Merge pull request #13 from HuwCampbell/topic/performance

Topic/performance
This commit is contained in:
Huw Campbell 2016-12-09 10:44:51 +11:00 committed by GitHub
commit 8b3ca1e0b6
21 changed files with 416 additions and 242 deletions

View File

@ -50,6 +50,9 @@ library
Grenade.Layers.Pad
Grenade.Layers.Pooling
Grenade.Layers.Internal.Convolution
Grenade.Layers.Internal.Pooling
executable feedforward
ghc-options: -Wall -threaded -O2
@ -76,7 +79,7 @@ executable mnist
, optparse-applicative == 0.12.*
, text == 1.2.*
, mtl >= 2.2.1 && < 2.3
, hmatrix
, hmatrix >= 0.18 && < 0.19
, transformers
, singletons
, MonadRandom

@ -1 +0,0 @@
Subproject commit 9aade51bd0bb6339cfa8aca014bd96f801d9b19e

View File

@ -8,7 +8,6 @@
import Control.Monad
import Control.Monad.Random
import GHC.TypeLits
import qualified Numeric.LinearAlgebra.Static as SA
@ -51,7 +50,7 @@ netTest rate n = do
where
inCircle :: KnownNat n => SA.R n -> (SA.R n, Double) -> Bool
v `inCircle` (o, r) = SA.norm_2 (v - o) <= r
trainEach !nt !(i, o) = train rate nt i o
trainEach !network (i,o) = train rate network i o
render n' | n' <= 0.2 = ' '
| n' <= 0.4 = '.'

View File

@ -9,6 +9,8 @@
import Control.Applicative
import Control.Monad
import Control.Monad.Random
import Control.Monad.Trans.Class
import Control.Monad.Trans.Except
import qualified Data.Attoparsec.Text as A
import qualified Data.Text as T
@ -35,35 +37,23 @@ randomMnist :: MonadRandom m
'[ 'D2 28 28, 'D3 24 24 10, 'D3 12 12 10, 'D3 12 12 10, 'D3 8 8 16, 'D3 4 4 16, 'D1 256, 'D1 256, 'D1 80, 'D1 80, 'D1 10, 'D1 10])
randomMnist = randomNetwork
convTest :: Int -> FilePath -> FilePath -> LearningParameters -> IO ()
convTest :: Int -> FilePath -> FilePath -> LearningParameters -> ExceptT String IO ()
convTest iterations trainFile validateFile rate = do
net0 <- evalRandIO randomMnist
fT <- T.readFile trainFile
fV <- T.readFile validateFile
let trainRows = traverse (A.parseOnly p) (T.lines fT)
let validateRows = traverse (A.parseOnly p) (T.lines fV)
case (trainRows, validateRows) of
(Right tr', Right vr') -> foldM_ (runIteration tr' vr') net0 [1..iterations]
err -> print err
net0 <- lift randomMnist
trainData <- readMNIST trainFile
validateData <- readMNIST validateFile
lift $ foldM_ (runIteration trainData validateData) net0 [1..iterations]
where
trainEach !rate' !nt !(i, o) = train rate' nt i o
where
trainEach rate' !network (i, o) = train rate' network i o
p :: A.Parser (S' ('D2 28 28), S' ('D1 10))
p = do
lab <- A.decimal
pixels <- many (A.char ',' >> A.double)
let lab' = replicate lab 0 ++ [1] ++ replicate (9 - lab) 0
return (S2D' $ SA.fromList pixels, S1D' $ SA.fromList lab')
runIteration trainRows validateRows net i = do
let trained' = foldl (trainEach rate) net trainRows
let res = fmap (\(rowP,rowL) -> (rowL,) $ runNet trained' rowP) validateRows
let res' = fmap (\(S1D' label, S1D' prediction) -> (maxIndex (SA.extract label), maxIndex (SA.extract prediction))) res
print trained'
putStrLn $ "Iteration " ++ show i ++ ": " ++ show (length (filter ((==) <$> fst <*> snd) res')) ++ " of " ++ show (length res')
return trained'
runIteration trainRows validateRows net i = do
let trained' = foldl (trainEach ( rate { learningRate = learningRate rate * 0.9 ^ i} )) net trainRows
let res = fmap (\(rowP,rowL) -> (rowL,) $ runNet trained' rowP) validateRows
let res' = fmap (\(S1D' label, S1D' prediction) -> (maxIndex (SA.extract label), maxIndex (SA.extract prediction))) res
print trained'
putStrLn $ "Iteration " ++ show i ++ ": " ++ show (length (filter ((==) <$> fst <*> snd) res')) ++ " of " ++ show (length res')
return trained'
data MnistOpts = MnistOpts FilePath FilePath Int LearningParameters
@ -81,4 +71,20 @@ main :: IO ()
main = do
MnistOpts mnist vali iter rate <- execParser (info (mnist' <**> helper) idm)
putStrLn "Training convolutional neural network..."
convTest iter mnist vali rate
res <- runExceptT $ convTest iter mnist vali rate
case res of
Right () -> pure ()
Left err -> putStrLn err
readMNIST :: FilePath -> ExceptT String IO [(S' ('D2 28 28), S' ('D1 10))]
readMNIST mnist = ExceptT $ do
mnistdata <- T.readFile mnist
return $ traverse (A.parseOnly parseMNIST) (T.lines mnistdata)
parseMNIST :: A.Parser (S' ('D2 28 28), S' ('D1 10))
parseMNIST = do
lab <- A.decimal
pixels <- many (A.char ',' >> A.double)
let lab' = replicate lab 0 ++ [1] ++ replicate (9 - lab) 0
return (S2D' $ SA.fromList pixels, S1D' $ SA.fromList lab')

View File

@ -51,7 +51,7 @@ class UpdateLayer x => Layer x (i :: Shape) (o :: Shape) where
-- layer gave from the input and the back propagated derivatives from
-- the layer above.
-- Returns the gradient layer and the derivatives to push back further.
runBackards :: x -> S' i -> S' o -> (Gradient x, S' i)
runBackwards :: x -> S' i -> S' o -> (Gradient x, S' i)
-- | Type of a network.
-- The [*] type specifies the types of the layers. This is needed for parallel

View File

@ -16,7 +16,7 @@ import Data.Singletons.Prelude
import Grenade.Core.Network
import Grenade.Core.Shape
-- | Drive and network and collect it's back propogated gradients.
-- | Drive and network and collect its back propogated gradients.
backPropagate :: forall input output shapes layers. (Head shapes ~ input, Last shapes ~ output)
=> Network layers shapes -> S' input -> S' output -> Gradients layers
backPropagate network input target =
@ -29,10 +29,10 @@ backPropagate network input target =
-- handle input from the beginning, feeding upwards.
go !x (layer :~> n)
= let y = runForwards layer x
-- recursively run the rest of the network, and get the layer from above.
-- recursively run the rest of the network, and get the gradients from above.
(n', dWs') = go y n
-- calculate the gradient for this layer to pass down,
(layer', dWs) = runBackards layer x dWs'
(layer', dWs) = runBackwards layer x dWs'
in (layer' :/> n', dWs)
@ -40,7 +40,7 @@ backPropagate network input target =
go !x (O layer)
= let y = runForwards layer x
-- the gradient (how much y affects the error)
(layer', dWs) = runBackards layer x (y - target)
(layer', dWs) = runBackwards layer x (y - target)
in (OG layer', dWs)

View File

@ -16,26 +16,22 @@ module Grenade.Layers.Convolution (
Convolution (..)
, Convolution' (..)
, randomConvolution
, im2col
, vid2col
, col2im
, col2vid
, fittingStarts
) where
import Control.Monad.Random hiding (fromList)
import Control.Monad.Random hiding ( fromList )
import Data.Maybe
import Data.Proxy
import Data.Singletons.TypeLits
import GHC.TypeLits
import Numeric.LinearAlgebra hiding (uniformSample, konst)
import Numeric.LinearAlgebra hiding ( uniformSample, konst )
import qualified Numeric.LinearAlgebra as LA
import Numeric.LinearAlgebra.Static hiding ((|||), build, toRows)
import Grenade.Core.Network
import Grenade.Core.Shape
import Grenade.Core.Vector
import Grenade.Layers.Internal.Convolution
-- | A convolution layer for a neural network.
-- This uses the im2col convolution trick popularised by Caffe, which essentially turns the
@ -159,12 +155,13 @@ instance ( KnownNat kernelRows
sy = fromIntegral $ natVal (Proxy :: Proxy strideCols)
ox = fromIntegral $ natVal (Proxy :: Proxy outputRows)
oy = fromIntegral $ natVal (Proxy :: Proxy outputCols)
c = im2col kx ky sx sy ex
c = im2colUnsafe kx ky sx sy ex
mt = c LA.<> ek
r = col2vid 1 1 1 1 ox oy mt
r = col2vidUnsafe 1 1 1 1 ox oy mt
rs = fmap (fromJust . create) r
in S3D' $ mkVector rs
runBackards (Convolution kernel _) (S2D' input) (S3D' dEdy) =
runBackwards (Convolution kernel _) (S2D' input) (S3D' dEdy) =
let ex = extract input
ix = fromIntegral $ natVal (Proxy :: Proxy inputRows)
iy = fromIntegral $ natVal (Proxy :: Proxy inputCols)
@ -174,17 +171,18 @@ instance ( KnownNat kernelRows
sy = fromIntegral $ natVal (Proxy :: Proxy strideCols)
ox = fromIntegral $ natVal (Proxy :: Proxy outputRows)
oy = fromIntegral $ natVal (Proxy :: Proxy outputCols)
c = im2col kx ky sx sy ex
c = im2colUnsafe kx ky sx sy ex
eo = vecToList $ fmap extract dEdy
ek = extract kernel
vs = vid2col 1 1 1 1 ox oy eo
vs = vid2colUnsafe 1 1 1 1 ox oy eo
kN = fromJust . create $ tr c LA.<> vs
dW = vs LA.<> tr ek
xW = col2im kx ky sx sy ix iy dW
xW = col2imUnsafe kx ky sx sy ix iy dW
in (Convolution' kN, S2D' . fromJust . create $ xW)
@ -215,12 +213,13 @@ instance ( KnownNat kernelRows
sy = fromIntegral $ natVal (Proxy :: Proxy strideCols)
ox = fromIntegral $ natVal (Proxy :: Proxy outputRows)
oy = fromIntegral $ natVal (Proxy :: Proxy outputCols)
c = vid2col kx ky sx sy ix iy ex
c = vid2colUnsafe kx ky sx sy ix iy ex
mt = c LA.<> ek
r = col2vid 1 1 1 1 ox oy mt
r = col2vidUnsafe 1 1 1 1 ox oy mt
rs = fmap (fromJust . create) r
in S3D' $ mkVector rs
runBackards (Convolution kernel _) (S3D' input) (S3D' dEdy) =
runBackwards (Convolution kernel _) (S3D' input) (S3D' dEdy) =
let ex = vecToList $ fmap extract input
ix = fromIntegral $ natVal (Proxy :: Proxy inputRows)
iy = fromIntegral $ natVal (Proxy :: Proxy inputCols)
@ -230,77 +229,17 @@ instance ( KnownNat kernelRows
sy = fromIntegral $ natVal (Proxy :: Proxy strideCols)
ox = fromIntegral $ natVal (Proxy :: Proxy outputRows)
oy = fromIntegral $ natVal (Proxy :: Proxy outputCols)
c = vid2col kx ky sx sy ix iy ex
c = vid2colUnsafe kx ky sx sy ix iy ex
eo = vecToList $ fmap extract dEdy
ek = extract kernel
vs = vid2col 1 1 1 1 ox oy eo
vs = vid2colUnsafe 1 1 1 1 ox oy eo
kN = fromJust . create $ tr c LA.<> vs
dW = vs LA.<> tr ek
xW = col2vid kx ky sx sy ix iy dW
xW = col2vidUnsafe kx ky sx sy ix iy dW
in (Convolution' kN, S3D' . mkVector . fmap (fromJust . create) $ xW)
im2col :: Int -> Int -> Int -> Int -> Matrix Double -> Matrix Double
im2col nrows ncols srows scols m =
let starts = fittingStarts (rows m) nrows srows (cols m) ncols scols
in im2colFit starts nrows ncols m
im2colFit :: [(Int,Int)] -> Int -> Int -> Matrix Double -> Matrix Double
im2colFit starts nrows ncols m =
let imRows = fmap (\start -> flatten $ subMatrix start (nrows, ncols) m) starts
in fromRows imRows
vid2col :: Int -> Int -> Int -> Int -> Int -> Int -> [Matrix Double] -> Matrix Double
vid2col nrows ncols srows scols inputrows inputcols ms =
let starts = fittingStarts inputrows nrows srows inputcols ncols scols
subs = fmap (im2colFit starts nrows ncols) ms
in foldl1 (|||) subs
col2vid :: Int -> Int -> Int -> Int -> Int -> Int -> Matrix Double -> [Matrix Double]
col2vid nrows ncols srows scols drows dcols m =
let starts = fittingStart (cols m) (nrows * ncols) (nrows * ncols)
r = rows m
mats = fmap (\s -> subMatrix (0,s) (r, nrows * ncols) m) starts
colSts = fittingStarts drows nrows srows dcols ncols scols
in fmap (col2imfit colSts nrows ncols drows dcols) mats
col2im :: Int -> Int -> Int -> Int -> Int -> Int -> Matrix Double -> Matrix Double
col2im krows kcols srows scols drows dcols m =
let starts = fittingStarts drows krows srows dcols kcols scols
in col2imfit starts krows kcols drows dcols m
col2imfit :: [(Int,Int)] -> Int -> Int -> Int -> Int -> Matrix Double -> Matrix Double
col2imfit starts krows kcols drows dcols m =
let indicies = fmap (\[a,b] -> (a,b)) $ sequence [[0..(krows-1)], [0..(kcols-1)]]
convs = fmap (zip indicies . toList) . toRows $ m
pairs = zip convs starts
accums = concat $ fmap (\(conv',(stx',sty')) -> fmap (\((ix,iy), val) -> ((ix + stx', iy + sty'), val)) conv') pairs
in accum (LA.konst 0 (drows, dcols)) (+) accums
-- | These functions are not even remotely safe, but it's only called from the statically typed
-- commands, so we should be good ?!?!?
-- Returns the starting sub matrix locations which fit inside the larger matrix for the
-- convolution. Takes into account the stride and kernel size.
fittingStarts :: Int -> Int -> Int -> Int -> Int -> Int -> [(Int,Int)]
fittingStarts nrows kernelrows steprows ncols kernelcols stepcolsh =
let rs = fittingStart nrows kernelrows steprows
cs = fittingStart ncols kernelcols stepcolsh
ls = sequence [rs, cs]
in fmap (\[a,b] -> (a,b)) ls
-- | Returns the starting sub vector which fit inside the larger vector for the
-- convolution. Takes into account the stride and kernel size.
fittingStart :: Int -> Int -> Int -> [Int]
fittingStart width kernel steps =
let go left | left + kernel < width
= left : go (left + steps)
| left + kernel == width
= left : []
| otherwise
= error "Kernel and step do not fit in matrix."
in go 0

View File

@ -58,7 +58,7 @@ instance ( KnownNat cropLeft
m = extract input
r = subMatrix (cropt, cropl) (nrows, ncols) m
in S2D' . fromJust . create $ r
runBackards _ _ (S2D' dEdy) =
runBackwards _ _ (S2D' dEdy) =
let cropl = fromIntegral $ natVal (Proxy :: Proxy cropLeft)
cropt = fromIntegral $ natVal (Proxy :: Proxy cropTop)
cropr = fromIntegral $ natVal (Proxy :: Proxy cropRight)

View File

@ -47,5 +47,5 @@ randomDropout rate = do
instance (KnownNat i) => Layer (Dropout i) ('D1 i) ('D1 i) where
runForwards (Dropout drops) (S1D' x) = S1D' $ x * drops
runForwards (Pass rate) (S1D' x)= S1D' $ dvmap (* (1 - rate)) x
runBackards (Dropout drops) _ (S1D' x) = ((), S1D' $ x * drops)
runBackards (Pass rate) _ (S1D' x) = ((), S1D' $ dvmap (* (1 - rate)) x)
runBackwards (Dropout drops) _ (S1D' x) = ((), S1D' $ x * drops)
runBackwards (Pass rate) _ (S1D' x) = ((), S1D' $ dvmap (* (1 - rate)) x)

View File

@ -33,11 +33,11 @@ instance UpdateLayer FlattenLayer where
instance (KnownNat a, KnownNat x, KnownNat y, a ~ (x * y)) => Layer FlattenLayer ('D2 x y) ('D1 a) where
runForwards _ (S2D' y) = S1D' . fromList . toList . flatten . extract $ y
runBackards _ _ (S1D' y) = ((), S2D' . fromList . toList . unwrap $ y)
runBackwards _ _ (S1D' y) = ((), S2D' . fromList . toList . unwrap $ y)
instance (KnownNat a, KnownNat x, KnownNat y, KnownNat z, a ~ (x * y * z)) => Layer FlattenLayer ('D3 x y z) ('D1 a) where
runForwards _ (S3D' y) = S1D' . raiseShapeError . create . vjoin . vecToList . fmap (flatten . extract) $ y
runBackards _ _ (S1D' o) =
runBackwards _ _ (S1D' o) =
let x' = fromIntegral $ natVal (Proxy :: Proxy x)
y' = fromIntegral $ natVal (Proxy :: Proxy y)
z' = fromIntegral $ natVal (Proxy :: Proxy z)

View File

@ -52,7 +52,7 @@ instance (KnownNat i, KnownNat o) => Layer (FullyConnected i o) ('D1 i) ('D1 o)
runForwards (FullyConnected wB _ wN _) (S1D' v) = S1D' (wB + wN #> v)
-- Run a backpropogation step for a full connected layer.
runBackards (FullyConnected _ _ wN _) (S1D' x) (S1D' dEdy) =
runBackwards (FullyConnected _ _ wN _) (S1D' x) (S1D' dEdy) =
let wB' = dEdy
mm' = dEdy `outer` x
-- calcluate derivatives for next step

View File

@ -45,8 +45,8 @@ instance (Layer x i h, Layer y h o) => Layer (Fuse x y i h o) i o where
let yInput :: S' h = runForwards x input
in runForwards y yInput
runBackards (x :$$ y) input backGradient =
runBackwards (x :$$ y) input backGradient =
let yInput :: S' h = runForwards x input
(y', yGrad) = runBackards y yInput backGradient
(x', xGrad) = runBackards x input yGrad
(y', yGrad) = runBackwards y yInput backGradient
(x', xGrad) = runBackwards x input yGrad
in ((x', y'), xGrad)

View File

@ -0,0 +1,190 @@
module Grenade.Layers.Internal.Convolution (
col2vidUnsafe
, col2imUnsafe
, vid2colUnsafe
, im2colUnsafe
, fittingStarts
) where
import Control.Monad.ST ( runST )
import Data.STRef ( newSTRef, modifySTRef, writeSTRef, readSTRef )
import Data.Foldable ( forM_ )
import Data.Traversable ( forM )
import Numeric.LinearAlgebra hiding ( uniformSample, konst )
import qualified Numeric.LinearAlgebra.Devel as U
-- This module provides provides im2col function and friends, ala caffe.
--
-- /* From Caffe */
-- @
-- void col2im_cpu(const Dtype* data_col, const int channels,
-- const int height, const int width, const int kernel_h, const int kernel_w,
-- const int pad_h, const int pad_w,
-- const int stride_h, const int stride_w,
-- const int dilation_h, const int dilation_w,
-- Dtype* data_im) {
-- caffe_set(height * width * channels, Dtype(0), data_im);
-- const int output_h = (height + 2 * pad_h -
-- (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
-- const int output_w = (width + 2 * pad_w -
-- (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
-- const int channel_size = height * width;
-- for (int channel = channels; channel--; data_im += channel_size) {
-- for (int kernel_row = 0; kernel_row < kernel_h; kernel_row++) {
-- for (int kernel_col = 0; kernel_col < kernel_w; kernel_col++) {
-- int input_row = -pad_h + kernel_row * dilation_h;
-- for (int output_rows = output_h; output_rows; output_rows--) {
-- if (!is_a_ge_zero_and_a_lt_b(input_row, height)) {
-- data_col += output_w;
-- } else {
-- int input_col = -pad_w + kernel_col * dilation_w;
-- for (int output_col = output_w; output_col; output_col--) {
-- if (is_a_ge_zero_and_a_lt_b(input_col, width)) {
-- data_im[input_row * width + input_col] += *data_col;
-- }
-- data_col++;
-- input_col += stride_w;
-- }
-- }
-- input_row += stride_h;
-- }
-- }
-- }
-- }
-- }
-- @
--
-- | col2im function.
--
-- Takes a column patch, and reconstitutes it into a normal image.
-- Does not do any bounds checking on the matrix, so should only
-- be called once the sizes are ensured correct.
col2imUnsafe :: Int -> Int -> Int -> Int -> Int -> Int -> Matrix Double -> Matrix Double
col2imUnsafe kernelRows kernelColumns strideRows strideColumns destinationRows destinationCols columnMatrix = U.runSTMatrix $ do
let columnMatrixRows = rows columnMatrix
dataIm <- U.newMatrix 0 destinationRows destinationCols
offsetR <- newSTRef 0
offsetC <- newSTRef 0
forM_ [0 .. columnMatrixRows - 1] $ \inputRow -> do
inputColumnRef <- newSTRef 0
forM_ [0 .. kernelRows -1] $ \kr ->
forM_ [0 .. kernelColumns -1] $ \kc -> do
inputColumn <- readSTRef inputColumnRef
offsetR' <- readSTRef offsetR
offsetC' <- readSTRef offsetC
U.modifyMatrix dataIm (kr + offsetR') (kc + offsetC') (+ U.atM' columnMatrix inputRow inputColumn)
modifySTRef inputColumnRef (+1)
offsetC' <- readSTRef offsetC
if offsetC' + kernelColumns < destinationCols
then modifySTRef offsetC (+ strideColumns)
else writeSTRef offsetC 0 >> modifySTRef offsetR (+ strideRows)
return dataIm
-- | col2vid function.
--
-- Takes a column patch image, and reconstitutes it into a normal image with multiple channels.
-- Does not do any bounds checking on the matrix, so should only
-- be called once the sizes are ensured correct.
col2vidUnsafe :: Int -> Int -> Int -> Int -> Int -> Int -> Matrix Double -> [Matrix Double]
col2vidUnsafe kernelRows kernelColumns strideRows strideColumns destinationRows destinationCols columnMatrix = runST $ do
let columnMatrixRows = rows columnMatrix
let filters = cols columnMatrix `div` (kernelRows * kernelColumns)
forM [0 .. filters - 1] $ \iter -> do
let offsetM = iter * (kernelRows * kernelColumns)
dataIm <- U.newMatrix 0 destinationRows destinationCols
offsetR <- newSTRef 0
offsetC <- newSTRef 0
forM_ [0 .. columnMatrixRows - 1] $ \ir -> do
inputColumn <- newSTRef 0
forM_ [0 .. kernelRows -1] $ \kr ->
forM_ [0 .. kernelColumns -1] $ \kc -> do
ic <- readSTRef inputColumn
offsetR' <- readSTRef offsetR
offsetC' <- readSTRef offsetC
U.modifyMatrix dataIm (kr + offsetR') (kc + offsetC') (+ U.atM' columnMatrix ir (ic + offsetM))
modifySTRef inputColumn (+1)
offsetC' <- readSTRef offsetC
if offsetC' + kernelColumns < destinationCols
then modifySTRef offsetC (+ strideColumns)
else writeSTRef offsetC 0 >> modifySTRef offsetR (+ strideRows)
U.unsafeFreezeMatrix dataIm
vid2colUnsafe :: Int -> Int -> Int -> Int -> Int -> Int -> [Matrix Double] -> Matrix Double
vid2colUnsafe kernelRows kernelColumns striderows stridecols vidrows vidcols dataVid = U.runSTMatrix $ do
let starts = fittingStarts vidrows kernelRows striderows vidcols kernelColumns stridecols
kernelSize = kernelRows * kernelColumns
numberOfPatches = length starts
channels = length dataVid
dataCol <- U.newMatrix 0 numberOfPatches (channels * kernelSize)
offsetC <- newSTRef 0
forM_ dataVid $ \dataIm -> do
inputRowRef <- newSTRef 0
offsetC' <- readSTRef offsetC
forM_ starts $ \(startRow, startCol) -> do
inputColumnRef <- newSTRef 0
inputRow <- readSTRef inputRowRef
forM_ [0 .. kernelRows -1] $ \kr ->
forM_ [0 .. kernelColumns -1] $ \kc -> do
inputColumn <- readSTRef inputColumnRef
U.modifyMatrix dataCol inputRow (inputColumn + offsetC') (+ U.atM' dataIm (kr + startRow) (kc + startCol))
modifySTRef inputColumnRef (+1)
modifySTRef inputRowRef (+1)
modifySTRef offsetC (+ kernelSize)
return dataCol
im2colUnsafe :: Int -> Int -> Int -> Int -> Matrix Double -> Matrix Double
im2colUnsafe kernelRows kernelColumns striderows stridecols dataIm = U.runSTMatrix $ do
let starts = fittingStarts (rows dataIm) kernelRows striderows (cols dataIm) kernelColumns stridecols
kernelSize = kernelRows * kernelColumns
numberOfPatches = length starts
dataCol <- U.newMatrix 0 numberOfPatches kernelSize
inputRowRef <- newSTRef 0
forM_ starts $ \(startRow, startCol) -> do
inputColumnRef <- newSTRef 0
inputRow <- readSTRef inputRowRef
forM_ [0 .. kernelRows -1] $ \kr ->
forM_ [0 .. kernelColumns -1] $ \kc -> do
inputColumn <- readSTRef inputColumnRef
U.modifyMatrix dataCol inputRow inputColumn (+ U.atM' dataIm (kr + startRow) (kc + startCol))
modifySTRef inputColumnRef (+1)
modifySTRef inputRowRef (+1)
return dataCol
-- | Returns the starting sub matrix locations which fit inside the larger matrix for the
-- convolution. Takes into account the stride and kernel size.
fittingStarts :: Int -> Int -> Int -> Int -> Int -> Int -> [(Int,Int)]
fittingStarts nrows kernelrows steprows ncols kernelcols stepcolsh =
let rs = fittingStart nrows kernelrows steprows
cs = fittingStart ncols kernelcols stepcolsh
in concatMap ( \r -> fmap (\c -> (r , c)) cs ) rs
-- | Returns the starting sub vector which fit inside the larger vector for the
-- convolution. Takes into account the stride and kernel size.
fittingStart :: Int -> Int -> Int -> [Int]
fittingStart width kernel steps =
let go left | left + kernel < width
= left : go (left + steps)
| left + kernel == width
= [left]
| otherwise
= []
in go 0

View File

@ -0,0 +1,63 @@
module Grenade.Layers.Internal.Pooling (
poolForward
, poolBackward
, poolForwardList
, poolBackwardList
) where
import Data.Function ( on )
import Data.List ( maximumBy )
import Numeric.LinearAlgebra hiding ( uniformSample, konst )
import qualified Numeric.LinearAlgebra as LA
import qualified Numeric.LinearAlgebra.Devel as U
import Grenade.Layers.Internal.Convolution
poolForward :: Int -> Int -> Int -> Int -> Int -> Int -> Matrix Double -> Matrix Double
poolForward nrows ncols srows scols outputRows outputCols m =
let starts = fittingStarts (rows m) nrows srows (cols m) ncols scols
in poolForwardFit starts nrows ncols outputRows outputCols m
poolForwardList :: Functor f => Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> f (Matrix Double) -> f (Matrix Double)
poolForwardList nrows ncols srows scols inRows inCols outputRows outputCols ms =
let starts = fittingStarts inRows nrows srows inCols ncols scols
in poolForwardFit starts nrows ncols outputRows outputCols <$> ms
poolForwardFit :: [(Int,Int)] -> Int -> Int -> Int -> Int -> Matrix Double -> Matrix Double
poolForwardFit starts nrows ncols _ outputCols m =
let els = fmap (\start -> unsafeMaxElement $ subMatrix start (nrows, ncols) m) starts
in LA.matrix outputCols els
poolBackward :: Int -> Int -> Int -> Int -> Matrix Double -> Matrix Double -> Matrix Double
poolBackward krows kcols srows scols inputMatrix gradientMatrix =
let inRows = rows inputMatrix
inCols = cols inputMatrix
starts = fittingStarts inRows krows srows inCols kcols scols
in poolBackwardFit starts krows kcols inputMatrix gradientMatrix
poolBackwardList :: Functor f => Int -> Int -> Int -> Int -> Int -> Int -> f (Matrix Double, Matrix Double) -> f (Matrix Double)
poolBackwardList krows kcols srows scols inRows inCols inputMatrices =
let starts = fittingStarts inRows krows srows inCols kcols scols
in uncurry (poolBackwardFit starts krows kcols) <$> inputMatrices
poolBackwardFit :: [(Int,Int)] -> Int -> Int -> Matrix Double -> Matrix Double -> Matrix Double
poolBackwardFit starts krows kcols inputMatrix gradientMatrix =
let inRows = rows inputMatrix
inCols = cols inputMatrix
inds = fmap (\start -> unsafeMaxIndex $ subMatrix start (krows, kcols) inputMatrix) starts
grads = toList $ flatten gradientMatrix
grads' = zip3 starts grads inds
accums = fmap (\((stx',sty'),grad,(inx, iny)) -> ((stx' + inx, sty' + iny), grad)) grads'
in accum (LA.konst 0 (inRows, inCols)) (+) accums
unsafeMaxElement :: Matrix Double -> Double
unsafeMaxElement m = uncurry (U.atM' m) $ unsafeMaxIndex m
unsafeMaxIndex :: Matrix Double -> (Int, Int)
unsafeMaxIndex m =
let mrows = [0 .. rows m - 1]
mcols = [0 .. cols m - 1]
pairs = concatMap ( \r -> fmap (\c -> (r , c)) mcols ) mrows
in maximumBy (compare `on` uncurry (U.atM' m)) pairs

View File

@ -29,15 +29,15 @@ instance UpdateLayer Logit where
instance (KnownNat i) => Layer Logit ('D1 i) ('D1 i) where
runForwards _ (S1D' y) = S1D' (logistic y)
runBackards _ (S1D' y) (S1D' dEdy) = ((), S1D' (logistic' y * dEdy))
runBackwards _ (S1D' y) (S1D' dEdy) = ((), S1D' (logistic' y * dEdy))
instance (KnownNat i, KnownNat j) => Layer Logit ('D2 i j) ('D2 i j) where
runForwards _ (S2D' y) = S2D' (logistic y)
runBackards _ (S2D' y) (S2D' dEdy) = ((), S2D' (logistic' y * dEdy))
runBackwards _ (S2D' y) (S2D' dEdy) = ((), S2D' (logistic' y * dEdy))
instance (KnownNat i, KnownNat j, KnownNat k) => Layer Logit ('D3 i j k) ('D3 i j k) where
runForwards _ (S3D' y) = S3D' (fmap logistic y)
runBackards _ (S3D' y) (S3D' dEdy) = ((), S3D' (vectorZip (\y' dEdy' -> logistic' y' * dEdy') y dEdy))
runBackwards _ (S3D' y) (S3D' dEdy) = ((), S3D' (vectorZip (\y' dEdy' -> logistic' y' * dEdy') y dEdy))
logistic :: Floating a => a -> a

View File

@ -58,7 +58,7 @@ instance ( KnownNat padLeft
m = extract input
r = diagBlock [konst 0 (padt,padl), m, konst 0 (padb,padr)]
in S2D' . fromJust . create $ r
runBackards Pad _ (S2D' dEdy) =
runBackwards Pad _ (S2D' dEdy) =
let padl = fromIntegral $ natVal (Proxy :: Proxy padLeft)
padt = fromIntegral $ natVal (Proxy :: Proxy padTop)
nrows = fromIntegral $ natVal (Proxy :: Proxy inputRows)

View File

@ -12,8 +12,6 @@
module Grenade.Layers.Pooling (
Pooling (..)
, poolForward
, poolBackward
) where
import Data.Maybe
@ -24,10 +22,8 @@ import GHC.TypeLits
import Grenade.Core.Network
import Grenade.Core.Shape
import Grenade.Core.Vector
import Grenade.Layers.Convolution
import Grenade.Layers.Internal.Pooling
import Numeric.LinearAlgebra hiding (uniformSample)
import qualified Numeric.LinearAlgebra as LA
import Numeric.LinearAlgebra.Static as LAS hiding ((|||), build, toRows)
-- | A pooling layer for a neural network.
@ -37,16 +33,12 @@ import Numeric.LinearAlgebra.Static as LAS hiding ((|||), build, toRow
-- The kernel size dictates which input and output sizes will "fit". Fitting the equation:
-- `out = (in - kernel) / stride + 1` for both dimensions.
--
data Pooling :: Nat
-> Nat
-> Nat
-> Nat -> * where
data Pooling :: Nat -> Nat -> Nat -> Nat -> * where
Pooling :: Pooling kernelRows kernelColumns strideRows strideColumns
instance Show (Pooling k k' s s') where
show Pooling = "Pooling"
instance UpdateLayer (Pooling kernelRows kernelColumns strideRows strideColumns) where
type Gradient (Pooling kr kc sr sc) = ()
runUpdate _ Pooling _ = Pooling
@ -75,7 +67,7 @@ instance ( KnownNat kernelRows
r = poolForward kx ky sx sy ox oy $ ex
rs = fromJust . create $ r
in S2D' $ rs
runBackards Pooling (S2D' input) (S2D' dEdy) =
runBackwards Pooling (S2D' input) (S2D' dEdy) =
let kx = fromIntegral $ natVal (Proxy :: Proxy kernelRows)
ky = fromIntegral $ natVal (Proxy :: Proxy kernelColumns)
sx = fromIntegral $ natVal (Proxy :: Proxy strideRows)
@ -111,7 +103,7 @@ instance ( KnownNat kernelRows
r = poolForwardList kx ky sx sy ix iy ox oy ex
rs = fmap (fromJust . create) r
in S3D' rs
runBackards Pooling (S3D' input) (S3D' dEdy) =
runBackwards Pooling (S3D' input) (S3D' dEdy) =
let ix = fromIntegral $ natVal (Proxy :: Proxy inputRows)
iy = fromIntegral $ natVal (Proxy :: Proxy inputColumns)
kx = fromIntegral $ natVal (Proxy :: Proxy kernelRows)
@ -123,40 +115,3 @@ instance ( KnownNat kernelRows
ez = vectorZip (,) ex eo
vs = poolBackwardList kx ky sx sy ix iy ez
in ((), S3D' . fmap (fromJust . create) $ vs)
poolForward :: Int -> Int -> Int -> Int -> Int -> Int -> Matrix Double -> Matrix Double
poolForward nrows ncols srows scols outputRows outputCols m =
let starts = fittingStarts (rows m) nrows srows (cols m) ncols scols
in poolForwardFit starts nrows ncols outputRows outputCols m
poolForwardList :: Functor f => Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> f (Matrix Double) -> f (Matrix Double)
poolForwardList nrows ncols srows scols inRows inCols outputRows outputCols ms =
let starts = fittingStarts inRows nrows srows inCols ncols scols
in poolForwardFit starts nrows ncols outputRows outputCols <$> ms
poolForwardFit :: [(Int,Int)] -> Int -> Int -> Int -> Int -> Matrix Double -> Matrix Double
poolForwardFit starts nrows ncols _ outputCols m =
let els = fmap (\start -> maxElement $ subMatrix start (nrows, ncols) m) starts
in LA.matrix outputCols els
poolBackward :: Int -> Int -> Int -> Int -> Matrix Double -> Matrix Double -> Matrix Double
poolBackward krows kcols srows scols inputMatrix gradientMatrix =
let inRows = (rows inputMatrix)
inCols = (cols inputMatrix)
starts = fittingStarts inRows krows srows inCols kcols scols
in poolBackwardFit starts krows kcols inputMatrix gradientMatrix
poolBackwardList :: Functor f => Int -> Int -> Int -> Int -> Int -> Int -> f (Matrix Double, Matrix Double) -> f (Matrix Double)
poolBackwardList krows kcols srows scols inRows inCols inputMatrices =
let starts = fittingStarts inRows krows srows inCols kcols scols
in (uncurry $ poolBackwardFit starts krows kcols) <$> inputMatrices
poolBackwardFit :: [(Int,Int)] -> Int -> Int -> Matrix Double -> Matrix Double -> Matrix Double
poolBackwardFit starts krows kcols inputMatrix gradientMatrix =
let inRows = (rows inputMatrix)
inCols = (cols inputMatrix)
inds = fmap (\start -> maxIndex $ subMatrix start (krows, kcols) inputMatrix) starts
grads = toList $ flatten gradientMatrix
grads' = zip3 starts grads inds
accums = fmap (\((stx',sty'),grad,(inx, iny)) -> ((stx' + inx, sty' + iny), grad)) grads'
in accum (LA.konst 0 (inRows, inCols)) (+) accums

View File

@ -31,7 +31,7 @@ instance ( KnownNat i) => Layer Relu ('D1 i) ('D1 i) where
runForwards _ (S1D' y) = S1D' (relu y)
where
relu = LAS.dvmap (\a -> if a <= 0 then 0 else a)
runBackards _ (S1D' y) (S1D' dEdy) = ((), S1D' (relu' y * dEdy))
runBackwards _ (S1D' y) (S1D' dEdy) = ((), S1D' (relu' y * dEdy))
where
relu' = LAS.dvmap (\a -> if a <= 0 then 0 else 1)
@ -39,7 +39,7 @@ instance (KnownNat i, KnownNat j) => Layer Relu ('D2 i j) ('D2 i j) where
runForwards _ (S2D' y) = S2D' (relu y)
where
relu = LAS.dmmap (\a -> if a <= 0 then 0 else a)
runBackards _ (S2D' y) (S2D' dEdy) = ((), S2D' (relu' y * dEdy))
runBackwards _ (S2D' y) (S2D' dEdy) = ((), S2D' (relu' y * dEdy))
where
relu' = LAS.dmmap (\a -> if a <= 0 then 0 else 1)
@ -47,6 +47,6 @@ instance (KnownNat i, KnownNat j, KnownNat k) => Layer Relu ('D3 i j k) ('D3 i j
runForwards _ (S3D' y) = S3D' (fmap relu y)
where
relu = LAS.dmmap (\a -> if a <= 0 then 0 else a)
runBackards _ (S3D' y) (S3D' dEdy) = ((), S3D' (vectorZip (\y' dEdy' -> relu' y' * dEdy') y dEdy))
runBackwards _ (S3D' y) (S3D' dEdy) = ((), S3D' (vectorZip (\y' dEdy' -> relu' y' * dEdy') y dEdy))
where
relu' = LAS.dmmap (\a -> if a <= 0 then 0 else 1)

View File

@ -26,15 +26,15 @@ instance UpdateLayer Tanh where
instance KnownNat i => Layer Tanh ('D1 i) ('D1 i) where
runForwards _ (S1D' y) = S1D' (tanh y)
runBackards _ (S1D' y) (S1D' dEdy) = ((), S1D' (tanh' y * dEdy))
runBackwards _ (S1D' y) (S1D' dEdy) = ((), S1D' (tanh' y * dEdy))
instance (KnownNat i, KnownNat j) => Layer Tanh ('D2 i j) ('D2 i j) where
runForwards _ (S2D' y) = S2D' (tanh y)
runBackards _ (S2D' y) (S2D' dEdy) = ((), S2D' (tanh' y * dEdy))
runBackwards _ (S2D' y) (S2D' dEdy) = ((), S2D' (tanh' y * dEdy))
instance (KnownNat i, KnownNat j, KnownNat k) => Layer Tanh ('D3 i j k) ('D3 i j k) where
runForwards _ (S3D' y) = S3D' (fmap tanh y)
runBackards _ (S3D' y) (S3D' dEdy) = ((), S3D' (vectorZip (\y' dEdy' -> tanh' y' * dEdy') y dEdy))
runBackwards _ (S3D' y) (S3D' dEdy) = ((), S3D' (vectorZip (\y' dEdy' -> tanh' y' * dEdy') y dEdy))
tanh' :: (Floating a) => a -> a
tanh' t = 1 - s ^ (2 :: Int) where s = tanh t

View File

@ -8,6 +8,7 @@ import Grenade.Core.Shape
import Grenade.Core.Vector as Grenade
import Grenade.Core.Network
import Grenade.Layers.Convolution
import Grenade.Layers.Internal.Convolution
import Numeric.LinearAlgebra hiding (uniformSample, konst, (===))
import qualified Numeric.LinearAlgebra.Static as HStatic
@ -26,7 +27,7 @@ prop_im2col_no_stride = once $
, 5.0, 6.0, 9.0, 10.0
, 6.0, 7.0, 10.0, 11.0
, 7.0, 8.0, 11.0, 12.0 ]
out = im2col 2 2 1 1 input
out = im2colUnsafe 2 2 1 1 input
in expected === out
prop_im2col_stride = once $
@ -39,7 +40,7 @@ prop_im2col_stride = once $
, 3.0, 4.0, 7.0, 8.0
, 5.0, 6.0, 9.0, 10.0
, 7.0, 8.0, 11.0, 12.0 ]
out = im2col 2 2 1 2 input
out = im2colUnsafe 2 2 1 2 input
in expected === out
prop_im2col_other = once $
@ -50,7 +51,7 @@ prop_im2col_other = once $
expected = (2><6)
[ 1.0, 2.0, 5.0, 6.0 , 9.0, 10.0
, 3.0, 4.0, 7.0, 8.0 , 11.0 ,12.0 ]
out = im2col 3 2 1 2 input
out = im2colUnsafe 3 2 1 2 input
in expected === out
-- If there's no overlap (stride is the same size as the kernel)
@ -60,9 +61,20 @@ prop_im2col_sym_on_same_stride = once $
[ 1.0, 2.0, 3.0, 4.0
, 5.0, 6.0, 7.0, 8.0
, 9.0, 10.0, 11.0, 12.0 ]
out = col2im 3 2 3 2 3 4 . im2col 3 2 3 2 $ input
out = col2imUnsafe 3 2 3 2 3 4 . im2colUnsafe 3 2 3 2 $ input
in input === out
-- If there's no overlap (stride is the same size as the kernel)
-- then col2im . im2col should be symmetric.
prop_im2colunsafe_sym_on_same_stride = once $
let input = (3><4)
[ 1.0, 2.0, 3.0, 4.0
, 5.0, 6.0, 7.0, 8.0
, 9.0, 10.0, 11.0, 12.0 ]
out = col2imUnsafe 3 2 3 2 3 4 . im2colUnsafe 3 2 3 2 $ input
in input === out
-- If there is an overlap, then the gradient passed back should be
-- the sum of the gradients across the filters.
prop_im2col_col2im_additive = once $
@ -74,29 +86,29 @@ prop_im2col_col2im_additive = once $
[ 1.0, 2.0, 2.0, 1.0
, 2.0, 4.0, 4.0, 2.0
, 1.0, 2.0, 2.0, 1.0 ]
out = col2im 2 2 1 1 3 4 . im2col 2 2 1 1 $ input
out = col2imUnsafe 2 2 1 1 3 4 . im2colUnsafe 2 2 1 1 $ input
in expected === out
prop_simple_conv_forwards = once $
-- Create a convolution kernel with 4 filters.
-- [ 1, 0 [ 0, 1 [ 0, 1 [ 0, 0
-- , 0,-1 ] ,-1, 0 ] , 1, 0 ] ,-1,-1 ]
let myKernel = (HStatic.matrix
let myKernel = HStatic.matrix
[ 1.0, 0.0, 0.0, 0.0
, 0.0, 1.0, 1.0, 0.0
, 0.0, -1.0, 1.0, -1.0
,-1.0, 0.0, 0.0, -1.0 ] :: HStatic.L 4 4)
zeroKernel = (HStatic.matrix
,-1.0, 0.0, 0.0, -1.0 ] :: HStatic.L 4 4
zeroKernel = HStatic.matrix
[ 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, 0.0 ] :: HStatic.L 4 4)
, 0.0, 0.0, 0.0, 0.0 ] :: HStatic.L 4 4
expectedGradient = (HStatic.matrix
expectedGradient = HStatic.matrix
[ 1.0, 0.0, 0.0, 2.0
, 2.0, 0.0, 0.0, 5.0
, 3.0, 0.0, 0.0, 4.0
, 4.0, 0.0, 0.0, 6.0 ] :: HStatic.L 4 4)
, 4.0, 0.0, 0.0, 6.0 ] :: HStatic.L 4 4
convLayer = Convolution myKernel zeroKernel :: Convolution 1 4 2 2 1 1
@ -104,39 +116,36 @@ prop_simple_conv_forwards = once $
[ 1.0, 2.0, 5.0
, 3.0, 4.0, 6.0] :: HStatic.L 2 3)
expect = ([(HStatic.matrix
[ -3.0 , -4.0 ] :: HStatic.L 1 2)
,(HStatic.matrix
[ -1.0 , 1.0 ] :: HStatic.L 1 2)
,(HStatic.matrix
[ 5.0 , 9.0 ] :: HStatic.L 1 2)
,(HStatic.matrix
[ -7.0 , -10.0 ] :: HStatic.L 1 2)]) :: [HStatic.L 1 2]
expect = [ HStatic.matrix
[ -3.0 , -4.0 ] :: HStatic.L 1 2
, HStatic.matrix
[ -1.0 , 1.0 ] :: HStatic.L 1 2
, HStatic.matrix
[ 5.0 , 9.0 ] :: HStatic.L 1 2
, HStatic.matrix
[ -7.0 , -10.0 ] :: HStatic.L 1 2] :: [HStatic.L 1 2]
out = runForwards convLayer input :: S' ('D3 1 2 4)
grad = S3D' ( mkVector
[(HStatic.matrix
[ 1 , 0 ] :: HStatic.L 1 2)
,(HStatic.matrix
[ 0 , 0 ] :: HStatic.L 1 2)
,(HStatic.matrix
[ 0 , 0 ] :: HStatic.L 1 2)
,(HStatic.matrix
[ 0 , 1 ] :: HStatic.L 1 2)] ) :: S' ('D3 1 2 4)
[ HStatic.matrix
[ 1 , 0 ] :: HStatic.L 1 2
, HStatic.matrix
[ 0 , 0 ] :: HStatic.L 1 2
, HStatic.matrix
[ 0 , 0 ] :: HStatic.L 1 2
, HStatic.matrix
[ 0 , 1 ] :: HStatic.L 1 2] ) :: S' ('D3 1 2 4)
expectBack = (HStatic.matrix
[ 1.0, 0.0, 0.0
, 0.0, -2.0,-1.0] :: HStatic.L 2 3)
(nc, inX) = runBackards convLayer input grad
(nc, inX) = runBackwards convLayer input grad
in case (out, inX, nc) of
(S3D' out' , S2D' inX', Convolution' backGrad)
-> ((HStatic.extract <$> expect) === (HStatic.extract <$> vecToList out'))
.&&. ((HStatic.extract expectBack) === (HStatic.extract inX'))
.&&. ((HStatic.extract expectedGradient) === (HStatic.extract backGrad))
-- Temporarily disabled, as l2 adjustment puts in off 5%
-- .&&. HStatic.extract expectedKernel === HStatic.extract kernel'
.&&. (HStatic.extract expectBack === HStatic.extract inX')
.&&. (HStatic.extract expectedGradient === HStatic.extract backGrad)
prop_vid2col_no_stride = once $
let input = [(3><4)
@ -154,7 +163,7 @@ prop_vid2col_no_stride = once $
, 5.0, 6.0, 9.0, 10.0 , 25.0, 26.0, 29.0, 30.0
, 6.0, 7.0, 10.0, 11.0 , 26.0, 27.0, 30.0, 31.0
, 7.0, 8.0, 11.0, 12.0 , 27.0, 28.0, 31.0, 32.0 ]
out = vid2col 2 2 1 1 3 4 input
out = vid2colUnsafe 2 2 1 1 3 4 input
in expected === out
prop_vid2col_stride = once $
@ -171,10 +180,9 @@ prop_vid2col_stride = once $
, 3.0, 4.0, 7.0, 8.0 , 23.0, 24.0, 27.0, 28.0
, 5.0, 6.0, 9.0, 10.0 , 25.0, 26.0, 29.0, 30.0
, 7.0, 8.0, 11.0, 12.0 , 27.0, 28.0, 31.0, 32.0 ]
out = vid2col 2 2 1 2 3 4 input
out = vid2colUnsafe 2 2 1 2 3 4 input
in expected === out
prop_vid2col_invert = once $
let input = [(3><4)
[ 1.0, 2.0, 3.0, 4.0
@ -184,9 +192,10 @@ prop_vid2col_invert = once $
[ 21.0, 22.0, 23.0, 24.0
, 25.0, 26.0, 27.0, 28.0
, 29.0, 30.0, 31.0, 32.0 ] ]
out = col2vid 3 2 3 2 3 4 . vid2col 3 2 3 2 3 4 $ input
out = col2vidUnsafe 3 2 3 2 3 4 . vid2colUnsafe 3 2 3 2 3 4 $ input
in input === out
-- This test show that 2D convs act the same
-- 3D convs with one layer
prop_single_conv_forwards = once $
@ -216,36 +225,36 @@ prop_single_conv_forwards = once $
[ 1.0, 2.0, 5.0
, 3.0, 4.0, 6.0] :: HStatic.L 2 3] ) :: S' ('D3 2 3 1)
expect = ([(HStatic.matrix
[ -3.0 , -4.0 ] :: HStatic.L 1 2)
,(HStatic.matrix
[ -1.0 , 1.0 ] :: HStatic.L 1 2)
,(HStatic.matrix
[ 5.0 , 9.0 ] :: HStatic.L 1 2)
,(HStatic.matrix
[ -7.0 , -10.0 ] :: HStatic.L 1 2)]) :: [HStatic.L 1 2]
expect = [HStatic.matrix
[ -3.0 , -4.0 ] :: HStatic.L 1 2
,HStatic.matrix
[ -1.0 , 1.0 ] :: HStatic.L 1 2
,HStatic.matrix
[ 5.0 , 9.0 ] :: HStatic.L 1 2
,HStatic.matrix
[ -7.0 , -10.0 ] :: HStatic.L 1 2] :: [HStatic.L 1 2]
out = runForwards convLayer input :: S' ('D3 1 2 4)
grad = S3D' ( mkVector
[(HStatic.matrix
[ 1 , 0 ] :: HStatic.L 1 2)
,(HStatic.matrix
[ 0 , 0 ] :: HStatic.L 1 2)
,(HStatic.matrix
[ 0 , 0 ] :: HStatic.L 1 2)
,(HStatic.matrix
[ 0 , 1 ] :: HStatic.L 1 2)] ) :: S' ('D3 1 2 4)
[HStatic.matrix
[ 1 , 0 ] :: HStatic.L 1 2
,HStatic.matrix
[ 0 , 0 ] :: HStatic.L 1 2
,HStatic.matrix
[ 0 , 0 ] :: HStatic.L 1 2
,HStatic.matrix
[ 0 , 1 ] :: HStatic.L 1 2] ) :: S' ('D3 1 2 4)
expectBack = (HStatic.matrix
[ 1.0, 0.0, 0.0
, 0.0, -2.0,-1.0] :: HStatic.L 2 3)
(nc, inX) = runBackards convLayer input grad
(nc, inX) = runBackwards convLayer input grad
in case (out, inX, nc) of
(S3D' out' , S3D' inX', Convolution' backGrad)
-> ((HStatic.extract <$> expect) === (HStatic.extract <$> vecToList out'))
.&&. ([HStatic.extract expectBack] === (HStatic.extract <$> vecToList inX'))
.&&. ((HStatic.extract expectedGradient) === (HStatic.extract backGrad))
.&&. (HStatic.extract expectedGradient === HStatic.extract backGrad)
return []
tests :: IO Bool

View File

@ -4,7 +4,7 @@
{-# OPTIONS_GHC -fno-warn-missing-signatures #-}
module Test.Grenade.Layers.Pooling where
import Grenade.Layers.Pooling
import Grenade.Layers.Internal.Pooling
import Numeric.LinearAlgebra hiding (uniformSample, konst, (===))
@ -12,15 +12,26 @@ import Test.QuickCheck hiding ((><))
prop_pool = once $
let input = (3><4)
[ 1.0, 2.0, 3.0, 4.0
[ 1.0, 14.0, 3.0, 4.0
, 5.0, 6.0, 7.0, 8.0
, 9.0, 10.0, 11.0, 12.0 ]
expected = (2><3)
[ 6.0, 7.0, 8.0
[ 14.0, 14.0, 8.0
, 10.0, 11.0, 12.0 ]
out = poolForward 2 2 1 1 2 3 input
in expected === out
prop_pool_rectangular = once $
let input = (3><4)
[ 1.0, 14.0, 3.0, 4.0
, 5.0, 6.0, 7.0, 8.0
, 9.0, 10.0, 11.0, 12.0 ]
expected = (2><2)
[ 14.0, 14.0
, 11.0, 12.0 ]
out = poolForward 2 3 1 1 2 2 input
in expected === out
prop_pool_backwards = once $
let input = (3><4)
[ 1.0, 2.0, 3.0, 4.0