grenade/bench/bench-lstm.hs

70 lines
3.0 KiB
Haskell
Raw Normal View History

2017-01-20 10:53:18 +03:00
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE ScopedTypeVariables #-}
import Criterion.Main
import Grenade
import Grenade.Recurrent
import Grenade.Layers.Internal.Update
import qualified Numeric.LinearAlgebra.Static as H
main :: IO ()
main = do
layer60 :: LSTM 40 60 <- createRandom
layer512 :: LSTM 40 512 <- createRandom
input40 :: S ('D1 40) <- randomOfShape
rec60 :: S ('D1 60) <- randomOfShape
rec512 :: S ('D1 512) <- randomOfShape
lstm :: RecNet <- randomRecurrent
2017-01-20 10:53:18 +03:00
let upIn60 :: H.R 3600 = H.randomVector 1 H.Uniform * 2 - 1
let upIn512 :: H.R 262144 = H.randomVector 1 H.Uniform * 2 - 1
defaultMain [
2017-02-01 14:11:55 +03:00
bgroup "lstm" [ bench "forwards-60" $ nf (nfT3 . uncurry (testRun60 layer60)) (rec60, input40)
, bench "forwards-512" $ nf (nfT3 . uncurry (testRun512 layer512)) (rec512, input40)
2017-01-20 10:53:18 +03:00
, bench "backwards-60" $ nf (nfT3 . uncurry4 (testRun60' layer60)) (rec60, input40, rec60, rec60)
, bench "backwards-512" $ nf (nfT3 . uncurry4 (testRun512' layer512)) (rec512, input40, rec512, rec512)
]
, bgroup "update" [ bench "matrix-60x60" $ nf (uncurry3 (descendVector 1 1 1)) (upIn60, upIn60, upIn60)
, bench "matrix-512x512" $ nf (uncurry3 (descendVector 1 1 1)) (upIn512, upIn512, upIn512)
2017-01-20 10:53:18 +03:00
]
, bgroup "train" [ bench "one-time-step" $ whnf (nfT2 . trainRecurrent lp lstm 0) [(input40, Just input40)]
, bench "ten-time-steps" $ whnf (nfT2 . trainRecurrent lp lstm 0) $ replicate 10 (input40, Just input40)
, bench "fifty-time-steps" $ whnf (nfT2 . trainRecurrent lp lstm 0) $ replicate 50 (input40, Just input40)
2017-01-20 10:53:18 +03:00
]
]
2017-02-01 14:11:55 +03:00
testRun60 :: LSTM 40 60 -> S ('D1 60) -> S ('D1 40) -> ((S ('D1 60), S ('D1 40)), S ('D1 60), S ('D1 60))
2017-01-20 10:53:18 +03:00
testRun60 = runRecurrentForwards
testRun60' :: LSTM 40 60 -> S ('D1 60) -> S ('D1 40) -> S ('D1 60) -> S ('D1 60) -> (Gradient (LSTM 40 60), S ('D1 60), S ('D1 40))
2017-02-01 14:11:55 +03:00
testRun60' = curry . runRecurrentBackwards
2017-01-20 10:53:18 +03:00
2017-02-01 14:11:55 +03:00
testRun512 :: LSTM 40 512 -> S ('D1 512) -> S ('D1 40) -> ((S ('D1 512), S ('D1 40)), S ('D1 512), S ('D1 512))
2017-01-20 10:53:18 +03:00
testRun512 = runRecurrentForwards
testRun512' :: LSTM 40 512 -> S ('D1 512) -> S ('D1 40) -> S ('D1 512) -> S ('D1 512) -> (Gradient (LSTM 40 512), S ('D1 512), S ('D1 40))
2017-02-01 14:11:55 +03:00
testRun512' = curry . runRecurrentBackwards
2017-01-20 10:53:18 +03:00
uncurry4 :: (t -> t1 -> t2 -> t3 -> t4) -> (t, t1, t2, t3) -> t4
uncurry4 f (a,b,c,d) = f a b c d
uncurry3 :: (t -> t1 -> t2 -> t3) -> (t, t1, t2) -> t3
uncurry3 f (a,b,c) = f a b c
nfT2 :: (a, b) -> (a, b)
nfT2 (!a, !b) = (a, b)
nfT3 :: (a, b, c) -> (b, c)
nfT3 (!_, !b, !c) = (b, c)
type R = Recurrent
2017-02-01 14:11:55 +03:00
type RecNet = RecurrentNetwork '[ R (LSTM 40 512), R (LSTM 512 40) ]
'[ 'D1 40, 'D1 512, 'D1 40 ]
2017-01-20 10:53:18 +03:00
lp :: LearningParameters
lp = LearningParameters 0.1 0 0