grenade/cbits/im2col.c
Huw Campbell 6417151620 Make Grenade fast
Changes shapes to get rid of the Vector, all data is
now held in contiguous memory.

Add fast c implementations for pooling layers.

Now does mnist on my laptop in 12 minutes.
2016-12-13 08:39:32 +11:00

135 lines
5.4 KiB
C

#include "im2col.h"
inline int is_a_ge_zero_and_a_lt_b(int a, int b) {
return a >= 0 && a < b;
}
void im2col_cpu(const double* data_im, int dataOffset, const int channels,
const int height, const int width, const int kernel_h, const int kernel_w,
const int stride_h, const int stride_w,
double* data_col) {
data_im += dataOffset;
const int channel_size = height * width;
for (int fitting_height = 0; fitting_height <= (height - kernel_h); fitting_height += stride_h) {
for (int fitting_width = 0; fitting_width <= (width - kernel_w); fitting_width += stride_w) {
for (int channel = 0; channel < channels; channel++) {
for (int kernel_row = 0; kernel_row < kernel_h; kernel_row++) {
for (int kernel_col = 0; kernel_col < kernel_w; kernel_col++) {
int input_row = fitting_height + kernel_row;
int input_col = fitting_width + kernel_col;
*(data_col++) = data_im[input_row * width + input_col + channel_size * channel];
}
}
}
}
}
}
void col2im_cpu(const double* data_col, int dataOffset, const int channels,
const int height, const int width, const int kernel_h, const int kernel_w,
const int stride_h, const int stride_w,
double* data_im) {
memset(data_im, 0, height * width * channels * sizeof(double));
data_col += dataOffset;
const int channel_size = height * width;
for (int fitting_height = 0; fitting_height <= (height - kernel_h); fitting_height += stride_h) {
for (int fitting_width = 0; fitting_width <= (width - kernel_w); fitting_width += stride_w) {
for (int channel = 0; channel < channels; channel++) {
for (int kernel_row = 0; kernel_row < kernel_h; kernel_row++) {
for (int kernel_col = 0; kernel_col < kernel_w; kernel_col++) {
int input_row = fitting_height + kernel_row;
int input_col = fitting_width + kernel_col;
data_im[input_row * width + input_col + channel_size * channel] += *(data_col++);
}
}
}
}
}
}
inline int max ( int a, int b ) { return a > b ? a : b; }
void pool_forwards_cpu(const double* data_im, int dataOffset, const int channels,
const int height, const int width, const int kernel_h, const int kernel_w,
const int stride_h, const int stride_w,
double* data_pooled) {
data_im += dataOffset;
const int channel_size = height * width;
for (int channel = 0; channel < channels; channel++) {
for (int fitting_height = 0; fitting_height <= (height - kernel_h); fitting_height += stride_h) {
for (int fitting_width = 0; fitting_width <= (width - kernel_w); fitting_width += stride_w) {
// Start with the value in 0,0
int max_value = data_im[fitting_height * width + fitting_width + channel_size * channel];
// Initial row, skipping the corner we've done
for (int kernel_col = 1; kernel_col < kernel_w; kernel_col++) {
int input_row = fitting_height;
int input_col = fitting_width + kernel_col;
max_value = max ( max_value, data_im[input_row * width + input_col + channel_size * channel] );
}
// The remaining rows
for (int kernel_row = 1; kernel_row < kernel_h; kernel_row++) {
for (int kernel_col = 0; kernel_col < kernel_w; kernel_col++) {
int input_row = fitting_height + kernel_row;
int input_col = fitting_width + kernel_col;
max_value = max ( max_value, data_im[input_row * width + input_col + channel_size * channel] );
}
}
*(data_pooled++) = max_value;
}
}
}
}
void pool_backwards_cpu(const double* data_im, int data_im_offset,
const double* data_pooled, int data_pooled_offset,
const int channels, const int height, const int width, const int kernel_h,
const int kernel_w, const int stride_h, const int stride_w,
double* data_backgrad ) {
data_im += data_im_offset;
data_pooled += data_pooled_offset;
memset(data_backgrad, 0, height * width * channels * sizeof(double));
const int channel_size = height * width;
for (int channel = 0; channel < channels; channel++) {
for (int fitting_height = 0; fitting_height <= (height - kernel_h); fitting_height += stride_h) {
for (int fitting_width = 0; fitting_width <= (width - kernel_w); fitting_width += stride_w) {
int max_index = fitting_height * width + fitting_width + channel_size * channel;
int max_value = data_im[max_index];
for (int kernel_col = 1; kernel_col < kernel_w; kernel_col++) {
int input_row = fitting_height;
int input_col = fitting_width + kernel_col;
int data_index = input_row * width + input_col + channel_size * channel;
int data_value = data_im[data_index];
if ( data_value > max_value ) {
max_value = data_value;
max_index = data_index;
}
}
for (int kernel_row = 1; kernel_row < kernel_h; kernel_row++) {
for (int kernel_col = 0; kernel_col < kernel_w; kernel_col++) {
int input_row = fitting_height + kernel_row;
int input_col = fitting_width + kernel_col;
int data_index = input_row * width + input_col + channel_size * channel;
int data_value = data_im[data_index];
if ( data_value > max_value ) {
max_value = data_value;
max_index = data_index;
}
}
}
data_backgrad[max_index] += *(data_pooled++);
}
}
}
}