mirror of
https://github.com/HuwCampbell/grenade.git
synced 2024-11-24 18:09:01 +03:00
Merge pull request #25 from HuwCampbell/topic/generative-adversarial
Topic/generative adversarial
This commit is contained in:
commit
c3f0373fbe
@ -130,6 +130,25 @@ executable mnist
|
||||
, MonadRandom
|
||||
, vector
|
||||
|
||||
executable gan-mnist
|
||||
ghc-options: -Wall -threaded -O2
|
||||
main-is: main/gan-mnist.hs
|
||||
build-depends: base
|
||||
, grenade
|
||||
, attoparsec
|
||||
, bytestring
|
||||
, cereal
|
||||
, either
|
||||
, optparse-applicative == 0.13.*
|
||||
, text == 1.2.*
|
||||
, mtl >= 2.2.1 && < 2.3
|
||||
, hmatrix >= 0.18 && < 0.19
|
||||
, transformers
|
||||
, semigroups
|
||||
, singletons
|
||||
, MonadRandom
|
||||
, vector
|
||||
|
||||
executable recurrent
|
||||
ghc-options: -Wall -threaded -O2
|
||||
main-is: main/recurrent.hs
|
||||
|
167
main/gan-mnist.hs
Normal file
167
main/gan-mnist.hs
Normal file
@ -0,0 +1,167 @@
|
||||
{-# LANGUAGE BangPatterns #-}
|
||||
{-# LANGUAGE DataKinds #-}
|
||||
{-# LANGUAGE GADTs #-}
|
||||
{-# LANGUAGE ScopedTypeVariables #-}
|
||||
{-# LANGUAGE TypeOperators #-}
|
||||
{-# LANGUAGE TupleSections #-}
|
||||
{-# LANGUAGE TypeFamilies #-}
|
||||
{-# LANGUAGE FlexibleContexts #-}
|
||||
|
||||
-- This is a simple generative adversarial network to make pictures
|
||||
-- of numbers similar to those in MNIST.
|
||||
--
|
||||
-- It demonstrates a different usage of the library, within a few hours
|
||||
-- was producing examples like this:
|
||||
--
|
||||
-- --.
|
||||
-- .=-.--..#=###
|
||||
-- -##==#########.
|
||||
-- #############-
|
||||
-- -###-.=..-.-==
|
||||
-- ###-
|
||||
-- .###-
|
||||
-- .####...==-.
|
||||
-- -####=--.=##=
|
||||
-- -##=- -##
|
||||
-- =##
|
||||
-- -##=
|
||||
-- -###-
|
||||
-- .####.
|
||||
-- .#####.
|
||||
-- ...---=#####-
|
||||
-- .=#########. .
|
||||
-- .#######=. .
|
||||
-- . =-.
|
||||
--
|
||||
-- It's a 5!
|
||||
--
|
||||
import Control.Applicative
|
||||
import Control.Monad
|
||||
import Control.Monad.Random
|
||||
import Control.Monad.Trans.Except
|
||||
|
||||
import qualified Data.Attoparsec.Text as A
|
||||
import qualified Data.ByteString as B
|
||||
import Data.List ( foldl' )
|
||||
import Data.Semigroup ( (<>) )
|
||||
import Data.Serialize
|
||||
import qualified Data.Text as T
|
||||
import qualified Data.Text.IO as T
|
||||
import qualified Data.Vector.Storable as V
|
||||
|
||||
import qualified Numeric.LinearAlgebra.Static as SA
|
||||
import Numeric.LinearAlgebra.Data ( toLists )
|
||||
|
||||
import Options.Applicative
|
||||
|
||||
import Grenade
|
||||
import Grenade.Utils.OneHot
|
||||
|
||||
type Discriminator = Network '[ Convolution 1 10 5 5 1 1, Pooling 2 2 2 2, Relu, Convolution 10 16 5 5 1 1, Pooling 2 2 2 2, Reshape, Relu, FullyConnected 256 80, Logit, FullyConnected 80 1, Logit]
|
||||
'[ 'D2 28 28, 'D3 24 24 10, 'D3 12 12 10, 'D3 12 12 10, 'D3 8 8 16, 'D3 4 4 16, 'D1 256, 'D1 256, 'D1 80, 'D1 80, 'D1 1, 'D1 1]
|
||||
|
||||
type Generator = Network '[ FullyConnected 100 10240, Relu, Reshape, Convolution 10 10 5 5 1 1, Relu, Convolution 10 1 1 1 1 1, Logit, Reshape]
|
||||
'[ 'D1 100, 'D1 10240, 'D1 10240, 'D3 32 32 10, 'D3 28 28 10, 'D3 28 28 10, 'D3 28 28 1, 'D3 28 28 1, 'D2 28 28 ]
|
||||
|
||||
randomDiscriminator :: MonadRandom m => m Discriminator
|
||||
randomDiscriminator = randomNetwork
|
||||
|
||||
randomGenerator :: MonadRandom m => m Generator
|
||||
randomGenerator = randomNetwork
|
||||
|
||||
trainExample :: LearningParameters -> Discriminator -> Generator -> S ('D2 28 28) -> S ('D1 100) -> ( Discriminator, Generator )
|
||||
trainExample rate discriminator generator realExample noiseSource
|
||||
= let (generatorTape, fakeExample) = runNetwork generator noiseSource
|
||||
|
||||
(discriminatorTapeReal, guessReal) = runNetwork discriminator realExample
|
||||
(discriminatorTapeFake, guessFake) = runNetwork discriminator fakeExample
|
||||
|
||||
(discriminator'real, _) = runGradient discriminator discriminatorTapeReal ( guessReal - 1 )
|
||||
(discriminator'fake, push) = runGradient discriminator discriminatorTapeFake guessFake
|
||||
|
||||
(generator', _) = runGradient generator generatorTape (-push)
|
||||
|
||||
newDiscriminator = foldl' (applyUpdate rate { learningRegulariser = learningRegulariser rate * 10}) discriminator [ discriminator'real, discriminator'fake ]
|
||||
newGenerator = applyUpdate rate generator generator'
|
||||
in ( newDiscriminator, newGenerator )
|
||||
|
||||
|
||||
ganTest :: (Discriminator, Generator) -> Int -> FilePath -> LearningParameters -> ExceptT String IO (Discriminator, Generator)
|
||||
ganTest (discriminator0, generator0) iterations trainFile rate = do
|
||||
trainData <- fmap fst <$> readMNIST trainFile
|
||||
|
||||
lift $ foldM (runIteration trainData) ( discriminator0, generator0 ) [1..iterations]
|
||||
|
||||
where
|
||||
|
||||
showShape' :: S ('D2 a b) -> IO ()
|
||||
showShape' (S2D mm) = putStrLn $
|
||||
let m = SA.extract mm
|
||||
ms = toLists m
|
||||
render n' | n' <= 0.2 = ' '
|
||||
| n' <= 0.4 = '.'
|
||||
| n' <= 0.6 = '-'
|
||||
| n' <= 0.8 = '='
|
||||
| otherwise = '#'
|
||||
|
||||
px = (fmap . fmap) render ms
|
||||
in unlines px
|
||||
|
||||
runIteration :: [S ('D2 28 28)] -> (Discriminator, Generator) -> Int -> IO (Discriminator, Generator)
|
||||
runIteration trainData ( !discriminator, !generator ) _ = do
|
||||
trained' <- foldM ( \(!discriminatorX, !generatorX ) realExample -> do
|
||||
fakeExample <- randomOfShape
|
||||
return $ trainExample rate discriminatorX generatorX realExample fakeExample
|
||||
) ( discriminator, generator ) trainData
|
||||
|
||||
|
||||
showShape' . snd . runNetwork (snd trained') =<< randomOfShape
|
||||
|
||||
return trained'
|
||||
|
||||
data GanOpts = GanOpts FilePath Int LearningParameters (Maybe FilePath) (Maybe FilePath)
|
||||
|
||||
mnist' :: Parser GanOpts
|
||||
mnist' = GanOpts <$> argument str (metavar "TRAIN")
|
||||
<*> option auto (long "iterations" <> short 'i' <> value 15)
|
||||
<*> (LearningParameters
|
||||
<$> option auto (long "train_rate" <> short 'r' <> value 0.01)
|
||||
<*> option auto (long "momentum" <> value 0.9)
|
||||
<*> option auto (long "l2" <> value 0.0005)
|
||||
)
|
||||
<*> optional (strOption (long "load"))
|
||||
<*> optional (strOption (long "save"))
|
||||
|
||||
|
||||
main :: IO ()
|
||||
main = do
|
||||
GanOpts mnist iter rate load save <- execParser (info (mnist' <**> helper) idm)
|
||||
putStrLn "Training stupidly simply GAN"
|
||||
nets0 <- case load of
|
||||
Just loadFile -> netLoad loadFile
|
||||
Nothing -> (,) <$> randomDiscriminator <*> randomGenerator
|
||||
|
||||
res <- runExceptT $ ganTest nets0 iter mnist rate
|
||||
case res of
|
||||
Right nets1 -> case save of
|
||||
Just saveFile -> B.writeFile saveFile $ runPut (put nets1)
|
||||
Nothing -> return ()
|
||||
|
||||
Left err -> putStrLn err
|
||||
|
||||
readMNIST :: FilePath -> ExceptT String IO [(S ('D2 28 28), S ('D1 10))]
|
||||
readMNIST mnist = ExceptT $ do
|
||||
mnistdata <- T.readFile mnist
|
||||
return $ traverse (A.parseOnly parseMNIST) (T.lines mnistdata)
|
||||
|
||||
parseMNIST :: A.Parser (S ('D2 28 28), S ('D1 10))
|
||||
parseMNIST = do
|
||||
Just lab <- oneHot <$> A.decimal
|
||||
pixels <- many (A.char ',' >> A.double)
|
||||
image <- maybe (fail "Parsed row was of an incorrect size") pure (fromStorable . V.fromList $ pixels)
|
||||
return (image, lab)
|
||||
|
||||
netLoad :: FilePath -> IO (Discriminator, Generator)
|
||||
netLoad modelPath = do
|
||||
modelData <- B.readFile modelPath
|
||||
either fail return $ runGet (get :: Get (Discriminator, Generator)) modelData
|
@ -21,7 +21,10 @@ import Grenade.Core
|
||||
--
|
||||
-- Flattens input down to D1 from either 2D or 3D data.
|
||||
--
|
||||
-- Can also be used to turn a 3D image with only one channel into a 2D image.
|
||||
-- Casts input D1 up to either 2D or 3D data if the shapes are good.
|
||||
--
|
||||
-- Can also be used to turn a 3D image with only one channel into a 2D image
|
||||
-- or vice versa.
|
||||
data Reshape = Reshape
|
||||
deriving Show
|
||||
|
||||
@ -50,6 +53,16 @@ instance (KnownNat y, KnownNat x, KnownNat z, z ~ 1) => Layer Reshape ('D2 x y)
|
||||
runForwards _ (S2D y) = ((), S3D y)
|
||||
runBackwards _ _ (S3D y) = ((), S2D y)
|
||||
|
||||
instance (KnownNat a, KnownNat x, KnownNat y, a ~ (x * y)) => Layer Reshape ('D1 a) ('D2 x y) where
|
||||
type Tape Reshape ('D1 a) ('D2 x y) = ()
|
||||
runForwards _ (S1D y) = ((), fromJust' . fromStorable . extract $ y)
|
||||
runBackwards _ _ (S2D y) = ((), fromJust' . fromStorable . flatten . extract $ y)
|
||||
|
||||
instance (KnownNat a, KnownNat x, KnownNat y, KnownNat (x * z), KnownNat z, a ~ (x * y * z)) => Layer Reshape ('D1 a) ('D3 x y z) where
|
||||
type Tape Reshape ('D1 a) ('D3 x y z) = ()
|
||||
runForwards _ (S1D y) = ((), fromJust' . fromStorable . extract $ y)
|
||||
runBackwards _ _ (S3D y) = ((), fromJust' . fromStorable . flatten . extract $ y)
|
||||
|
||||
instance Serialize Reshape where
|
||||
put _ = return ()
|
||||
get = return Reshape
|
||||
|
Loading…
Reference in New Issue
Block a user