL_TRAIN_TRG}.text \
--input_sentence_size ${SPM_INPUT_SIZE} --shuffle_input_sentence ${SPM_SHUFFLE_INPUT} \
--character_coverage=1.0 --hard_vocab_limit=false; \
fi
mv $@.model $@
ifeq (${GENERATE_SPM_VOC},1)
${SPM_ENCODE} --model=$@ --generate_vocabulary < ${LOCAL_TRAIN_TRG}.text > $@.voc
endif
rm -f ${LOCAL_TRAIN_TRG}.text
endif
endif
##-------------------------------------------
## joint sentence piece model
## (concatenate both, source and target language texts)
##-------------------------------------------
${SPM_MODEL}: ${LOCAL_TRAIN_SRC} ${LOCAL_TRAIN_TRG}
ifneq (${wildcard ${SPM_MODEL}},)
@echo "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"
@echo "!!!!!!!! $@ already exists!"
@echo "!!!!!!!! re-use the old one even if there is new training data"
@echo "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"
@echo "!!!!!!!! back-date $^"
touch -r $@ $<
else
mkdir -p ${dir $@}
cat ${LOCAL_TRAIN_TRG} | ${SPM_PREPROCESS} | head -$$((${SPM_INPUT_SIZE}/2)) > ${LOCAL_TRAIN}.tmp
cat ${LOCAL_TRAIN_TRG} | ${SPM_PREPROCESS} | head -$$((${SPM_INPUT_SIZE}/2)) >> ${LOCAL_TRAIN}.tmp
${SHUFFLE} < ${LOCAL_TRAIN}.tmp > ${LOCAL_TRAIN}.text
rm -f ${LOCAL_TRAIN}.tmp
${MAKE} ${LOCAL_TRAIN}.text.charfreq
if [ `cat ${LOCAL_TRAIN}.text.charfreq | wc -l` -gt 1000 ]; then \
${SPM_TRAIN} ${SPMEXTRA} \
--model_prefix=$@ --vocab_size=$(SUBWORD_TRGVOCAB_SIZE) --input=${LOCAL_TRAIN}.text \
--input_sentence_size ${SPM_INPUT_SIZE} --shuffle_input_sentence ${SPM_SHUFFLE_INPUT} \
--character_coverage=0.9995 --hard_vocab_limit=false; \
else \
${SPM_TRAIN} ${SPMEXTRA} \
--model_prefix=$@ --vocab_size=$(SUBWORD_TRGVOCAB_SIZE) --input=${LOCAL_TRAIN}.text \
--input_sentence_size ${SPM_INPUT_SIZE} --shuffle_input_sentence ${SPM_SHUFFLE_INPUT} \
--character_coverage=1.0 --hard_vocab_limit=false; \
fi
mv $@.model $@
ifeq (${GENERATE_SPM_VOC},1)
${SPM_ENCODE} --model=$@ --generate_vocabulary < ${LOCAL_TRAIN}.text > $@.voc
endif
rm -f ${LOCAL_TRAIN}.text
endif
## sentence piece model trained on monolingual data
SPM_MONO = ${SPMDIR}/${LANGSTR}/${SUBWORD_MODEL_NAME}.${SUBWORDS}${BPESIZE:000=}k-model
SPM_SRCMONO = ${SPMDIR}/${LANGSRCSTR}/${SUBWORD_MODEL_NAME}.${SUBWORDS}${SUBWORD_SRCVOCAB_SIZE:000=}k-model
SPM_TRGMONO = ${SPMDIR}/${LANGTRGSTR}/${SUBWORD_MODEL_NAME}.${SUBWORDS}${SUBWORD_TRGVOCAB_SIZE:000=}k-model
## vocabulary files created from monolingual data
SPMVOCAB = ${SPMDIR}/${LANGSTR}/${SUBWORD_MODEL_NAME}.${SUBWORDS}${BPESIZE:000=}k.vocab.yml
SPMSRCVOCAB = ${SPMDIR}/${LANGSRCSTR}/${SUBWORD_MODEL_NAME}.${SUBWORDS}${SUBWORD_SRCVOCAB_SIZE:000=}k.vocab.yml
SPMTRGVOCAB = ${SPMDIR}/${LANGTRGSTR}/${SUBWORD_MODEL_NAME}.${SUBWORDS}${SUBWORD_TRGVOCAB_SIZE:000=}k.vocab.yml
.PRECIOUS: ${SPM_MONO} ${SPM_SRCMONO} ${SPM_TRGMONO} ${SPMVOCAB}
mono-spm-vocab: ${SPMVOCAB}
ifneq (${SPMVOCAB},${SPMSRCVOCAB})
${SPMSRCVOCAB}:
${MAKE} LANGS="${SRCLANGS}" BPESIZE=${SUBWORD_SRCVOCAB_SIZE} mono-spm-vocab
endif
ifneq (${SPMSRCVOCAB},${SPMTRGVOCAB})
ifneq (${SPMVOCAB},${SPMTRGVOCAB})
${SPMTRGVOCAB}:
${MAKE} LANGS="${TRGLANGS}" BPESIZE=${SUBWORD_TRGVOCAB_SIZE} mono-spm-vocab
endif
endif
${SPMVOCAB}: ${LOCAL_MONO_DATA}.${PRE} ${SPM_MONO}
ifeq ($(wildcard ${SPMVOCAB}),)
mkdir -p ${dir $@}
${SPM_ENCODE} --model ${SPM_MONO} < $< |\
${MARIAN_VOCAB} --max-size ${VOCABSIZE} > $@
else
@echo "$@ already exists!"
@echo "WARNING! No new vocabulary is created even though the data has changed!"
@echo "WARNING! Delete the file if you want to start from scratch!"
touch $@
endif
## sentence piece model trained on monolingual data
mono-spm-model: ${SPM_MONO}
ifneq (${SPM_MONO},${SPM_SRCMONO})
${SPM_SRCMONO}:
${MAKE} LANGS="${SRCLANGS}" BPESIZE=${SUBWORD_SRCVOCAB_SIZE} mono-spm-model
endif
ifneq (${SPM_SRCMONO},${SPM_TRGMONO})
ifneq (${SPM_MONO},${SPM_TRGMONO})
${SPM_TRGMONO}:
${MAKE} LANGS="${TRGLANGS}" BPESIZE=${SUBWORD_TRGVOCAB_SIZE} mono-spm-model
endif
endif
${SPM_MONO}: ${LOCAL_MONO_DATA}.${PRE}
ifeq ($(wildcard ${SPM_MONO}),)
mkdir -p ${dir $@}
cat $< | ${SPM_PREPROCESS} | head -${SPM_INPUT_SIZE} > $<.text
${MAKE} ${LOCAL_MONO_DATA}.${PRE}.charfreq
if [ `cat ${LOCAL_MONO_DATA}.${PRE}.charfreq | wc -l` -gt 1000 ]; then \
${SPM_TRAIN} ${SPMEXTRA} \
--model_prefix=$@ --vocab_size=$(SUBWORD_TRGVOCAB_SIZE) --input=$<.text \
--input_sentence_size ${SPM_INPUT_SIZE} --shuffle_input_sentence ${SPM_SHUFFLE_INPUT} \
--character_coverage=0.9995 --hard_vocab_limit=false; \
else \
${SPM_TRAIN} ${SPMEXTRA} \
--model_prefix=$@ --vocab_size=$(SUBWORD_TRGVOCAB_SIZE) --input=$<.text \
--input_sentence_size ${SPM_INPUT_SIZE} --shuffle_input_sentence ${SPM_SHUFFLE_INPUT} \
--character_coverage=1.0 --hard_vocab_limit=false; \
fi
mv $@.model $@
${SPM_ENCODE} --model=$@ --generate_vocabulary < $<.text > $@.voc
rm -f $<.text
else
@echo "$@ already exists!"
@echo "WARNING! No new SPM model created!"
@echo "WARNING! Delete the file if you want to start from scratch!"
endif
## SentencePiece parameters:
##
# --input_sentence_size (maximum size of sentences the trainer loads) type: int32 default: 10000000
# --hard_vocab_limit (If set to false, --vocab_size is considered as a soft limit.) type: bool default: true
# --training_sentence_size (maximum size of sentences to train sentence pieces) type: int32 default: 10000000
# --vocab_size (vocabulary size) type: int32 default: 8000
## character frequence table
## --> used to decide about the character coverage level
## awk-based char-counter
#%.charfreq: %
# sed 's/./& /g' < $< | tr ' ' "\n" | grep . |\
# awk '!/^$$/{a[$$0]++}END{for (i in a)print i,a[i];}' > $@
## python-based char-counter (seems to be the fastest version)
## restrict to 1 million lines
%.charfreq: %
head -1000000 $< > $<.1m
-python -c "import collections, pprint; pprint.pprint(dict(collections.Counter(open('$<.1m', 'r').read())))" > $@
rm -f $<.1m
%.charfreq: %.gz
${GZIP} -cd < $< | head -1000000 > $<.1m
-python -c "import collections, pprint; pprint.pprint(dict(collections.Counter(open('$<.1m', 'r').read())))" > $@
rm -f $<.1m
## slow version
%.charfreq2: %
head -10000000 $< |\
sed 's/./& /g' | \
tr ' ' "\n" | grep . |\
sort | uniq -c > $@
## TODO: should we have vocab limits?
## --vocabulary={vocab_file}.L1 --vocabulary_threshold=50
## see https://github.com/google/sentencepiece#c-from-source
%.src.${SUBWORDS}${SUBWORD_SRCVOCAB_SIZE:000=}k: %.src ${SUBWORD_SRC_MODEL}
ifeq (${USE_TARGET_LABELS},1)
cut -f1 -d ' ' $< > $<.labels
cut -f2- -d ' ' $< > $<.txt
${SPM_ENCODE} --model $(word 2,$^) < $<.txt > $@.txt
paste -d ' ' $<.labels $@.txt > $@
rm -f $<.labels $<.txt $@.txt
else
${SPM_ENCODE} --model $(word 2,$^) < $< > $@
endif
%.trg.${SUBWORDS}${SUBWORD_TRGVOCAB_SIZE:000=}k: %.trg ${SUBWORD_TRG_MODEL}
${SPM_ENCODE} --model $(word 2,$^) < $< > $@
## document-level models (with guided alignment)
%.src.${SUBWORDS}${SUBWORD_TRGVOCAB_SIZE:000=}k.doc${CONTEXT_SIZE}.gz:
${MAKE} PRE_SRC=spm${SUBWORD_SRCVOCAB_SIZE:000=}k PRE_TRG=spm${SUBWORD_TRGVOCAB_SIZE:000=}k wordalign
${SCRIPTDIR}/large-context.pl -l ${CONTEXT_SIZE} \
${patsubst %.src.${SUBWORDS}${SUBWORD_TRGVOCAB_SIZE:000=}k.doc${CONTEXT_SIZE}.gz,%.src.${SUBWORDS}${SUBWORD_SRCVOCAB_SIZE:000=}k.gz,$@} \
${patsubst %.src.${SUBWORDS}${SUBWORD_TRGVOCAB_SIZE:000=}k.doc${CONTEXT_SIZE}.gz,%.trg.${SUBWORDS}${SUBWORD_TRGVOCAB_SIZE:000=}k.gz,$@} \
${patsubst %.src.${SUBWORDS}${SUBWORD_TRGVOCAB_SIZE:000=}k.doc${CONTEXT_SIZE}.gz,%.${SUBWORDS}${SUBWORD_SRCVOCAB_SIZE:000=}k-spm${SUBWORD_TRGVOCAB_SIZE:000=}k.src-trg.alg.gz,$@} \
| ${GZIP} > $@.tmp.gz
${GZIP} -cd < $@.tmp.gz | cut -f1 | ${GZIP} -c > $@
${GZIP} -cd < $@.tmp.gz | cut -f2 | ${GZIP} -c > ${subst .src.,.trg.,$@}
${GZIP} -cd < $@.tmp.gz | cut -f3 | \
${GZIP} -c > ${patsubst %.src.${SUBWORDS}${SUBWORD_TRGVOCAB_SIZE:000=}k.doc${CONTEXT_SIZE}.gz,\
%.${SUBWORDS}${SUBWORD_SRCVOCAB_SIZE:000=}k.doc${CONTEXT_SIZE}-spm${SUBWORD_TRGVOCAB_SIZE:000=}k.doc${CONTEXT_SIZE}.src-trg.alg.gz,$@}
rm -f $@.tmp.gz
%.trg.${SUBWORDS}${SUBWORD_TRGVOCAB_SIZE:000=}k.doc${CONTEXT_SIZE}.gz: %.src.${SUBWORDS}${SUBWORD_SRCVOCAB_SIZE:000=}k.doc${CONTEXT_SIZE}.gz
@echo "done!"
## for validation and test data:
%.src.${SUBWORDS}${SUBWORD_TRGVOCAB_SIZE:000=}k.doc${CONTEXT_SIZE}:
${MAKE} PRE_SRC=spm${SUBWORD_SRCVOCAB_SIZE:000=}k PRE_TRG=spm${SUBWORD_TRGVOCAB_SIZE:000=}k devdata
${MAKE} PRE_SRC=spm${SUBWORD_SRCVOCAB_SIZE:000=}k PRE_TRG=spm${SUBWORD_TRGVOCAB_SIZE:000=}k testdata
${SCRIPTDIR}/large-context.pl -l ${CONTEXT_SIZE} \
${patsubst %.src.${SUBWORDS}${SUBWORD_TRGVOCAB_SIZE:000=}k.doc${CONTEXT_SIZE},%.src.${SUBWORDS}${SUBWORD_SRCVOCAB_SIZE:000=}k,$@} \
${patsubst %.src.${SUBWORDS}${SUBWORD_TRGVOCAB_SIZE:000=}k.doc${CONTEXT_SIZE},%.trg.${SUBWORDS}${SUBWORD_TRGVOCAB_SIZE:000=}k,$@} \
| ${GZIP} > $@.tmp.gz
${GZIP} -cd < $@.tmp.gz | cut -f1 > $@
${GZIP} -cd < $@.tmp.gz | cut -f2 > ${subst .src.,.trg.,$@}
rm -f $@.tmp.gz
%.trg.${SUBWORDS}${SUBWORD_TRGVOCAB_SIZE:000=}k.doc${CONTEXT_SIZE}: %.src.${SUBWORDS}${SUBWORD_TRGVOCAB_SIZE:000=}k.doc${CONTEXT_SIZE}
@echo "done!"