mirror of
https://github.com/InfiniTimeOrg/InfiniTime.git
synced 2024-12-18 23:21:48 +03:00
25f35c7d0e
This new FW is build on the same codebasse than the actual InfiniTime. Only the display task is different (this allows to remove lvgl from the recovery fw, which is very heavy). CMake builds and docker have been modified accordingly. Note than the fw is converted into an image and then into a DFU in the cmake build (previously, it was only done in the
379 lines
10 KiB
Python
379 lines
10 KiB
Python
#!/usr/bin/env python3
|
|
|
|
# SPDX-License-Identifier: LGPL-3.0-or-later
|
|
# Copyright (C) 2020 Daniel Thompson
|
|
|
|
import argparse
|
|
import sys
|
|
import os.path
|
|
from PIL import Image
|
|
|
|
def clut8_rgb888(i):
|
|
"""Reference CLUT for wasp-os.
|
|
|
|
Technically speaking this is not a CLUT because the we lookup the colours
|
|
algorithmically to avoid the cost of a genuine CLUT. The palette is
|
|
designed to be fairly easy to generate algorithmically.
|
|
|
|
The palette includes all 216 web-safe colours together 4 grays and
|
|
36 additional colours that target "gaps" at the brighter end of the web
|
|
safe set. There are 11 greys (plus black and white) although two are
|
|
fairly close together.
|
|
|
|
:param int i: Index (from 0..255 inclusive) into the CLUT
|
|
:return: 24-bit colour in RGB888 format
|
|
"""
|
|
if i < 216:
|
|
rgb888 = ( i % 6) * 0x33
|
|
rg = i // 6
|
|
rgb888 += (rg % 6) * 0x3300
|
|
rgb888 += (rg // 6) * 0x330000
|
|
elif i < 252:
|
|
i -= 216
|
|
rgb888 = 0x7f + (( i % 3) * 0x33)
|
|
rg = i // 3
|
|
rgb888 += 0x4c00 + ((rg % 4) * 0x3300)
|
|
rgb888 += 0x7f0000 + ((rg // 4) * 0x330000)
|
|
else:
|
|
i -= 252
|
|
rgb888 = 0x2c2c2c + (0x101010 * i)
|
|
|
|
return rgb888
|
|
|
|
def clut8_rgb565(i):
|
|
"""RBG565 CLUT for wasp-os.
|
|
|
|
This CLUT implements the same palette as :py:meth:`clut8_888` but
|
|
outputs RGB565 pixels.
|
|
|
|
.. note::
|
|
|
|
This function is unused within this file but needs to be
|
|
maintained alongside the reference clut so it is reproduced
|
|
here.
|
|
|
|
:param int i: Index (from 0..255 inclusive) into the CLUT
|
|
:return: 16-bit colour in RGB565 format
|
|
"""
|
|
if i < 216:
|
|
rgb565 = (( i % 6) * 0x33) >> 3
|
|
rg = i // 6
|
|
rgb565 += ((rg % 6) * (0x33 << 3)) & 0x07e0
|
|
rgb565 += ((rg // 6) * (0x33 << 8)) & 0xf800
|
|
elif i < 252:
|
|
i -= 216
|
|
rgb565 = (0x7f + (( i % 3) * 0x33)) >> 3
|
|
rg = i // 3
|
|
rgb565 += ((0x4c << 3) + ((rg % 4) * (0x33 << 3))) & 0x07e0
|
|
rgb565 += ((0x7f << 8) + ((rg // 4) * (0x33 << 8))) & 0xf800
|
|
else:
|
|
i -= 252
|
|
gr6 = (0x2c + (0x10 * i)) >> 2
|
|
gr5 = gr6 >> 1
|
|
rgb565 = (gr5 << 11) + (gr6 << 5) + gr5
|
|
|
|
return rgb565
|
|
|
|
class ReverseCLUT:
|
|
def __init__(self, clut):
|
|
l = []
|
|
for i in range(256):
|
|
l.append(clut(i))
|
|
self.clut = tuple(l)
|
|
self.lookup = {}
|
|
|
|
def __call__(self, rgb888):
|
|
"""Compare rgb888 to every element of the CLUT and pick the
|
|
closest match.
|
|
"""
|
|
if rgb888 in self.lookup:
|
|
return self.lookup[rgb888]
|
|
|
|
best = 200000
|
|
index = -1
|
|
clut = self.clut
|
|
r = rgb888 >> 16
|
|
g = (rgb888 >> 8) & 0xff
|
|
b = rgb888 & 0xff
|
|
|
|
for i in range(256):
|
|
candidate = clut[i]
|
|
rd = r - (candidate >> 16)
|
|
gd = g - ((candidate >> 8) & 0xff)
|
|
bd = b - (candidate & 0xff)
|
|
# This is the Euclidian distance (squared)
|
|
distance = rd * rd + gd * gd + bd * bd
|
|
if distance < best:
|
|
best = distance
|
|
index = i
|
|
|
|
self.lookup[rgb888] = index
|
|
#print(f'# #{rgb888:06x} -> #{clut8_rgb888(index):06x}')
|
|
return index
|
|
|
|
def varname(p):
|
|
return os.path.basename(os.path.splitext(p)[0])
|
|
|
|
def encode(im):
|
|
pixels = im.load()
|
|
|
|
rle = []
|
|
rl = 0
|
|
px = pixels[0, 0]
|
|
|
|
def encode_pixel(px, rl):
|
|
while rl > 255:
|
|
rle.append(255)
|
|
rle.append(0)
|
|
rl -= 255
|
|
rle.append(rl)
|
|
|
|
for y in range(im.height):
|
|
for x in range(im.width):
|
|
newpx = pixels[x, y]
|
|
if newpx == px:
|
|
rl += 1
|
|
assert(rl < (1 << 21))
|
|
continue
|
|
|
|
# Code the previous run
|
|
encode_pixel(px, rl)
|
|
|
|
# Start a new run
|
|
rl = 1
|
|
px = newpx
|
|
|
|
# Handle the final run
|
|
encode_pixel(px, rl)
|
|
|
|
return (im.width, im.height, bytes(rle))
|
|
|
|
def encode_2bit(im):
|
|
"""2-bit palette based RLE encoder.
|
|
|
|
This encoder has a reprogrammable 2-bit palette. This allows it to encode
|
|
arbitrary images with a full 8-bit depth but the 2-byte overhead each time
|
|
a new colour is introduced means it is not efficient unless the image is
|
|
carefully constructed to keep a good locality of reference for the three
|
|
non-background colours.
|
|
|
|
The encoding competes well with the 1-bit encoder for small monochrome
|
|
images but once run-lengths longer than 62 start to become frequent then
|
|
this encoding is about 30% larger than a 1-bit encoding.
|
|
"""
|
|
pixels = im.load()
|
|
assert(im.width <= 255)
|
|
assert(im.height <= 255)
|
|
|
|
full_palette = ReverseCLUT(clut8_rgb888)
|
|
|
|
rle = []
|
|
rl = 0
|
|
px = pixels[0, 0]
|
|
# black, grey25, grey50, white
|
|
palette = [0, 254, 219, 215]
|
|
next_color = 1
|
|
|
|
def encode_pixel(px, rl):
|
|
nonlocal next_color
|
|
px = full_palette((px[0] << 16) + (px[1] << 8) + px[2])
|
|
if px not in palette:
|
|
rle.append(next_color << 6)
|
|
rle.append(px)
|
|
palette[next_color] = px
|
|
next_color += 1
|
|
if next_color >= len(palette):
|
|
next_color = 1
|
|
px = palette.index(px)
|
|
if rl >= 63:
|
|
rle.append((px << 6) + 63)
|
|
rl -= 63
|
|
while rl >= 255:
|
|
rle.append(255)
|
|
rl -= 255
|
|
rle.append(rl)
|
|
else:
|
|
rle.append((px << 6) + rl)
|
|
|
|
# Issue the descriptor
|
|
rle.append(2)
|
|
rle.append(im.width)
|
|
rle.append(im.height)
|
|
|
|
for y in range(im.height):
|
|
for x in range(im.width):
|
|
newpx = pixels[x, y]
|
|
if newpx == px:
|
|
rl += 1
|
|
assert(rl < (1 << 21))
|
|
continue
|
|
|
|
# Code the previous run
|
|
encode_pixel(px, rl)
|
|
|
|
# Start a new run
|
|
rl = 1
|
|
px = newpx
|
|
|
|
# Handle the final run
|
|
encode_pixel(px, rl)
|
|
|
|
return bytes(rle)
|
|
|
|
def encode_8bit(im):
|
|
"""Experimental 8-bit RLE encoder.
|
|
|
|
For monochrome images this is about 3x less efficient than the 1-bit
|
|
encoder. This encoder is not currently used anywhere in wasp-os and
|
|
currently there is no decoder either (so don't assume this code
|
|
actually works).
|
|
"""
|
|
pixels = im.load()
|
|
|
|
rle = []
|
|
rl = 0
|
|
px = pixels[0, 0]
|
|
|
|
def encode_pixel(px, rl):
|
|
px = (px[0] & 0xe0) | ((px[1] & 0xe0) >> 3) | ((px[2] & 0xc0) >> 6)
|
|
|
|
rle.append(px)
|
|
if rl > 0:
|
|
rle.append(px)
|
|
rl -= 2
|
|
if rl > (1 << 14):
|
|
rle.append(0x80 | ((rl >> 14) & 0x7f))
|
|
if rl > (1 << 7):
|
|
rle.append(0x80 | ((rl >> 7) & 0x7f))
|
|
if rl >= 0:
|
|
rle.append( rl & 0x7f )
|
|
|
|
for y in range(im.height):
|
|
for x in range(im.width):
|
|
newpx = pixels[x, y]
|
|
if newpx == px:
|
|
rl += 1
|
|
assert(rl < (1 << 21))
|
|
continue
|
|
|
|
# Code the previous run
|
|
encode_pixel(px, rl)
|
|
|
|
# Start a new run
|
|
rl = 1
|
|
px = newpx
|
|
|
|
# Handle the final run
|
|
encode_pixel(px, rl)
|
|
|
|
return (im.width, im.height, bytes(rle))
|
|
|
|
def render_c(image, fname, indent, depth):
|
|
extra_indent = ' ' * indent
|
|
if len(image) == 3:
|
|
print(f'{extra_indent}// {depth}-bit RLE, generated from {fname}, '
|
|
f'{len(image[2])} bytes')
|
|
(x, y, pixels) = image
|
|
else:
|
|
print(f'{extra_indent}// {depth}-bit RLE, generated from {fname}, '
|
|
f'{len(image)} bytes')
|
|
pixels = image
|
|
|
|
print(f'{extra_indent}static const uint8_t {varname(fname)}[] = {{')
|
|
print(f'{extra_indent} ', end='')
|
|
i = 0
|
|
for rl in pixels:
|
|
print(f' {hex(rl)},', end='')
|
|
|
|
i += 1
|
|
if i == 12:
|
|
print(f'\n{extra_indent} ', end='')
|
|
i = 0
|
|
print('\n};')
|
|
|
|
def render_py(image, fname, indent, depth):
|
|
extra_indent = ' ' * indent
|
|
if len(image) == 3:
|
|
print(f'{extra_indent}# {depth}-bit RLE, generated from {fname}, '
|
|
f'{len(image[2])} bytes')
|
|
(x, y, pixels) = image
|
|
print(f'{extra_indent}{varname(fname)} = (')
|
|
print(f'{extra_indent} {x}, {y},')
|
|
else:
|
|
print(f'{extra_indent}# {depth}-bit RLE, generated from {fname}, '
|
|
f'{len(image)} bytes')
|
|
pixels = image[3:]
|
|
print(f'{extra_indent}{varname(fname)} = (')
|
|
print(f'{extra_indent} {image[0:1]}')
|
|
print(f'{extra_indent} {image[1:3]}')
|
|
|
|
# Split the bytestring to ensure each line is short enough to
|
|
# be absorbed on the target if needed.
|
|
for i in range(0, len(pixels), 16):
|
|
print(f'{extra_indent} {pixels[i:i+16]}')
|
|
print(f'{extra_indent})')
|
|
|
|
|
|
def decode_to_ascii(image):
|
|
(sx, sy, rle) = image
|
|
data = bytearray(2*sx)
|
|
dp = 0
|
|
black = ord('#')
|
|
white = ord(' ')
|
|
color = black
|
|
|
|
for rl in rle:
|
|
while rl:
|
|
data[dp] = color
|
|
data[dp+1] = color
|
|
dp += 2
|
|
rl -= 1
|
|
|
|
if dp >= (2*sx):
|
|
print(data.decode('utf-8'))
|
|
dp = 0
|
|
|
|
if color == black:
|
|
color = white
|
|
else:
|
|
color = black
|
|
|
|
# Check the image is the correct length
|
|
assert(dp == 0)
|
|
|
|
parser = argparse.ArgumentParser(description='RLE encoder tool.')
|
|
parser.add_argument('files', nargs='+',
|
|
help='files to be encoded')
|
|
parser.add_argument('--ascii', action='store_true',
|
|
help='Run the resulting image(s) through an ascii art decoder')
|
|
parser.add_argument('--c', action='store_true',
|
|
help='Render the output as C instead of python')
|
|
parser.add_argument('--indent', default=0, type=int,
|
|
help='Add extra indentation in the generated code')
|
|
parser.add_argument('--2bit', action='store_true', dest='twobit',
|
|
help='Generate 2-bit image')
|
|
parser.add_argument('--8bit', action='store_true', dest='eightbit',
|
|
help='Generate 8-bit image')
|
|
|
|
args = parser.parse_args()
|
|
if args.eightbit:
|
|
encoder = encode_8bit
|
|
depth = 8
|
|
elif args.twobit:
|
|
encoder = encode_2bit
|
|
depth = 2
|
|
else:
|
|
encoder = encode
|
|
depth =1
|
|
|
|
for fname in args.files:
|
|
image = encoder(Image.open(fname))
|
|
|
|
if args.c:
|
|
render_c(image, fname, args.indent, depth)
|
|
else:
|
|
render_py(image, fname, args.indent, depth)
|
|
|
|
if args.ascii:
|
|
print()
|
|
decode_to_ascii(image) |