Training open neural machine translation models
Go to file
2020-01-12 22:08:50 +02:00
backtranslate finetuning and backtranslation 2020-01-12 01:10:53 +02:00
evaluate goethe test setting 2020-01-12 22:08:50 +02:00
finetune goethe test setting 2020-01-12 22:08:50 +02:00
models fixed license 2020-01-10 17:04:04 +02:00
testsets finetuning and backtranslation 2020-01-12 01:10:53 +02:00
work-spm initial import 2020-01-10 16:45:42 +02:00
large-context.pl initial import 2020-01-10 16:45:42 +02:00
LICENSE fixed license 2020-01-10 17:04:04 +02:00
Makefile initial import 2020-01-10 16:45:42 +02:00
Makefile.config default name always opus 2020-01-12 01:25:14 +02:00
Makefile.data finetuning and backtranslation 2020-01-12 01:10:53 +02:00
Makefile.def initial import 2020-01-10 16:45:42 +02:00
Makefile.dist consistent BPW/SPM models 2020-01-10 18:17:12 +02:00
Makefile.doclevel initial import 2020-01-10 16:45:42 +02:00
Makefile.env initial import 2020-01-10 16:45:42 +02:00
Makefile.slurm initial import 2020-01-10 16:45:42 +02:00
Makefile.tasks initial import 2020-01-10 16:45:42 +02:00
postprocess-bpe.sh initial import 2020-01-10 16:45:42 +02:00
postprocess-spm.sh initial import 2020-01-10 16:45:42 +02:00
preprocess-bpe.sh initial import 2020-01-10 16:45:42 +02:00
preprocess-spm.sh initial import 2020-01-10 16:45:42 +02:00
project_2000661-openrc-backup.sh initial import 2020-01-10 16:45:42 +02:00
README.md fixed license 2020-01-10 17:04:04 +02:00
TODO.md initial import 2020-01-10 16:45:42 +02:00
verify-wordalign.pl initial import 2020-01-10 16:45:42 +02:00

Train Opus-MT models

This package includes scripts for training NMT models using MarianNMT and OPUS data for OPUS-MT. More details are given in the Makefile but documentation needs to be improved. Also, the targets require a specific environment and right now only work well on the CSC HPC cluster in Finland.

Structure

Essential files for making new models:

  • Makefile: top-level makefile
  • Makefile.env: system-specific environment (now based on CSC machines)
  • Makefile.config: essential model configuration
  • Makefile.data: data pre-processing tasks
  • Makefile.doclevel: experimental document-level models
  • Makefile.tasks: tasks for training specific models and other things (this frequently changes)
  • Makefile.dist: make packages for distributing models (CSC ObjectStorage based)
  • Makefile.slurm: submit jobs with SLURM

Run this if you want to train a model, for example for translating English to French:

make SRCLANG=en TRGLANG=fr train

To evaluate the model with the automatically generated test data (from the Tatoeba corpus as a default) run:

make SRCLANG=en TRGLANG=fr eval

For multilingual (more than one language on either side) models run, for example:

make SRCLANG="de en" TRGLANG="fr es pt" train
make SRCLANG="de en" TRGLANG="fr es pt" eval

Note that data pre-processing should run on CPUs and training/testing on GPUs. To speed up things you can process data sets in parallel using the jobs flag of make, for example using 8 threads:

make -j 8 SRCLANG=en TRGLANG=fr data

Upload to Object Storage

swift upload OPUS-MT --changed --skip-identical name-of-file
swift post OPUS-MT --read-acl ".r:*"