ladybird/Userland/Libraries/LibGfx/Path.cpp

538 lines
17 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Function.h>
#include <AK/HashTable.h>
#include <AK/Math.h>
#include <AK/QuickSort.h>
#include <AK/StringBuilder.h>
#include <LibGfx/Painter.h>
#include <LibGfx/Path.h>
namespace Gfx {
void Path::elliptical_arc_to(FloatPoint point, FloatSize radii, float x_axis_rotation, bool large_arc, bool sweep)
{
auto next_point = point;
double rx = radii.width();
double ry = radii.height();
double x_axis_rotation_s;
double x_axis_rotation_c;
AK::sincos(static_cast<double>(x_axis_rotation), x_axis_rotation_s, x_axis_rotation_c);
// Find the last point
FloatPoint last_point { 0, 0 };
if (!m_segments.is_empty())
last_point = m_segments.last()->point();
// Step 1 of out-of-range radii correction
if (rx == 0.0 || ry == 0.0) {
append_segment<LineSegment>(next_point);
return;
}
// Step 2 of out-of-range radii correction
if (rx < 0)
rx *= -1.0;
if (ry < 0)
ry *= -1.0;
// POSSIBLY HACK: Handle the case where both points are the same.
auto same_endpoints = next_point == last_point;
if (same_endpoints) {
if (!large_arc) {
// Nothing is going to be drawn anyway.
return;
}
// Move the endpoint by a small amount to avoid division by zero.
next_point.translate_by(0.01f, 0.01f);
}
// Find (cx, cy), theta_1, theta_delta
// Step 1: Compute (x1', y1')
auto x_avg = static_cast<double>(last_point.x() - next_point.x()) / 2.0;
auto y_avg = static_cast<double>(last_point.y() - next_point.y()) / 2.0;
auto x1p = x_axis_rotation_c * x_avg + x_axis_rotation_s * y_avg;
auto y1p = -x_axis_rotation_s * x_avg + x_axis_rotation_c * y_avg;
// Step 2: Compute (cx', cy')
double x1p_sq = x1p * x1p;
double y1p_sq = y1p * y1p;
double rx_sq = rx * rx;
double ry_sq = ry * ry;
// Step 3 of out-of-range radii correction
double lambda = x1p_sq / rx_sq + y1p_sq / ry_sq;
double multiplier;
if (lambda > 1.0) {
auto lambda_sqrt = AK::sqrt(lambda);
rx *= lambda_sqrt;
ry *= lambda_sqrt;
multiplier = 0.0;
} else {
double numerator = rx_sq * ry_sq - rx_sq * y1p_sq - ry_sq * x1p_sq;
double denominator = rx_sq * y1p_sq + ry_sq * x1p_sq;
multiplier = AK::sqrt(numerator / denominator);
}
if (large_arc == sweep)
multiplier *= -1.0;
double cxp = multiplier * rx * y1p / ry;
double cyp = multiplier * -ry * x1p / rx;
// Step 3: Compute (cx, cy) from (cx', cy')
x_avg = (last_point.x() + next_point.x()) / 2.0f;
y_avg = (last_point.y() + next_point.y()) / 2.0f;
double cx = x_axis_rotation_c * cxp - x_axis_rotation_s * cyp + x_avg;
double cy = x_axis_rotation_s * cxp + x_axis_rotation_c * cyp + y_avg;
double theta_1 = AK::atan2((y1p - cyp) / ry, (x1p - cxp) / rx);
double theta_2 = AK::atan2((-y1p - cyp) / ry, (-x1p - cxp) / rx);
auto theta_delta = theta_2 - theta_1;
if (!sweep && theta_delta > 0.0) {
theta_delta -= 2 * AK::Pi<double>;
} else if (sweep && theta_delta < 0) {
theta_delta += 2 * AK::Pi<double>;
}
elliptical_arc_to(
next_point,
{ cx, cy },
{ rx, ry },
x_axis_rotation,
theta_1,
theta_delta,
large_arc,
sweep);
}
void Path::close()
{
if (m_segments.size() <= 1)
return;
auto last_point = m_segments.last()->point();
for (ssize_t i = m_segments.size() - 1; i >= 0; --i) {
auto& segment = m_segments[i];
if (segment->type() == Segment::Type::MoveTo) {
if (last_point == segment->point())
return;
append_segment<LineSegment>(segment->point());
invalidate_split_lines();
return;
}
}
}
void Path::close_all_subpaths()
{
if (m_segments.size() <= 1)
return;
invalidate_split_lines();
Optional<FloatPoint> cursor, start_of_subpath;
bool is_first_point_in_subpath { false };
auto close_previous_subpath = [&] {
if (cursor.has_value() && !is_first_point_in_subpath) {
// This is a move from a subpath to another
// connect the two ends of this subpath before
// moving on to the next one
VERIFY(start_of_subpath.has_value());
append_segment<MoveSegment>(cursor.value());
append_segment<LineSegment>(start_of_subpath.value());
}
};
auto segment_count = m_segments.size();
for (size_t i = 0; i < segment_count; i++) {
// Note: We need to use m_segments[i] as append_segment() may invalidate any references.
switch (m_segments[i]->type()) {
case Segment::Type::MoveTo: {
close_previous_subpath();
is_first_point_in_subpath = true;
cursor = m_segments[i]->point();
break;
}
case Segment::Type::LineTo:
case Segment::Type::QuadraticBezierCurveTo:
case Segment::Type::CubicBezierCurveTo:
2020-07-22 09:46:15 +03:00
case Segment::Type::EllipticalArcTo:
if (is_first_point_in_subpath) {
start_of_subpath = cursor;
is_first_point_in_subpath = false;
}
cursor = m_segments[i]->point();
break;
case Segment::Type::Invalid:
VERIFY_NOT_REACHED();
break;
}
}
if (m_segments.last()->type() != Segment::Type::MoveTo)
close_previous_subpath();
}
DeprecatedString Path::to_deprecated_string() const
{
StringBuilder builder;
builder.append("Path { "sv);
for (auto& segment : m_segments) {
switch (segment->type()) {
case Segment::Type::MoveTo:
builder.append("MoveTo"sv);
break;
case Segment::Type::LineTo:
builder.append("LineTo"sv);
break;
case Segment::Type::QuadraticBezierCurveTo:
builder.append("QuadraticBezierCurveTo"sv);
break;
case Segment::Type::CubicBezierCurveTo:
builder.append("CubicBezierCurveTo"sv);
break;
2020-07-22 09:46:15 +03:00
case Segment::Type::EllipticalArcTo:
builder.append("EllipticalArcTo"sv);
2020-07-22 09:46:15 +03:00
break;
case Segment::Type::Invalid:
builder.append("Invalid"sv);
break;
}
builder.appendff("({}", segment->point());
2020-07-22 09:46:15 +03:00
switch (segment->type()) {
2020-07-22 09:46:15 +03:00
case Segment::Type::QuadraticBezierCurveTo:
builder.append(", "sv);
builder.append(static_cast<QuadraticBezierCurveSegment const&>(*segment).through().to_deprecated_string());
2020-07-22 09:46:15 +03:00
break;
case Segment::Type::CubicBezierCurveTo:
builder.append(", "sv);
builder.append(static_cast<CubicBezierCurveSegment const&>(*segment).through_0().to_deprecated_string());
builder.append(", "sv);
builder.append(static_cast<CubicBezierCurveSegment const&>(*segment).through_1().to_deprecated_string());
break;
2020-07-22 09:46:15 +03:00
case Segment::Type::EllipticalArcTo: {
auto& arc = static_cast<EllipticalArcSegment const&>(*segment);
builder.appendff(", {}, {}, {}, {}, {}",
arc.radii().to_deprecated_string().characters(),
arc.center().to_deprecated_string().characters(),
2020-07-22 09:46:15 +03:00
arc.x_axis_rotation(),
arc.theta_1(),
arc.theta_delta());
break;
}
default:
break;
}
builder.append(") "sv);
}
builder.append('}');
return builder.to_deprecated_string();
}
void Path::segmentize_path()
{
Vector<FloatLine> segments;
float min_x = 0;
float min_y = 0;
float max_x = 0;
float max_y = 0;
bool first = true;
auto add_point_to_bbox = [&](Gfx::FloatPoint point) {
float x = point.x();
float y = point.y();
if (first) {
min_x = max_x = x;
min_y = max_y = y;
first = false;
} else {
min_x = min(min_x, x);
min_y = min(min_y, y);
max_x = max(max_x, x);
max_y = max(max_y, y);
}
};
2022-04-01 20:58:27 +03:00
auto add_line = [&](auto const& p0, auto const& p1) {
segments.append({ p0, p1 });
add_point_to_bbox(p1);
};
FloatPoint cursor { 0, 0 };
for (auto& segment : m_segments) {
switch (segment->type()) {
case Segment::Type::MoveTo:
add_point_to_bbox(segment->point());
cursor = segment->point();
break;
case Segment::Type::LineTo: {
add_line(cursor, segment->point());
cursor = segment->point();
break;
}
case Segment::Type::QuadraticBezierCurveTo: {
auto control = static_cast<QuadraticBezierCurveSegment const&>(*segment).through();
Painter::for_each_line_segment_on_bezier_curve(control, cursor, segment->point(), [&](FloatPoint p0, FloatPoint p1) {
2020-07-22 09:46:15 +03:00
add_line(p0, p1);
});
cursor = segment->point();
2020-07-22 09:46:15 +03:00
break;
}
case Segment::Type::CubicBezierCurveTo: {
auto& curve = static_cast<CubicBezierCurveSegment const&>(*segment);
auto control_0 = curve.through_0();
auto control_1 = curve.through_1();
Painter::for_each_line_segment_on_cubic_bezier_curve(control_0, control_1, cursor, segment->point(), [&](FloatPoint p0, FloatPoint p1) {
add_line(p0, p1);
});
cursor = segment->point();
break;
}
2020-07-22 09:46:15 +03:00
case Segment::Type::EllipticalArcTo: {
auto& arc = static_cast<EllipticalArcSegment const&>(*segment);
Painter::for_each_line_segment_on_elliptical_arc(cursor, arc.point(), arc.center(), arc.radii(), arc.x_axis_rotation(), arc.theta_1(), arc.theta_delta(), [&](FloatPoint p0, FloatPoint p1) {
add_line(p0, p1);
});
cursor = segment->point();
break;
}
case Segment::Type::Invalid:
VERIFY_NOT_REACHED();
}
first = false;
}
m_split_lines = move(segments);
m_bounding_box = Gfx::FloatRect { min_x, min_y, max_x - min_x, max_y - min_y };
}
Path Path::copy_transformed(Gfx::AffineTransform const& transform) const
{
Path result;
for (auto const& segment : m_segments) {
switch (segment->type()) {
case Segment::Type::MoveTo:
result.move_to(transform.map(segment->point()));
break;
case Segment::Type::LineTo: {
result.line_to(transform.map(segment->point()));
break;
}
case Segment::Type::QuadraticBezierCurveTo: {
auto const& quadratic_segment = static_cast<QuadraticBezierCurveSegment const&>(*segment);
result.quadratic_bezier_curve_to(transform.map(quadratic_segment.through()), transform.map(segment->point()));
break;
}
case Segment::Type::CubicBezierCurveTo: {
auto const& cubic_segment = static_cast<CubicBezierCurveSegment const&>(*segment);
result.cubic_bezier_curve_to(transform.map(cubic_segment.through_0()), transform.map(cubic_segment.through_1()), transform.map(segment->point()));
break;
}
case Segment::Type::EllipticalArcTo: {
auto const& arc_segment = static_cast<EllipticalArcSegment const&>(*segment);
auto det_negative = transform.determinant() < 0;
result.elliptical_arc_to(
transform.map(segment->point()),
transform.map(arc_segment.center()),
transform.map(arc_segment.radii()),
arc_segment.x_axis_rotation() + transform.rotation(),
det_negative ? AK::Pi<float> * 2 - arc_segment.theta_1() : arc_segment.theta_1(),
det_negative ? -arc_segment.theta_delta() : arc_segment.theta_delta(),
arc_segment.large_arc(),
det_negative ? !arc_segment.sweep() : arc_segment.sweep());
break;
}
case Segment::Type::Invalid:
VERIFY_NOT_REACHED();
}
}
return result;
}
void Path::add_path(Path const& other)
{
m_segments.extend(other.m_segments);
invalidate_split_lines();
}
template<typename T>
struct RoundTrip {
RoundTrip(ReadonlySpan<T> span)
: m_span(span)
{
}
size_t size() const
{
return m_span.size() * 2 - 1;
}
T const& operator[](size_t index) const
{
// Follow the path:
if (index < m_span.size())
return m_span[index];
// Then in reverse:
if (index < size())
return m_span[size() - index - 1];
// Then wrap around again:
return m_span[index - size() + 1];
}
private:
ReadonlySpan<T> m_span;
};
Path Path::stroke_to_fill(float thickness) const
{
// Note: This convolves a polygon with the path using the algorithm described
// in https://keithp.com/~keithp/talks/cairo2003.pdf (3.1 Stroking Splines via Convolution)
auto& lines = split_lines();
if (lines.is_empty())
return Path {};
// Paths can be disconnected, which a pain to deal with, so split it up.
Vector<Vector<FloatPoint>> segments;
segments.append({ lines.first().a() });
for (auto& line : lines) {
if (line.a() == segments.last().last()) {
segments.last().append(line.b());
} else {
segments.append({ line.a(), line.b() });
}
}
// Note: This is the same as the tolerance from bezier curve splitting.
constexpr auto flatness = 0.015f;
auto pen_vertex_count = max(
static_cast<int>(ceilf(AK::Pi<float> / acosf(1 - (2 * flatness) / thickness))), 4);
if (pen_vertex_count % 2 == 1)
pen_vertex_count += 1;
Vector<FloatPoint, 128> pen_vertices;
pen_vertices.ensure_capacity(pen_vertex_count);
// Generate vertices for the pen (going counterclockwise). The pen does not necessarily need
// to be a circle (or an approximation of one), but other shapes are untested.
float theta = 0;
float theta_delta = (AK::Pi<float> * 2) / pen_vertex_count;
for (int i = 0; i < pen_vertex_count; i++) {
float sin_theta;
float cos_theta;
AK::sincos(theta, sin_theta, cos_theta);
pen_vertices.unchecked_append({ cos_theta * thickness / 2, sin_theta * thickness / 2 });
theta -= theta_delta;
}
auto wrapping_index = [](auto& vertices, auto index) {
return vertices[(index + vertices.size()) % vertices.size()];
};
auto angle_between = [](auto p1, auto p2) {
auto delta = p2 - p1;
return atan2f(delta.y(), delta.x());
};
struct ActiveRange {
float start;
float end;
bool in_range(float angle) const
{
// Note: Since active ranges go counterclockwise start > end unless we wrap around at 180 degrees
return ((angle <= start && angle >= end)
|| (start < end && angle <= start)
|| (start < end && angle >= end));
}
};
Vector<ActiveRange, 128> active_ranges;
active_ranges.ensure_capacity(pen_vertices.size());
for (auto i = 0; i < pen_vertex_count; i++) {
active_ranges.unchecked_append({ angle_between(wrapping_index(pen_vertices, i - 1), pen_vertices[i]),
angle_between(pen_vertices[i], wrapping_index(pen_vertices, i + 1)) });
}
auto clockwise = [](float current_angle, float target_angle) {
if (target_angle < 0)
target_angle += AK::Pi<float> * 2;
if (current_angle < 0)
current_angle += AK::Pi<float> * 2;
if (target_angle < current_angle)
target_angle += AK::Pi<float> * 2;
return (target_angle - current_angle) <= AK::Pi<float>;
};
Path convolution;
for (auto& segment : segments) {
RoundTrip<FloatPoint> shape { segment };
bool first = true;
auto add_vertex = [&](auto v) {
if (first) {
convolution.move_to(v);
first = false;
} else {
convolution.line_to(v);
}
};
auto shape_idx = 0u;
auto slope = [&] {
return angle_between(shape[shape_idx], shape[shape_idx + 1]);
};
auto start_slope = slope();
// Note: At least one range must be active.
auto active = *active_ranges.find_first_index_if([&](auto& range) {
return range.in_range(start_slope);
});
while (shape_idx < shape.size()) {
add_vertex(shape[shape_idx] + pen_vertices[active]);
auto slope_now = slope();
auto range = active_ranges[active];
if (range.in_range(slope_now)) {
shape_idx++;
} else {
if (clockwise(slope_now, range.end)) {
if (active == static_cast<size_t>(pen_vertex_count - 1))
active = 0;
else
active++;
} else {
if (active == 0)
active = pen_vertex_count - 1;
else
active--;
}
}
}
}
return convolution;
}
}