mirror of
https://github.com/HuwCampbell/grenade.git
synced 2024-11-23 00:34:44 +03:00
183 lines
6.5 KiB
Haskell
183 lines
6.5 KiB
Haskell
{-# LANGUAGE BangPatterns #-}
|
|
{-# LANGUAGE DataKinds #-}
|
|
{-# LANGUAGE GADTs #-}
|
|
{-# LANGUAGE ScopedTypeVariables #-}
|
|
{-# LANGUAGE TypeOperators #-}
|
|
{-# LANGUAGE TupleSections #-}
|
|
{-# LANGUAGE TypeFamilies #-}
|
|
{-# LANGUAGE FlexibleContexts #-}
|
|
|
|
-- This is a simple generative adversarial network to make pictures
|
|
-- of numbers similar to those in MNIST.
|
|
--
|
|
-- It demonstrates a different usage of the library. Within about 15
|
|
-- minutes it was producing examples like this:
|
|
--
|
|
-- --.
|
|
-- .=-.--..#=###
|
|
-- -##==#########.
|
|
-- #############-
|
|
-- -###-.=..-.-==
|
|
-- ###-
|
|
-- .###-
|
|
-- .####...==-.
|
|
-- -####=--.=##=
|
|
-- -##=- -##
|
|
-- =##
|
|
-- -##=
|
|
-- -###-
|
|
-- .####.
|
|
-- .#####.
|
|
-- ...---=#####-
|
|
-- .=#########. .
|
|
-- .#######=. .
|
|
-- . =-.
|
|
--
|
|
-- It's a 5!
|
|
--
|
|
import Control.Applicative
|
|
import Control.Monad
|
|
import Control.Monad.Random
|
|
import Control.Monad.Trans.Except
|
|
|
|
import qualified Data.Attoparsec.Text as A
|
|
import qualified Data.ByteString as B
|
|
import Data.List ( foldl' )
|
|
import Data.Semigroup ( (<>) )
|
|
import Data.Serialize
|
|
import qualified Data.Text as T
|
|
import qualified Data.Text.IO as T
|
|
import qualified Data.Vector.Storable as V
|
|
|
|
import qualified Numeric.LinearAlgebra.Static as SA
|
|
import Numeric.LinearAlgebra.Data ( toLists )
|
|
|
|
import Options.Applicative
|
|
|
|
import Grenade
|
|
import Grenade.Utils.OneHot
|
|
|
|
type Discriminator =
|
|
Network
|
|
'[ Convolution 1 10 5 5 1 1, Pooling 2 2 2 2, Relu
|
|
, Convolution 10 16 5 5 1 1, Pooling 2 2 2 2, Relu
|
|
, Reshape, FullyConnected 256 80, Logit, FullyConnected 80 1, Logit]
|
|
'[ 'D2 28 28
|
|
, 'D3 24 24 10, 'D3 12 12 10, 'D3 12 12 10
|
|
, 'D3 8 8 16, 'D3 4 4 16, 'D3 4 4 16
|
|
, 'D1 256, 'D1 80, 'D1 80, 'D1 1, 'D1 1]
|
|
|
|
type Generator =
|
|
Network
|
|
'[ FullyConnected 80 256, Relu, Reshape
|
|
, Deconvolution 16 10 5 5 2 2, Relu
|
|
, Deconvolution 10 1 8 8 2 2, Logit]
|
|
'[ 'D1 80
|
|
, 'D1 256, 'D1 256, 'D3 4 4 16
|
|
, 'D3 11 11 10, 'D3 11 11 10
|
|
, 'D2 28 28, 'D2 28 28 ]
|
|
|
|
randomDiscriminator :: MonadRandom m => m Discriminator
|
|
randomDiscriminator = randomNetwork
|
|
|
|
randomGenerator :: MonadRandom m => m Generator
|
|
randomGenerator = randomNetwork
|
|
|
|
trainExample :: LearningParameters -> Discriminator -> Generator -> S ('D2 28 28) -> S ('D1 80) -> ( Discriminator, Generator )
|
|
trainExample rate discriminator generator realExample noiseSource
|
|
= let (generatorTape, fakeExample) = runNetwork generator noiseSource
|
|
|
|
(discriminatorTapeReal, guessReal) = runNetwork discriminator realExample
|
|
(discriminatorTapeFake, guessFake) = runNetwork discriminator fakeExample
|
|
|
|
(discriminator'real, _) = runGradient discriminator discriminatorTapeReal ( guessReal - 1 )
|
|
(discriminator'fake, _) = runGradient discriminator discriminatorTapeFake guessFake
|
|
(_, push) = runGradient discriminator discriminatorTapeFake ( guessFake - 1)
|
|
|
|
(generator', _) = runGradient generator generatorTape push
|
|
|
|
newDiscriminator = foldl' (applyUpdate rate { learningRegulariser = learningRegulariser rate * 10}) discriminator [ discriminator'real, discriminator'fake ]
|
|
newGenerator = applyUpdate rate generator generator'
|
|
in ( newDiscriminator, newGenerator )
|
|
|
|
|
|
ganTest :: (Discriminator, Generator) -> Int -> FilePath -> LearningParameters -> ExceptT String IO (Discriminator, Generator)
|
|
ganTest (discriminator0, generator0) iterations trainFile rate = do
|
|
trainData <- fmap fst <$> readMNIST trainFile
|
|
|
|
lift $ foldM (runIteration trainData) ( discriminator0, generator0 ) [1..iterations]
|
|
|
|
where
|
|
|
|
showShape' :: S ('D2 a b) -> IO ()
|
|
showShape' (S2D mm) = putStrLn $
|
|
let m = SA.extract mm
|
|
ms = toLists m
|
|
render n' | n' <= 0.2 = ' '
|
|
| n' <= 0.4 = '.'
|
|
| n' <= 0.6 = '-'
|
|
| n' <= 0.8 = '='
|
|
| otherwise = '#'
|
|
|
|
px = (fmap . fmap) render ms
|
|
in unlines px
|
|
|
|
runIteration :: [S ('D2 28 28)] -> (Discriminator, Generator) -> Int -> IO (Discriminator, Generator)
|
|
runIteration trainData ( !discriminator, !generator ) _ = do
|
|
trained' <- foldM ( \(!discriminatorX, !generatorX ) realExample -> do
|
|
fakeExample <- randomOfShape
|
|
return $ trainExample rate discriminatorX generatorX realExample fakeExample
|
|
) ( discriminator, generator ) trainData
|
|
|
|
|
|
showShape' . snd . runNetwork (snd trained') =<< randomOfShape
|
|
|
|
return trained'
|
|
|
|
data GanOpts = GanOpts FilePath Int LearningParameters (Maybe FilePath) (Maybe FilePath)
|
|
|
|
mnist' :: Parser GanOpts
|
|
mnist' = GanOpts <$> argument str (metavar "TRAIN")
|
|
<*> option auto (long "iterations" <> short 'i' <> value 15)
|
|
<*> (LearningParameters
|
|
<$> option auto (long "train_rate" <> short 'r' <> value 0.01)
|
|
<*> option auto (long "momentum" <> value 0.9)
|
|
<*> option auto (long "l2" <> value 0.0005)
|
|
)
|
|
<*> optional (strOption (long "load"))
|
|
<*> optional (strOption (long "save"))
|
|
|
|
|
|
main :: IO ()
|
|
main = do
|
|
GanOpts mnist iter rate load save <- execParser (info (mnist' <**> helper) idm)
|
|
putStrLn "Training stupidly simply GAN"
|
|
nets0 <- case load of
|
|
Just loadFile -> netLoad loadFile
|
|
Nothing -> (,) <$> randomDiscriminator <*> randomGenerator
|
|
|
|
res <- runExceptT $ ganTest nets0 iter mnist rate
|
|
case res of
|
|
Right nets1 -> case save of
|
|
Just saveFile -> B.writeFile saveFile $ runPut (put nets1)
|
|
Nothing -> return ()
|
|
|
|
Left err -> putStrLn err
|
|
|
|
readMNIST :: FilePath -> ExceptT String IO [(S ('D2 28 28), S ('D1 10))]
|
|
readMNIST mnist = ExceptT $ do
|
|
mnistdata <- T.readFile mnist
|
|
return $ traverse (A.parseOnly parseMNIST) (T.lines mnistdata)
|
|
|
|
parseMNIST :: A.Parser (S ('D2 28 28), S ('D1 10))
|
|
parseMNIST = do
|
|
Just lab <- oneHot <$> A.decimal
|
|
pixels <- many (A.char ',' >> A.double)
|
|
image <- maybe (fail "Parsed row was of an incorrect size") pure (fromStorable . V.fromList $ pixels)
|
|
return (image, lab)
|
|
|
|
netLoad :: FilePath -> IO (Discriminator, Generator)
|
|
netLoad modelPath = do
|
|
modelData <- B.readFile modelPath
|
|
either fail return $ runGet (get :: Get (Discriminator, Generator)) modelData
|