ladybird/Userland/Libraries/LibWeb/Layout/FlexFormattingContext.cpp

2296 lines
110 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2021-2023, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, Tobias Christiansen <tobyase@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "InlineFormattingContext.h"
#include <AK/Function.h>
#include <AK/QuickSort.h>
#include <AK/StdLibExtras.h>
#include <LibWeb/Layout/BlockContainer.h>
#include <LibWeb/Layout/BlockFormattingContext.h>
#include <LibWeb/Layout/Box.h>
#include <LibWeb/Layout/FlexFormattingContext.h>
#include <LibWeb/Layout/ReplacedBox.h>
#include <LibWeb/Layout/TextNode.h>
#include <LibWeb/Layout/Viewport.h>
namespace Web::Layout {
// NOTE: We use a custom clamping function here instead of AK::clamp(), since the AK version
// will VERIFY(max >= min) and CSS explicitly allows that (see css-values-4.)
template<typename T>
[[nodiscard]] constexpr T css_clamp(T const& value, T const& min, T const& max)
{
return ::max(min, ::min(value, max));
}
CSSPixels FlexFormattingContext::get_pixel_width(Box const& box, CSS::Size const& size) const
{
return calculate_inner_width(box, containing_block_width_as_available_size(box), size).to_px(box);
}
CSSPixels FlexFormattingContext::get_pixel_height(Box const& box, CSS::Size const& size) const
{
return calculate_inner_height(box, containing_block_height_as_available_size(box), size).to_px(box);
}
FlexFormattingContext::FlexFormattingContext(LayoutState& state, Box const& flex_container, FormattingContext* parent)
: FormattingContext(Type::Flex, state, flex_container, parent)
, m_flex_container_state(m_state.get_mutable(flex_container))
, m_flex_direction(flex_container.computed_values().flex_direction())
{
}
FlexFormattingContext::~FlexFormattingContext() = default;
CSSPixels FlexFormattingContext::automatic_content_width() const
{
return m_flex_container_state.content_width();
}
CSSPixels FlexFormattingContext::automatic_content_height() const
{
return m_flex_container_state.content_height();
}
void FlexFormattingContext::run(Box const& run_box, LayoutMode, AvailableSpace const& available_content_space)
{
VERIFY(&run_box == &flex_container());
// NOTE: The available space provided by the parent context is basically our *content box*.
// FFC is currently written in a way that expects that to include padding and border as well,
// so we pad out the available space here to accommodate that.
// FIXME: Refactor the necessary parts of FFC so we don't need this hack!
auto available_width = available_content_space.width;
if (available_width.is_definite())
available_width = AvailableSize::make_definite(available_width.to_px_or_zero() + m_flex_container_state.border_box_left() + m_flex_container_state.border_box_right());
auto available_height = available_content_space.height;
if (available_height.is_definite())
available_height = AvailableSize::make_definite(available_height.to_px_or_zero() + m_flex_container_state.border_box_top() + m_flex_container_state.border_box_bottom());
m_available_space_for_flex_container = AxisAgnosticAvailableSpace {
.main = is_row_layout() ? available_width : available_height,
.cross = !is_row_layout() ? available_width : available_height,
.space = { available_width, available_height },
};
// This implements https://www.w3.org/TR/css-flexbox-1/#layout-algorithm
// 1. Generate anonymous flex items
generate_anonymous_flex_items();
// 2. Determine the available main and cross space for the flex items
determine_available_space_for_items(AvailableSpace(available_width, available_height));
{
// https://drafts.csswg.org/css-flexbox-1/#definite-sizes
// 3. If a single-line flex container has a definite cross size,
// the automatic preferred outer cross size of any stretched flex items is the flex containers inner cross size
// (clamped to the flex items min and max cross size) and is considered definite.
if (is_single_line() && has_definite_cross_size(flex_container())) {
auto flex_container_inner_cross_size = inner_cross_size(flex_container());
for (auto& item : m_flex_items) {
if (!flex_item_is_stretched(item))
continue;
auto item_min_cross_size = has_cross_min_size(item.box) ? specified_cross_min_size(item.box) : 0;
auto item_max_cross_size = has_cross_max_size(item.box) ? specified_cross_max_size(item.box) : INFINITY;
auto item_preferred_outer_cross_size = css_clamp(flex_container_inner_cross_size, item_min_cross_size, item_max_cross_size);
auto item_inner_cross_size = item_preferred_outer_cross_size - item.margins.cross_before - item.margins.cross_after - item.padding.cross_before - item.padding.cross_after - item.borders.cross_before - item.borders.cross_after;
set_cross_size(item.box, item_inner_cross_size);
}
}
}
// 3. Determine the flex base size and hypothetical main size of each item
for (auto& item : m_flex_items) {
if (item.box->is_replaced_box()) {
// FIXME: Get rid of prepare_for_replaced_layout() and make replaced elements figure out their intrinsic size lazily.
static_cast<ReplacedBox&>(*item.box).prepare_for_replaced_layout();
}
determine_flex_base_size_and_hypothetical_main_size(item);
}
if (available_width.is_intrinsic_sizing_constraint() || available_height.is_intrinsic_sizing_constraint()) {
// We're computing intrinsic size for the flex container. This happens at the end of run().
} else {
// 4. Determine the main size of the flex container
determine_main_size_of_flex_container();
}
// 5. Collect flex items into flex lines:
// After this step no additional items are to be added to flex_lines or any of its items!
collect_flex_items_into_flex_lines();
// 6. Resolve the flexible lengths
resolve_flexible_lengths();
// Cross Size Determination
// 7. Determine the hypothetical cross size of each item
for (auto& item : m_flex_items) {
determine_hypothetical_cross_size_of_item(item, false);
}
// 8. Calculate the cross size of each flex line.
calculate_cross_size_of_each_flex_line();
// 9. Handle 'align-content: stretch'.
handle_align_content_stretch();
// 10. Collapse visibility:collapse items.
// FIXME: This
// 11. Determine the used cross size of each flex item.
determine_used_cross_size_of_each_flex_item();
// 12. Distribute any remaining free space.
distribute_any_remaining_free_space();
// 13. Resolve cross-axis auto margins.
resolve_cross_axis_auto_margins();
// 14. Align all flex items along the cross-axis
align_all_flex_items_along_the_cross_axis();
// 15. Determine the flex containers used cross size:
determine_flex_container_used_cross_size();
{
// https://drafts.csswg.org/css-flexbox-1/#definite-sizes
// 4. Once the cross size of a flex line has been determined,
// the cross sizes of items in auto-sized flex containers are also considered definite for the purpose of layout.
auto const& flex_container_computed_cross_size = is_row_layout() ? flex_container().computed_values().height() : flex_container().computed_values().width();
if (flex_container_computed_cross_size.is_auto()) {
for (auto& item : m_flex_items) {
set_cross_size(item.box, item.cross_size.value());
}
}
}
{
// NOTE: We re-resolve cross sizes here, now that we can resolve percentages.
// 7. Determine the hypothetical cross size of each item
for (auto& item : m_flex_items) {
determine_hypothetical_cross_size_of_item(item, true);
}
// 11. Determine the used cross size of each flex item.
determine_used_cross_size_of_each_flex_item();
}
// 16. Align all flex lines (per align-content)
align_all_flex_lines();
if (available_width.is_intrinsic_sizing_constraint() || available_height.is_intrinsic_sizing_constraint()) {
// We're computing intrinsic size for the flex container.
determine_intrinsic_size_of_flex_container();
} else {
// This is a normal layout (not intrinsic sizing).
// AD-HOC: Finally, layout the inside of all flex items.
copy_dimensions_from_flex_items_to_boxes();
for (auto& item : m_flex_items) {
auto& box_state = m_state.get(item.box);
if (auto independent_formatting_context = layout_inside(item.box, LayoutMode::Normal, box_state.available_inner_space_or_constraints_from(m_available_space_for_flex_container->space)))
independent_formatting_context->parent_context_did_dimension_child_root_box();
compute_inset(item.box);
}
}
}
void FlexFormattingContext::parent_context_did_dimension_child_root_box()
{
flex_container().for_each_child_of_type<Box>([&](Layout::Box& box) {
if (box.is_absolutely_positioned()) {
auto& cb_state = m_state.get(*box.containing_block());
auto available_width = AvailableSize::make_definite(cb_state.content_width() + cb_state.padding_left + cb_state.padding_right);
auto available_height = AvailableSize::make_definite(cb_state.content_height() + cb_state.padding_top + cb_state.padding_bottom);
layout_absolutely_positioned_element(box, AvailableSpace(available_width, available_height));
}
});
}
void FlexFormattingContext::populate_specified_margins(FlexItem& item, CSS::FlexDirection flex_direction) const
{
auto width_of_containing_block = m_state.get(*item.box->containing_block()).content_width();
// FIXME: This should also take reverse-ness into account
if (flex_direction == CSS::FlexDirection::Row || flex_direction == CSS::FlexDirection::RowReverse) {
item.borders.main_before = item.box->computed_values().border_left().width;
item.borders.main_after = item.box->computed_values().border_right().width;
item.borders.cross_before = item.box->computed_values().border_top().width;
item.borders.cross_after = item.box->computed_values().border_bottom().width;
item.padding.main_before = item.box->computed_values().padding().left().to_px(item.box, width_of_containing_block);
item.padding.main_after = item.box->computed_values().padding().right().to_px(item.box, width_of_containing_block);
item.padding.cross_before = item.box->computed_values().padding().top().to_px(item.box, width_of_containing_block);
item.padding.cross_after = item.box->computed_values().padding().bottom().to_px(item.box, width_of_containing_block);
item.margins.main_before = item.box->computed_values().margin().left().to_px(item.box, width_of_containing_block);
item.margins.main_after = item.box->computed_values().margin().right().to_px(item.box, width_of_containing_block);
item.margins.cross_before = item.box->computed_values().margin().top().to_px(item.box, width_of_containing_block);
item.margins.cross_after = item.box->computed_values().margin().bottom().to_px(item.box, width_of_containing_block);
item.margins.main_before_is_auto = item.box->computed_values().margin().left().is_auto();
item.margins.main_after_is_auto = item.box->computed_values().margin().right().is_auto();
item.margins.cross_before_is_auto = item.box->computed_values().margin().top().is_auto();
item.margins.cross_after_is_auto = item.box->computed_values().margin().bottom().is_auto();
} else {
item.borders.main_before = item.box->computed_values().border_top().width;
item.borders.main_after = item.box->computed_values().border_bottom().width;
item.borders.cross_before = item.box->computed_values().border_left().width;
item.borders.cross_after = item.box->computed_values().border_right().width;
item.padding.main_before = item.box->computed_values().padding().top().to_px(item.box, width_of_containing_block);
item.padding.main_after = item.box->computed_values().padding().bottom().to_px(item.box, width_of_containing_block);
item.padding.cross_before = item.box->computed_values().padding().left().to_px(item.box, width_of_containing_block);
item.padding.cross_after = item.box->computed_values().padding().right().to_px(item.box, width_of_containing_block);
item.margins.main_before = item.box->computed_values().margin().top().to_px(item.box, width_of_containing_block);
item.margins.main_after = item.box->computed_values().margin().bottom().to_px(item.box, width_of_containing_block);
item.margins.cross_before = item.box->computed_values().margin().left().to_px(item.box, width_of_containing_block);
item.margins.cross_after = item.box->computed_values().margin().right().to_px(item.box, width_of_containing_block);
item.margins.main_before_is_auto = item.box->computed_values().margin().top().is_auto();
item.margins.main_after_is_auto = item.box->computed_values().margin().bottom().is_auto();
item.margins.cross_before_is_auto = item.box->computed_values().margin().left().is_auto();
item.margins.cross_after_is_auto = item.box->computed_values().margin().right().is_auto();
}
}
// https://www.w3.org/TR/css-flexbox-1/#flex-items
void FlexFormattingContext::generate_anonymous_flex_items()
{
// More like, sift through the already generated items.
// After this step no items are to be added or removed from flex_items!
// It holds every item we need to consider and there should be nothing in the following
// calculations that could change that.
// This is particularly important since we take references to the items stored in flex_items
// later, whose addresses won't be stable if we added or removed any items.
HashMap<int, Vector<FlexItem>> order_item_bucket;
flex_container().for_each_child_of_type<Box>([&](Box& child_box) {
if (can_skip_is_anonymous_text_run(child_box))
return IterationDecision::Continue;
// Skip any "out-of-flow" children
if (child_box.is_out_of_flow(*this))
return IterationDecision::Continue;
child_box.set_flex_item(true);
FlexItem item = { child_box };
populate_specified_margins(item, m_flex_direction);
auto& order_bucket = order_item_bucket.ensure(child_box.computed_values().order());
order_bucket.append(move(item));
return IterationDecision::Continue;
});
auto keys = order_item_bucket.keys();
if (is_direction_reverse()) {
quick_sort(keys, [](auto& a, auto& b) { return a > b; });
} else {
quick_sort(keys, [](auto& a, auto& b) { return a < b; });
}
for (auto key : keys) {
auto order_bucket = order_item_bucket.get(key);
if (order_bucket.has_value()) {
auto& items = order_bucket.value();
if (is_direction_reverse()) {
for (auto item : items.in_reverse()) {
m_flex_items.append(move(item));
}
} else {
for (auto item : items) {
m_flex_items.append(move(item));
}
}
}
}
}
bool FlexFormattingContext::has_definite_main_size(Box const& box) const
{
auto const& used_values = m_state.get(box);
return is_row_layout() ? used_values.has_definite_width() : used_values.has_definite_height();
}
CSSPixels FlexFormattingContext::inner_main_size(Box const& box) const
{
auto const& box_state = m_state.get(box);
return is_row_layout() ? box_state.content_width() : box_state.content_height();
}
CSSPixels FlexFormattingContext::inner_cross_size(Box const& box) const
{
auto const& box_state = m_state.get(box);
return is_row_layout() ? box_state.content_height() : box_state.content_width();
}
bool FlexFormattingContext::has_main_min_size(Box const& box) const
{
auto const& value = is_row_layout() ? box.computed_values().min_width() : box.computed_values().min_height();
return !value.is_auto();
}
bool FlexFormattingContext::has_cross_min_size(Box const& box) const
{
auto const& value = is_row_layout() ? box.computed_values().min_height() : box.computed_values().min_width();
return !value.is_auto();
}
bool FlexFormattingContext::has_definite_cross_size(Box const& box) const
{
auto const& used_values = m_state.get(box);
return is_row_layout() ? used_values.has_definite_height() : used_values.has_definite_width();
}
CSSPixels FlexFormattingContext::specified_main_min_size(Box const& box) const
{
return is_row_layout()
? get_pixel_width(box, box.computed_values().min_width())
: get_pixel_height(box, box.computed_values().min_height());
}
CSSPixels FlexFormattingContext::specified_cross_min_size(Box const& box) const
{
return is_row_layout()
? get_pixel_height(box, box.computed_values().min_height())
: get_pixel_width(box, box.computed_values().min_width());
}
bool FlexFormattingContext::has_main_max_size(Box const& box) const
{
auto const& value = is_row_layout() ? box.computed_values().max_width() : box.computed_values().max_height();
return !value.is_none();
}
bool FlexFormattingContext::has_cross_max_size(Box const& box) const
{
auto const& value = !is_row_layout() ? box.computed_values().max_width() : box.computed_values().max_height();
return !value.is_none();
}
CSSPixels FlexFormattingContext::specified_main_max_size(Box const& box) const
{
return is_row_layout()
? get_pixel_width(box, box.computed_values().max_width())
: get_pixel_height(box, box.computed_values().max_height());
}
CSSPixels FlexFormattingContext::specified_cross_max_size(Box const& box) const
{
return is_row_layout()
? get_pixel_height(box, box.computed_values().max_height())
: get_pixel_width(box, box.computed_values().max_width());
}
bool FlexFormattingContext::is_cross_auto(Box const& box) const
{
auto& cross_length = is_row_layout() ? box.computed_values().height() : box.computed_values().width();
return cross_length.is_auto();
}
void FlexFormattingContext::set_main_size(Box const& box, CSSPixels size)
{
if (is_row_layout())
m_state.get_mutable(box).set_content_width(size);
else
m_state.get_mutable(box).set_content_height(size);
}
void FlexFormattingContext::set_cross_size(Box const& box, CSSPixels size)
{
if (is_row_layout())
m_state.get_mutable(box).set_content_height(size);
else
m_state.get_mutable(box).set_content_width(size);
}
void FlexFormattingContext::set_offset(Box const& box, CSSPixels main_offset, CSSPixels cross_offset)
{
if (is_row_layout())
m_state.get_mutable(box).offset = CSSPixelPoint { main_offset, cross_offset };
else
m_state.get_mutable(box).offset = CSSPixelPoint { cross_offset, main_offset };
}
void FlexFormattingContext::set_main_axis_first_margin(FlexItem& item, CSSPixels margin)
{
item.margins.main_before = margin;
if (is_row_layout())
m_state.get_mutable(item.box).margin_left = margin;
else
m_state.get_mutable(item.box).margin_top = margin;
}
void FlexFormattingContext::set_main_axis_second_margin(FlexItem& item, CSSPixels margin)
{
item.margins.main_after = margin;
if (is_row_layout())
m_state.get_mutable(item.box).margin_right = margin;
else
m_state.get_mutable(item.box).margin_bottom = margin;
}
// https://drafts.csswg.org/css-flexbox-1/#algo-available
void FlexFormattingContext::determine_available_space_for_items(AvailableSpace const& available_space)
{
// For each dimension, if that dimension of the flex containers content box is a definite size, use that;
// if that dimension of the flex container is being sized under a min or max-content constraint, the available space in that dimension is that constraint;
// otherwise, subtract the flex containers margin, border, and padding from the space available to the flex container in that dimension and use that value.
// This might result in an infinite value.
Optional<AvailableSize> available_width_for_items;
if (m_flex_container_state.has_definite_width()) {
available_width_for_items = AvailableSize::make_definite(m_flex_container_state.content_width());
} else {
if (available_space.width.is_intrinsic_sizing_constraint()) {
available_width_for_items = available_space.width;
} else {
if (available_space.width.is_definite()) {
auto remaining = available_space.width.to_px_or_zero()
- m_flex_container_state.margin_left
- m_flex_container_state.margin_right
- m_flex_container_state.border_left
- m_flex_container_state.padding_right
- m_flex_container_state.padding_left
- m_flex_container_state.padding_right;
available_width_for_items = AvailableSize::make_definite(remaining);
} else {
available_width_for_items = AvailableSize::make_indefinite();
}
}
}
Optional<AvailableSize> available_height_for_items;
if (m_flex_container_state.has_definite_height()) {
available_height_for_items = AvailableSize::make_definite(m_flex_container_state.content_height());
} else {
if (available_space.height.is_intrinsic_sizing_constraint()) {
available_height_for_items = available_space.height;
} else {
if (available_space.height.is_definite()) {
auto remaining = available_space.height.to_px_or_zero()
- m_flex_container_state.margin_top
- m_flex_container_state.margin_bottom
- m_flex_container_state.border_top
- m_flex_container_state.padding_bottom
- m_flex_container_state.padding_top
- m_flex_container_state.padding_bottom;
available_height_for_items = AvailableSize::make_definite(remaining);
} else {
available_height_for_items = AvailableSize::make_indefinite();
}
}
}
if (is_row_layout()) {
m_available_space_for_items = AxisAgnosticAvailableSpace {
.main = *available_width_for_items,
.cross = *available_height_for_items,
.space = { *available_width_for_items, *available_height_for_items },
};
} else {
m_available_space_for_items = AxisAgnosticAvailableSpace {
.main = *available_height_for_items,
.cross = *available_width_for_items,
.space = { *available_width_for_items, *available_height_for_items },
};
}
}
// https://drafts.csswg.org/css-flexbox-1/#propdef-flex-basis
CSS::FlexBasis FlexFormattingContext::used_flex_basis_for_item(FlexItem const& item) const
{
auto flex_basis = item.box->computed_values().flex_basis();
if (flex_basis.has<CSS::Size>() && flex_basis.get<CSS::Size>().is_auto()) {
// https://drafts.csswg.org/css-flexbox-1/#valdef-flex-basis-auto
// When specified on a flex item, the auto keyword retrieves the value of the main size property as the used flex-basis.
// If that value is itself auto, then the used value is content.
auto const& main_size = is_row_layout() ? item.box->computed_values().width() : item.box->computed_values().height();
if (main_size.is_auto()) {
flex_basis = CSS::FlexBasisContent {};
} else {
flex_basis = main_size;
}
}
// For example, percentage values of flex-basis are resolved against the flex items containing block
// (i.e. its flex container); and if that containing blocks size is indefinite,
// the used value for flex-basis is content.
if (flex_basis.has<CSS::Size>()
&& flex_basis.get<CSS::Size>().is_percentage()
&& !has_definite_main_size(flex_container())) {
flex_basis = CSS::FlexBasisContent {};
}
return flex_basis;
}
CSSPixels FlexFormattingContext::calculate_main_size_from_cross_size_and_aspect_ratio(CSSPixels cross_size, double aspect_ratio) const
{
if (is_row_layout())
return cross_size * aspect_ratio;
return cross_size / aspect_ratio;
}
CSSPixels FlexFormattingContext::calculate_cross_size_from_main_size_and_aspect_ratio(CSSPixels main_size, double aspect_ratio) const
{
if (is_row_layout())
return main_size / aspect_ratio;
return main_size * aspect_ratio;
}
// This function takes a size in the main axis and adjusts it according to the aspect ratio of the box
// if the min/max constraints in the cross axis forces us to come up with a new main axis size.
CSSPixels FlexFormattingContext::adjust_main_size_through_aspect_ratio_for_cross_size_min_max_constraints(Box const& box, CSSPixels main_size, CSS::Size const& min_cross_size, CSS::Size const& max_cross_size) const
{
if (!max_cross_size.is_none()) {
auto max_cross_size_px = max_cross_size.to_px(box, !is_row_layout() ? m_flex_container_state.content_width() : m_flex_container_state.content_height());
main_size = min(main_size, calculate_main_size_from_cross_size_and_aspect_ratio(max_cross_size_px, box.preferred_aspect_ratio().value()));
}
if (!min_cross_size.is_auto()) {
auto min_cross_size_px = min_cross_size.to_px(box, !is_row_layout() ? m_flex_container_state.content_width() : m_flex_container_state.content_height());
main_size = max(main_size, calculate_main_size_from_cross_size_and_aspect_ratio(min_cross_size_px, box.preferred_aspect_ratio().value()));
}
return main_size;
}
// https://www.w3.org/TR/css-flexbox-1/#algo-main-item
void FlexFormattingContext::determine_flex_base_size_and_hypothetical_main_size(FlexItem& item)
{
auto& child_box = item.box;
item.flex_base_size = [&] {
item.used_flex_basis = used_flex_basis_for_item(item);
item.used_flex_basis_is_definite = [&](CSS::FlexBasis const& flex_basis) -> bool {
if (!flex_basis.has<CSS::Size>())
return false;
auto const& size = flex_basis.get<CSS::Size>();
if (size.is_auto() || size.is_min_content() || size.is_max_content() || size.is_fit_content())
return false;
if (size.is_length())
return true;
bool can_resolve_percentages = is_row_layout()
? m_flex_container_state.has_definite_width()
: m_flex_container_state.has_definite_height();
if (size.is_calculated()) {
auto const& calc_value = size.calculated();
if (calc_value.resolves_to_percentage())
return can_resolve_percentages;
if (calc_value.resolves_to_length()) {
if (calc_value.contains_percentage())
return can_resolve_percentages;
return true;
}
return false;
}
VERIFY(size.is_percentage());
return can_resolve_percentages;
}(*item.used_flex_basis);
// A. If the item has a definite used flex basis, thats the flex base size.
if (item.used_flex_basis_is_definite) {
auto const& size = item.used_flex_basis->get<CSS::Size>();
if (is_row_layout())
return get_pixel_width(child_box, size);
return get_pixel_height(child_box, size);
}
// B. If the flex item has ...
// - an intrinsic aspect ratio,
// - a used flex basis of content, and
// - a definite cross size,
if (item.box->has_preferred_aspect_ratio()
&& item.used_flex_basis->has<CSS::FlexBasisContent>()
&& has_definite_cross_size(item.box)) {
// flex_base_size is calculated from definite cross size and intrinsic aspect ratio
return adjust_main_size_through_aspect_ratio_for_cross_size_min_max_constraints(
item.box,
calculate_main_size_from_cross_size_and_aspect_ratio(inner_cross_size(item.box), item.box->preferred_aspect_ratio().value()),
computed_cross_min_size(item.box),
computed_cross_max_size(item.box));
}
// C. If the used flex basis is content or depends on its available space,
// and the flex container is being sized under a min-content or max-content constraint
// (e.g. when performing automatic table layout [CSS21]), size the item under that constraint.
// The flex base size is the items resulting main size.
if (item.used_flex_basis->has<CSS::FlexBasisContent>() && m_available_space_for_items->main.is_intrinsic_sizing_constraint()) {
if (m_available_space_for_items->main.is_min_content())
return calculate_min_content_main_size(item);
return calculate_max_content_main_size(item);
}
// D. Otherwise, if the used flex basis is content or depends on its available space,
// the available main size is infinite, and the flex items inline axis is parallel to the main axis,
// lay the item out using the rules for a box in an orthogonal flow [CSS3-WRITING-MODES].
// The flex base size is the items max-content main size.
if (item.used_flex_basis->has<CSS::FlexBasisContent>()
// FIXME: && main_size is infinite && inline axis is parallel to the main axis
&& false && false) {
TODO();
// Use rules for a flex_container in orthogonal flow
}
// E. Otherwise, size the item into the available space using its used flex basis in place of its main size,
// treating a value of content as max-content. If a cross size is needed to determine the main size
// (e.g. when the flex items main size is in its block axis) and the flex items cross size is auto and not definite,
// in this calculation use fit-content as the flex items cross size.
// The flex base size is the items resulting main size.
// NOTE: If the flex item has a definite main size, just use that as the flex base size.
if (has_definite_main_size(child_box))
return inner_main_size(child_box);
// NOTE: There's a fundamental problem with many CSS specifications in that they neglect to mention
// which width to provide when calculating the intrinsic height of a box in various situations.
// Spec bug: https://github.com/w3c/csswg-drafts/issues/2890
// NOTE: This is one of many situations where that causes trouble: if this is a flex column layout,
// we may need to calculate the intrinsic height of a flex item. This requires a width, but a
// width won't be determined until later on in the flex layout algorithm.
// In the specific case above (E), the spec mentions using `fit-content` in place of `auto`
// if "a cross size is needed to determine the main size", so that's exactly what we do.
// NOTE: Finding a suitable width for intrinsic height determination actually happens elsewhere,
// in the various helpers that calculate the intrinsic sizes of a flex item,
// e.g. calculate_min_content_main_size().
if (item.used_flex_basis->has<CSS::FlexBasisContent>()) {
return calculate_max_content_main_size(item);
}
return calculate_fit_content_main_size(item);
}();
// AD-HOC: This is not mentioned in the spec, but if the item has an aspect ratio,
// we may need to adjust the main size in response to cross size min/max constraints.
if (item.box->has_preferred_aspect_ratio()) {
item.flex_base_size = adjust_main_size_through_aspect_ratio_for_cross_size_min_max_constraints(child_box, item.flex_base_size, computed_cross_min_size(child_box), computed_cross_max_size(child_box));
}
// The hypothetical main size is the items flex base size clamped according to its used min and max main sizes (and flooring the content box size at zero).
auto clamp_min = has_main_min_size(child_box) ? specified_main_min_size(child_box) : automatic_minimum_size(item);
auto clamp_max = has_main_max_size(child_box) ? specified_main_max_size(child_box) : NumericLimits<float>::max();
item.hypothetical_main_size = max(CSSPixels(0), css_clamp(item.flex_base_size, clamp_min, clamp_max));
// NOTE: At this point, we set the hypothetical main size as the flex item's *temporary* main size.
// The size may change again when we resolve flexible lengths, but this is necessary in order for
// descendants of this flex item to resolve percentage sizes against something.
//
// The spec just barely hand-waves about this, but it seems to *roughly* match what other engines do.
// See "Note" section here: https://drafts.csswg.org/css-flexbox-1/#definite-sizes
if (is_row_layout())
m_state.get_mutable(item.box).set_temporary_content_width(item.hypothetical_main_size);
else
m_state.get_mutable(item.box).set_temporary_content_height(item.hypothetical_main_size);
}
// https://drafts.csswg.org/css-flexbox-1/#min-size-auto
CSSPixels FlexFormattingContext::automatic_minimum_size(FlexItem const& item) const
{
// To provide a more reasonable default minimum size for flex items,
// the used value of a main axis automatic minimum size on a flex item that is not a scroll container is its content-based minimum size;
// for scroll containers the automatic minimum size is zero, as usual.
if (!item.box->is_scroll_container())
return content_based_minimum_size(item);
return 0;
}
// https://drafts.csswg.org/css-flexbox-1/#specified-size-suggestion
Optional<CSSPixels> FlexFormattingContext::specified_size_suggestion(FlexItem const& item) const
{
// If the items preferred main size is definite and not automatic,
// then the specified size suggestion is that size. It is otherwise undefined.
if (has_definite_main_size(item.box) && !should_treat_main_size_as_auto(item.box)) {
// NOTE: We use get_pixel_{width,height} to ensure that CSS box-sizing is respected.
return is_row_layout() ? get_pixel_width(item.box, computed_main_size(item.box)) : get_pixel_height(item.box, computed_main_size(item.box));
}
return {};
}
// https://drafts.csswg.org/css-flexbox-1/#content-size-suggestion
CSSPixels FlexFormattingContext::content_size_suggestion(FlexItem const& item) const
{
auto suggestion = calculate_min_content_main_size(item);
if (item.box->has_preferred_aspect_ratio()) {
suggestion = adjust_main_size_through_aspect_ratio_for_cross_size_min_max_constraints(item.box, suggestion, computed_cross_min_size(item.box), computed_cross_max_size(item.box));
}
return suggestion;
}
// https://drafts.csswg.org/css-flexbox-1/#transferred-size-suggestion
Optional<CSSPixels> FlexFormattingContext::transferred_size_suggestion(FlexItem const& item) const
{
// If the item has a preferred aspect ratio and its preferred cross size is definite,
// then the transferred size suggestion is that size
// (clamped by its minimum and maximum cross sizes if they are definite), converted through the aspect ratio.
if (item.box->has_preferred_aspect_ratio() && has_definite_cross_size(item.box)) {
auto aspect_ratio = item.box->preferred_aspect_ratio().value();
return adjust_main_size_through_aspect_ratio_for_cross_size_min_max_constraints(
item.box,
calculate_main_size_from_cross_size_and_aspect_ratio(inner_cross_size(item.box), aspect_ratio),
computed_cross_min_size(item.box),
computed_cross_max_size(item.box));
}
// It is otherwise undefined.
return {};
}
// https://drafts.csswg.org/css-flexbox-1/#content-based-minimum-size
CSSPixels FlexFormattingContext::content_based_minimum_size(FlexItem const& item) const
{
auto unclamped_size = [&] {
// The content-based minimum size of a flex item is the smaller of its specified size suggestion
// and its content size suggestion if its specified size suggestion exists;
if (auto specified_size_suggestion = this->specified_size_suggestion(item); specified_size_suggestion.has_value()) {
return min(specified_size_suggestion.value(), content_size_suggestion(item));
}
// otherwise, the smaller of its transferred size suggestion and its content size suggestion
// if the element is replaced and its transferred size suggestion exists;
if (item.box->is_replaced_box()) {
if (auto transferred_size_suggestion = this->transferred_size_suggestion(item); transferred_size_suggestion.has_value()) {
return min(transferred_size_suggestion.value(), content_size_suggestion(item));
}
}
// otherwise its content size suggestion.
return content_size_suggestion(item);
}();
// In all cases, the size is clamped by the maximum main size if its definite.
if (has_main_max_size(item.box)) {
return min(unclamped_size, specified_main_max_size(item.box));
}
return unclamped_size;
}
bool FlexFormattingContext::can_determine_size_of_child() const
{
return true;
}
void FlexFormattingContext::determine_width_of_child(Box const&, AvailableSpace const&)
{
// NOTE: For now, we simply do nothing here. If a child context is calling up to us
// and asking us to determine its width, we've already done so as part of the
// flex layout algorithm.
}
void FlexFormattingContext::determine_height_of_child(Box const&, AvailableSpace const&)
{
// NOTE: For now, we simply do nothing here. If a child context is calling up to us
// and asking us to determine its height, we've already done so as part of the
// flex layout algorithm.
}
// https://drafts.csswg.org/css-flexbox-1/#algo-main-container
void FlexFormattingContext::determine_main_size_of_flex_container()
{
// Determine the main size of the flex container using the rules of the formatting context in which it participates.
// NOTE: The automatic block size of a block-level flex container is its max-content size.
// FIXME: The code below doesn't know how to size absolutely positioned flex containers at all.
// We just leave it alone for now and let the parent context deal with it.
if (flex_container().is_absolutely_positioned())
return;
// FIXME: Once all parent contexts now how to size a given child, we can remove
// `can_determine_size_of_child()`.
if (parent()->can_determine_size_of_child()) {
if (is_row_layout()) {
parent()->determine_width_of_child(flex_container(), m_available_space_for_flex_container->space);
} else {
parent()->determine_height_of_child(flex_container(), m_available_space_for_flex_container->space);
}
return;
}
if (is_row_layout()) {
if (!flex_container().is_out_of_flow(*parent()) && m_state.get(*flex_container().containing_block()).has_definite_width()) {
set_main_size(flex_container(), calculate_stretch_fit_width(flex_container(), m_available_space_for_flex_container->space.width));
} else {
set_main_size(flex_container(), calculate_max_content_width(flex_container()));
}
} else {
if (!has_definite_main_size(flex_container()))
set_main_size(flex_container(), calculate_max_content_height(flex_container(), m_available_space_for_flex_container->space.width.to_px_or_zero()));
}
}
// https://www.w3.org/TR/css-flexbox-1/#algo-line-break
void FlexFormattingContext::collect_flex_items_into_flex_lines()
{
// FIXME: Also support wrap-reverse
// If the flex container is single-line, collect all the flex items into a single flex line.
if (is_single_line()) {
FlexLine line;
for (auto& item : m_flex_items) {
line.items.append(item);
}
m_flex_lines.append(move(line));
return;
}
// Otherwise, starting from the first uncollected item, collect consecutive items one by one
// until the first time that the next collected item would not fit into the flex containers inner main size
// (or until a forced break is encountered, see §10 Fragmenting Flex Layout).
// If the very first uncollected item wouldn't fit, collect just it into the line.
// For this step, the size of a flex item is its outer hypothetical main size. (Note: This can be negative.)
// Repeat until all flex items have been collected into flex lines.
FlexLine line;
CSSPixels line_main_size = 0;
for (auto& item : m_flex_items) {
auto const outer_hypothetical_main_size = item.outer_hypothetical_main_size();
if (!line.items.is_empty() && (line_main_size + outer_hypothetical_main_size) > m_available_space_for_items->main) {
m_flex_lines.append(move(line));
line = {};
line_main_size = 0;
}
line.items.append(item);
line_main_size += outer_hypothetical_main_size;
// CSS-FLEXBOX-2: Account for gap between flex items.
line_main_size += main_gap();
}
m_flex_lines.append(move(line));
}
// https://drafts.csswg.org/css-flexbox-1/#resolve-flexible-lengths
void FlexFormattingContext::resolve_flexible_lengths_for_line(FlexLine& line)
{
// AD-HOC: The spec tells us to use the "flex containers inner main size" in this algorithm,
// but that doesn't work when we're sizing under a max-content constraint.
// In that case, there is effectively infinite size available in the main axis,
// but the inner main size has not been assigned yet.
// We solve this by calculating our own "available main size" here, which is essentially
// infinity under max-content, 0 under min-content, and the inner main size otherwise.
AvailableSize available_main_size { AvailableSize::make_indefinite() };
if (m_available_space_for_items->main.is_intrinsic_sizing_constraint())
available_main_size = m_available_space_for_items->main;
else
available_main_size = AvailableSize::make_definite(inner_main_size(flex_container()));
// 1. Determine the used flex factor.
// Sum the outer hypothetical main sizes of all items on the line.
// If the sum is less than the flex containers inner main size,
// use the flex grow factor for the rest of this algorithm; otherwise, use the flex shrink factor
enum FlexFactor {
FlexGrowFactor,
FlexShrinkFactor
};
auto used_flex_factor = [&]() -> FlexFactor {
CSSPixels sum = 0;
for (auto const& item : line.items) {
sum += item.outer_hypothetical_main_size();
}
// CSS-FLEXBOX-2: Account for gap between flex items.
sum += main_gap() * (line.items.size() - 1);
// AD-HOC: Note that we're using our own "available main size" explained above
// instead of the flex containers inner main size.
if (sum < available_main_size)
return FlexFactor::FlexGrowFactor;
return FlexFactor::FlexShrinkFactor;
}();
// 2. Each item in the flex line has a target main size, initially set to its flex base size.
// Each item is initially unfrozen and may become frozen.
for (auto& item : line.items) {
item.target_main_size = item.flex_base_size;
item.frozen = false;
}
// 3. Size inflexible items.
for (FlexItem& item : line.items) {
if (used_flex_factor == FlexFactor::FlexGrowFactor) {
item.flex_factor = item.box->computed_values().flex_grow();
} else if (used_flex_factor == FlexFactor::FlexShrinkFactor) {
item.flex_factor = item.box->computed_values().flex_shrink();
}
// Freeze, setting its target main size to its hypothetical main size…
// - any item that has a flex factor of zero
// - if using the flex grow factor: any item that has a flex base size greater than its hypothetical main size
// - if using the flex shrink factor: any item that has a flex base size smaller than its hypothetical main size
if (item.flex_factor.value() == 0
|| (used_flex_factor == FlexFactor::FlexGrowFactor && item.flex_base_size > item.hypothetical_main_size)
|| (used_flex_factor == FlexFactor::FlexShrinkFactor && item.flex_base_size < item.hypothetical_main_size)) {
item.frozen = true;
item.target_main_size = item.hypothetical_main_size;
}
}
// 4. Calculate initial free space
// Sum the outer sizes of all items on the line, and subtract this from the flex containers inner main size.
// For frozen items, use their outer target main size; for other items, use their outer flex base size.
auto calculate_remaining_free_space = [&]() -> Optional<CSSPixels> {
// AD-HOC: If the container is sized under max-content constraints, then remaining_free_space won't have
// a value to avoid leaking an infinite value into layout calculations.
if (available_main_size.is_intrinsic_sizing_constraint())
return {};
CSSPixels sum = 0;
for (auto const& item : line.items) {
if (item.frozen)
sum += item.outer_target_main_size();
else
sum += item.outer_flex_base_size();
}
// CSS-FLEXBOX-2: Account for gap between flex items.
sum += main_gap() * (line.items.size() - 1);
// AD-HOC: Note that we're using our own "available main size" explained above
// instead of the flex containers inner main size.
return available_main_size.to_px_or_zero() - sum;
};
auto const initial_free_space = calculate_remaining_free_space();
// 5. Loop
while (true) {
// a. Check for flexible items.
// If all the flex items on the line are frozen, free space has been distributed; exit this loop.
if (all_of(line.items, [](auto const& item) { return item.frozen; })) {
break;
}
// b. Calculate the remaining free space as for initial free space, above.
line.remaining_free_space = calculate_remaining_free_space();
// If the sum of the unfrozen flex items flex factors is less than one, multiply the initial free space by this sum.
if (auto sum_of_flex_factor_of_unfrozen_items = line.sum_of_flex_factor_of_unfrozen_items(); sum_of_flex_factor_of_unfrozen_items < 1 && initial_free_space.has_value()) {
auto value = initial_free_space.value() * sum_of_flex_factor_of_unfrozen_items;
// If the magnitude of this value is less than the magnitude of the remaining free space, use this as the remaining free space.
if (abs(value) < abs(line.remaining_free_space.value()))
line.remaining_free_space = value;
}
// AD-HOC: We allow the remaining free space to be infinite, but we can't let infinity
// leak into the layout geometry, so we treat infinity as zero when used in arithmetic.
auto remaining_free_space_or_zero_if_infinite = line.remaining_free_space.has_value() ? line.remaining_free_space.value() : 0;
// c. If the remaining free space is non-zero, distribute it proportional to the flex factors:
if (line.remaining_free_space != 0) {
// If using the flex grow factor
if (used_flex_factor == FlexFactor::FlexGrowFactor) {
// For every unfrozen item on the line,
// find the ratio of the items flex grow factor to the sum of the flex grow factors of all unfrozen items on the line.
auto sum_of_flex_factor_of_unfrozen_items = line.sum_of_flex_factor_of_unfrozen_items();
for (auto& item : line.items) {
if (item.frozen)
continue;
double ratio = item.flex_factor.value() / sum_of_flex_factor_of_unfrozen_items;
// Set the items target main size to its flex base size plus a fraction of the remaining free space proportional to the ratio.
item.target_main_size = item.flex_base_size + (remaining_free_space_or_zero_if_infinite * ratio);
}
}
// If using the flex shrink factor
else if (used_flex_factor == FlexFactor::FlexShrinkFactor) {
// For every unfrozen item on the line, multiply its flex shrink factor by its inner flex base size, and note this as its scaled flex shrink factor.
for (auto& item : line.items) {
if (item.frozen)
continue;
item.scaled_flex_shrink_factor = item.flex_factor.value() * item.flex_base_size.to_double();
}
auto sum_of_scaled_flex_shrink_factors_of_all_unfrozen_items_on_line = line.sum_of_scaled_flex_shrink_factor_of_unfrozen_items();
for (auto& item : line.items) {
if (item.frozen)
continue;
// Find the ratio of the items scaled flex shrink factor to the sum of the scaled flex shrink factors of all unfrozen items on the line.
double ratio = 1.0;
if (sum_of_scaled_flex_shrink_factors_of_all_unfrozen_items_on_line != 0)
ratio = item.scaled_flex_shrink_factor / sum_of_scaled_flex_shrink_factors_of_all_unfrozen_items_on_line;
// Set the items target main size to its flex base size minus a fraction of the absolute value of the remaining free space proportional to the ratio.
// (Note this may result in a negative inner main size; it will be corrected in the next step.)
item.target_main_size = item.flex_base_size - (abs(remaining_free_space_or_zero_if_infinite) * ratio);
}
}
}
// d. Fix min/max violations.
CSSPixels total_violation = 0;
// Clamp each non-frozen items target main size by its used min and max main sizes and floor its content-box size at zero.
for (auto& item : line.items) {
if (item.frozen)
continue;
auto used_min_main_size = has_main_min_size(item.box)
? specified_main_min_size(item.box)
: automatic_minimum_size(item);
auto used_max_main_size = has_main_max_size(item.box)
? specified_main_max_size(item.box)
: NumericLimits<float>::max();
auto original_target_main_size = item.target_main_size;
item.target_main_size = css_clamp(item.target_main_size, used_min_main_size, used_max_main_size);
item.target_main_size = max(item.target_main_size, CSSPixels(0));
// If the items target main size was made smaller by this, its a max violation.
if (item.target_main_size < original_target_main_size)
item.is_max_violation = true;
// If the items target main size was made larger by this, its a min violation.
if (item.target_main_size > original_target_main_size)
item.is_min_violation = true;
total_violation += item.target_main_size - original_target_main_size;
}
// e. Freeze over-flexed items.
// The total violation is the sum of the adjustments from the previous step ∑(clamped size - unclamped size).
// If the total violation is:
// Zero
// Freeze all items.
if (total_violation == 0) {
for (auto& item : line.items) {
if (!item.frozen)
item.frozen = true;
}
}
// Positive
// Freeze all the items with min violations.
else if (total_violation > 0) {
for (auto& item : line.items) {
if (!item.frozen && item.is_min_violation)
item.frozen = true;
}
}
// Negative
// Freeze all the items with max violations.
else {
for (auto& item : line.items) {
if (!item.frozen && item.is_max_violation)
item.frozen = true;
}
}
// NOTE: This freezes at least one item, ensuring that the loop makes progress and eventually terminates.
// f. Return to the start of this loop.
}
// NOTE: Calculate the remaining free space once again here, since it's needed later when aligning items.
line.remaining_free_space = calculate_remaining_free_space();
// 6. Set each items used main size to its target main size.
for (auto& item : line.items) {
item.main_size = item.target_main_size;
set_main_size(item.box, item.target_main_size);
}
}
// https://drafts.csswg.org/css-flexbox-1/#resolve-flexible-lengths
void FlexFormattingContext::resolve_flexible_lengths()
{
for (auto& line : m_flex_lines) {
resolve_flexible_lengths_for_line(line);
}
}
// https://drafts.csswg.org/css-flexbox-1/#algo-cross-item
void FlexFormattingContext::determine_hypothetical_cross_size_of_item(FlexItem& item, bool resolve_percentage_min_max_sizes)
{
// Determine the hypothetical cross size of each item by performing layout
// as if it were an in-flow block-level box with the used main size
// and the given available space, treating auto as fit-content.
auto const& computed_min_size = this->computed_cross_min_size(item.box);
auto const& computed_max_size = this->computed_cross_max_size(item.box);
auto clamp_min = (!computed_min_size.is_auto() && (resolve_percentage_min_max_sizes || !computed_min_size.contains_percentage())) ? specified_cross_min_size(item.box) : 0;
auto clamp_max = (!computed_max_size.is_none() && (resolve_percentage_min_max_sizes || !computed_max_size.contains_percentage())) ? specified_cross_max_size(item.box) : NumericLimits<float>::max();
// If we have a definite cross size, this is easy! No need to perform layout, we can just use it as-is.
if (has_definite_cross_size(item.box)) {
// To avoid subtracting padding and border twice for `box-sizing: border-box` only min and max clamp should happen on a second pass
if (resolve_percentage_min_max_sizes) {
item.hypothetical_cross_size = css_clamp(item.hypothetical_cross_size, clamp_min, clamp_max);
return;
}
item.hypothetical_cross_size = css_clamp(inner_cross_size(item.box), clamp_min, clamp_max);
return;
}
if (item.box->has_preferred_aspect_ratio() && item.main_size.has_value()) {
item.hypothetical_cross_size = calculate_cross_size_from_main_size_and_aspect_ratio(item.main_size.value(), item.box->preferred_aspect_ratio().value());
return;
}
auto computed_cross_size = [&]() -> CSS::Size {
// "... treating auto as fit-content"
if (should_treat_cross_size_as_auto(item.box))
return CSS::Size::make_fit_content();
return this->computed_cross_size(item.box);
}();
if (computed_cross_size.is_min_content()) {
item.hypothetical_cross_size = css_clamp(calculate_min_content_cross_size(item), clamp_min, clamp_max);
return;
}
if (computed_cross_size.is_max_content()) {
item.hypothetical_cross_size = css_clamp(calculate_max_content_cross_size(item), clamp_min, clamp_max);
return;
}
if (computed_cross_size.is_fit_content()) {
CSSPixels fit_content_cross_size = 0;
if (is_row_layout()) {
auto available_width = item.main_size.has_value() ? AvailableSize::make_definite(item.main_size.value()) : AvailableSize::make_indefinite();
auto available_height = AvailableSize::make_indefinite();
fit_content_cross_size = calculate_fit_content_height(item.box, AvailableSpace(available_width, available_height));
} else {
fit_content_cross_size = calculate_fit_content_width(item.box, m_available_space_for_items->space);
}
item.hypothetical_cross_size = css_clamp(fit_content_cross_size, clamp_min, clamp_max);
return;
}
// For indefinite cross sizes, we perform a throwaway layout and then measure it.
LayoutState throwaway_state(&m_state);
auto& box_state = throwaway_state.get_mutable(item.box);
if (is_row_layout()) {
box_state.set_content_width(item.main_size.value());
} else {
box_state.set_content_height(item.main_size.value());
}
// Item has definite main size, layout with that as the used main size.
auto independent_formatting_context = create_independent_formatting_context_if_needed(throwaway_state, item.box);
// NOTE: Flex items should always create an independent formatting context!
VERIFY(independent_formatting_context);
auto available_width = is_row_layout() ? AvailableSize::make_definite(item.main_size.value()) : AvailableSize::make_indefinite();
auto available_height = is_row_layout() ? AvailableSize::make_indefinite() : AvailableSize::make_definite(item.main_size.value());
independent_formatting_context->run(item.box, LayoutMode::Normal, AvailableSpace(available_width, available_height));
auto automatic_cross_size = is_row_layout() ? independent_formatting_context->automatic_content_height()
: independent_formatting_context->automatic_content_width();
item.hypothetical_cross_size = css_clamp(automatic_cross_size, clamp_min, clamp_max);
}
// https://www.w3.org/TR/css-flexbox-1/#algo-cross-line
void FlexFormattingContext::calculate_cross_size_of_each_flex_line()
{
// If the flex container is single-line and has a definite cross size, the cross size of the flex line is the flex containers inner cross size.
if (is_single_line() && has_definite_cross_size(flex_container())) {
m_flex_lines[0].cross_size = inner_cross_size(flex_container());
return;
}
// Otherwise, for each flex line:
for (auto& flex_line : m_flex_lines) {
// FIXME: 1. Collect all the flex items whose inline-axis is parallel to the main-axis, whose align-self is baseline,
// and whose cross-axis margins are both non-auto. Find the largest of the distances between each items baseline
// and its hypothetical outer cross-start edge, and the largest of the distances between each items baseline
// and its hypothetical outer cross-end edge, and sum these two values.
// 2. Among all the items not collected by the previous step, find the largest outer hypothetical cross size.
CSSPixels largest_hypothetical_cross_size = 0;
for (auto& item : flex_line.items) {
if (largest_hypothetical_cross_size < item.hypothetical_cross_size_with_margins())
largest_hypothetical_cross_size = item.hypothetical_cross_size_with_margins();
}
// 3. The used cross-size of the flex line is the largest of the numbers found in the previous two steps and zero.
flex_line.cross_size = max(CSSPixels(0), largest_hypothetical_cross_size);
}
// If the flex container is single-line, then clamp the lines cross-size to be within the containers computed min and max cross sizes.
// Note that if CSS 2.1s definition of min/max-width/height applied more generally, this behavior would fall out automatically.
// AD-HOC: We don't do this when the flex container is being sized under a min-content or max-content constraint.
if (is_single_line() && !m_available_space_for_flex_container->cross.is_intrinsic_sizing_constraint()) {
auto const& computed_min_size = this->computed_cross_min_size(flex_container());
auto const& computed_max_size = this->computed_cross_max_size(flex_container());
auto cross_min_size = (!computed_min_size.is_auto() && !computed_min_size.contains_percentage()) ? specified_cross_min_size(flex_container()) : 0;
auto cross_max_size = (!computed_max_size.is_none() && !computed_max_size.contains_percentage()) ? specified_cross_max_size(flex_container()) : INFINITY;
m_flex_lines[0].cross_size = css_clamp(m_flex_lines[0].cross_size, cross_min_size, cross_max_size);
}
}
// https://www.w3.org/TR/css-flexbox-1/#algo-stretch
void FlexFormattingContext::determine_used_cross_size_of_each_flex_item()
{
for (auto& flex_line : m_flex_lines) {
for (auto& item : flex_line.items) {
// If a flex item has align-self: stretch, its computed cross size property is auto,
// and neither of its cross-axis margins are auto, the used outer cross size is the used cross size of its flex line,
// clamped according to the items used min and max cross sizes.
if (alignment_for_item(item.box) == CSS::AlignItems::Stretch
&& is_cross_auto(item.box)
&& !item.margins.cross_before_is_auto
&& !item.margins.cross_after_is_auto) {
auto unclamped_cross_size = flex_line.cross_size
- item.margins.cross_before - item.margins.cross_after
- item.padding.cross_before - item.padding.cross_after
- item.borders.cross_before - item.borders.cross_after;
auto const& computed_min_size = computed_cross_min_size(item.box);
auto const& computed_max_size = computed_cross_max_size(item.box);
auto cross_min_size = (!computed_min_size.is_auto() && !computed_min_size.contains_percentage()) ? specified_cross_min_size(item.box) : 0;
auto cross_max_size = (!computed_max_size.is_none() && !computed_max_size.contains_percentage()) ? specified_cross_max_size(item.box) : INFINITY;
item.cross_size = css_clamp(unclamped_cross_size, cross_min_size, cross_max_size);
} else {
// Otherwise, the used cross size is the items hypothetical cross size.
item.cross_size = item.hypothetical_cross_size;
}
}
}
}
// https://www.w3.org/TR/css-flexbox-1/#algo-main-align
void FlexFormattingContext::distribute_any_remaining_free_space()
{
for (auto& flex_line : m_flex_lines) {
// 12.1.
CSSPixels used_main_space = 0;
size_t auto_margins = 0;
for (auto& item : flex_line.items) {
used_main_space += item.main_size.value();
if (item.margins.main_before_is_auto)
++auto_margins;
if (item.margins.main_after_is_auto)
++auto_margins;
used_main_space += item.margins.main_before + item.margins.main_after
+ item.borders.main_before + item.borders.main_after
+ item.padding.main_before + item.padding.main_after;
}
// CSS-FLEXBOX-2: Account for gap between flex items.
used_main_space += main_gap() * (flex_line.items.size() - 1);
if (flex_line.remaining_free_space.has_value() && flex_line.remaining_free_space.value() > 0 && auto_margins > 0) {
CSSPixels size_per_auto_margin = flex_line.remaining_free_space.value() / auto_margins;
for (auto& item : flex_line.items) {
if (item.margins.main_before_is_auto)
set_main_axis_first_margin(item, size_per_auto_margin);
if (item.margins.main_after_is_auto)
set_main_axis_second_margin(item, size_per_auto_margin);
}
} else {
for (auto& item : flex_line.items) {
if (item.margins.main_before_is_auto)
set_main_axis_first_margin(item, 0);
if (item.margins.main_after_is_auto)
set_main_axis_second_margin(item, 0);
}
}
// 12.2.
// CSS-FLEXBOX-2: Account for gap between items.
CSSPixels space_between_items = main_gap();
CSSPixels initial_offset = 0;
auto number_of_items = flex_line.items.size();
if (auto_margins == 0 && number_of_items > 0) {
switch (flex_container().computed_values().justify_content()) {
case CSS::JustifyContent::Start:
initial_offset = 0;
break;
case CSS::JustifyContent::FlexStart:
if (is_direction_reverse()) {
initial_offset = inner_main_size(flex_container());
} else {
initial_offset = 0;
}
break;
case CSS::JustifyContent::End:
initial_offset = inner_main_size(flex_container());
break;
case CSS::JustifyContent::FlexEnd:
if (is_direction_reverse()) {
initial_offset = 0;
} else {
initial_offset = inner_main_size(flex_container());
}
break;
case CSS::JustifyContent::Center:
initial_offset = (inner_main_size(flex_container()) - used_main_space) / 2.0;
if (is_direction_reverse()) {
initial_offset = inner_main_size(flex_container()) - initial_offset;
}
break;
case CSS::JustifyContent::SpaceBetween:
if (is_direction_reverse()) {
initial_offset = inner_main_size(flex_container());
} else {
initial_offset = 0;
}
if (flex_line.remaining_free_space.has_value() && number_of_items > 1)
space_between_items = flex_line.remaining_free_space.value() / (number_of_items - 1);
break;
case CSS::JustifyContent::SpaceAround:
if (flex_line.remaining_free_space.has_value())
space_between_items = flex_line.remaining_free_space.value() / number_of_items;
if (is_direction_reverse()) {
initial_offset = inner_main_size(flex_container()) - space_between_items / 2.0;
} else {
initial_offset = space_between_items / 2.0;
}
break;
case CSS::JustifyContent::SpaceEvenly:
if (flex_line.remaining_free_space.has_value())
space_between_items = flex_line.remaining_free_space.value() / (number_of_items + 1);
if (is_direction_reverse()) {
initial_offset = inner_main_size(flex_container()) - space_between_items;
} else {
initial_offset = space_between_items;
}
break;
}
}
// For reverse, we use FlexRegionRenderCursor::Right
// to indicate the cursor offset is the end and render backwards
// Otherwise the cursor offset is the 'start' of the region or initial offset
enum class FlexRegionRenderCursor {
Left,
Right
};
auto flex_region_render_cursor = FlexRegionRenderCursor::Left;
if (auto_margins == 0) {
switch (flex_container().computed_values().justify_content()) {
case CSS::JustifyContent::FlexStart:
case CSS::JustifyContent::Center:
case CSS::JustifyContent::SpaceAround:
case CSS::JustifyContent::SpaceBetween:
case CSS::JustifyContent::SpaceEvenly:
if (is_direction_reverse()) {
flex_region_render_cursor = FlexRegionRenderCursor::Right;
}
break;
case CSS::JustifyContent::End:
flex_region_render_cursor = FlexRegionRenderCursor::Right;
break;
case CSS::JustifyContent::FlexEnd:
if (!is_direction_reverse()) {
flex_region_render_cursor = FlexRegionRenderCursor::Right;
}
break;
default:
break;
}
}
CSSPixels cursor_offset = initial_offset;
auto place_item = [&](FlexItem& item) {
auto amount_of_main_size_used = item.main_size.value()
+ item.margins.main_before
+ item.borders.main_before
+ item.padding.main_before
+ item.margins.main_after
+ item.borders.main_after
+ item.padding.main_after
+ space_between_items;
if (is_direction_reverse() && flex_region_render_cursor == FlexRegionRenderCursor::Right) {
item.main_offset = cursor_offset - item.main_size.value() - item.margins.main_after - item.borders.main_after - item.padding.main_after;
cursor_offset -= amount_of_main_size_used;
} else if (flex_region_render_cursor == FlexRegionRenderCursor::Right) {
cursor_offset -= amount_of_main_size_used;
item.main_offset = cursor_offset + item.margins.main_before + item.borders.main_before + item.padding.main_before;
} else {
item.main_offset = cursor_offset + item.margins.main_before + item.borders.main_before + item.padding.main_before;
cursor_offset += amount_of_main_size_used;
}
};
if (flex_region_render_cursor == FlexRegionRenderCursor::Right) {
for (ssize_t i = flex_line.items.size() - 1; i >= 0; --i) {
auto& item = flex_line.items[i];
place_item(item);
}
} else {
for (size_t i = 0; i < flex_line.items.size(); ++i) {
auto& item = flex_line.items[i];
place_item(item);
}
}
}
}
void FlexFormattingContext::dump_items() const
{
dbgln("\033[34;1mflex-container\033[0m {}, direction: {}, current-size: {}x{}", flex_container().debug_description(), is_row_layout() ? "row" : "column", m_flex_container_state.content_width(), m_flex_container_state.content_height());
for (size_t i = 0; i < m_flex_lines.size(); ++i) {
dbgln("{} flex-line #{}:", flex_container().debug_description(), i);
for (size_t j = 0; j < m_flex_lines[i].items.size(); ++j) {
auto& item = m_flex_lines[i].items[j];
dbgln("{} flex-item #{}: {} (main:{}, cross:{})", flex_container().debug_description(), j, item.box->debug_description(), item.main_size.value_or(-1), item.cross_size.value_or(-1));
}
}
}
CSS::AlignItems FlexFormattingContext::alignment_for_item(Box const& box) const
{
switch (box.computed_values().align_self()) {
case CSS::AlignSelf::Auto:
return flex_container().computed_values().align_items();
case CSS::AlignSelf::End:
return CSS::AlignItems::End;
case CSS::AlignSelf::Normal:
return CSS::AlignItems::Normal;
case CSS::AlignSelf::SelfStart:
return CSS::AlignItems::SelfStart;
case CSS::AlignSelf::SelfEnd:
return CSS::AlignItems::SelfEnd;
case CSS::AlignSelf::FlexStart:
return CSS::AlignItems::FlexStart;
case CSS::AlignSelf::FlexEnd:
return CSS::AlignItems::FlexEnd;
case CSS::AlignSelf::Center:
return CSS::AlignItems::Center;
case CSS::AlignSelf::Baseline:
return CSS::AlignItems::Baseline;
case CSS::AlignSelf::Start:
return CSS::AlignItems::Start;
case CSS::AlignSelf::Stretch:
return CSS::AlignItems::Stretch;
case CSS::AlignSelf::Safe:
return CSS::AlignItems::Safe;
case CSS::AlignSelf::Unsafe:
return CSS::AlignItems::Unsafe;
default:
VERIFY_NOT_REACHED();
}
}
void FlexFormattingContext::align_all_flex_items_along_the_cross_axis()
{
// FIXME: Take better care of margins
for (auto& flex_line : m_flex_lines) {
for (auto& item : flex_line.items) {
CSSPixels half_line_size = flex_line.cross_size / 2.0;
switch (alignment_for_item(item.box)) {
case CSS::AlignItems::Baseline:
// FIXME: Implement this
// Fallthrough
case CSS::AlignItems::Start:
case CSS::AlignItems::FlexStart:
case CSS::AlignItems::Stretch:
item.cross_offset = -half_line_size + item.margins.cross_before + item.borders.cross_before + item.padding.cross_before;
break;
case CSS::AlignItems::End:
case CSS::AlignItems::FlexEnd:
item.cross_offset = half_line_size - item.cross_size.value() - item.margins.cross_after - item.borders.cross_after - item.padding.cross_after;
break;
case CSS::AlignItems::Center:
item.cross_offset = -(item.cross_size.value() / 2.0);
break;
default:
break;
}
}
}
}
// https://www.w3.org/TR/css-flexbox-1/#algo-cross-container
void FlexFormattingContext::determine_flex_container_used_cross_size()
{
CSSPixels cross_size = 0;
if (has_definite_cross_size(flex_container())) {
// Flex container has definite cross size: easy-peasy.
cross_size = inner_cross_size(flex_container());
} else {
// Flex container has indefinite cross size.
auto cross_size_value = is_row_layout() ? flex_container().computed_values().height() : flex_container().computed_values().width();
if (cross_size_value.is_auto() || cross_size_value.contains_percentage()) {
// If a content-based cross size is needed, use the sum of the flex lines' cross sizes.
CSSPixels sum_of_flex_lines_cross_sizes = 0;
for (auto& flex_line : m_flex_lines) {
sum_of_flex_lines_cross_sizes += flex_line.cross_size;
}
cross_size = sum_of_flex_lines_cross_sizes;
if (cross_size_value.contains_percentage()) {
// FIXME: Handle percentage values here! Right now we're just treating them as "auto"
}
} else {
// Otherwise, resolve the indefinite size at this point.
cross_size = cross_size_value.to_px(flex_container(), inner_cross_size(*flex_container().containing_block()));
}
}
// AD-HOC: We don't apply min/max cross size constraints when sizing the flex container under an intrinsic sizing constraint.
if (!m_available_space_for_flex_container->cross.is_intrinsic_sizing_constraint()) {
auto const& computed_min_size = this->computed_cross_min_size(flex_container());
auto const& computed_max_size = this->computed_cross_max_size(flex_container());
auto cross_min_size = (!computed_min_size.is_auto() && !computed_min_size.contains_percentage()) ? specified_cross_min_size(flex_container()) : 0;
auto cross_max_size = (!computed_max_size.is_none() && !computed_max_size.contains_percentage()) ? specified_cross_max_size(flex_container()) : INFINITY;
set_cross_size(flex_container(), css_clamp(cross_size, cross_min_size, cross_max_size));
} else {
set_cross_size(flex_container(), cross_size);
}
}
// https://www.w3.org/TR/css-flexbox-1/#algo-line-align
void FlexFormattingContext::align_all_flex_lines()
{
if (m_flex_lines.is_empty())
return;
// FIXME: Support reverse
CSSPixels cross_size_of_flex_container = inner_cross_size(flex_container());
if (is_single_line()) {
// For single-line flex containers, we only need to center the line along the cross axis.
auto& flex_line = m_flex_lines[0];
CSSPixels center_of_line = cross_size_of_flex_container / 2.0;
for (auto& item : flex_line.items) {
item.cross_offset += center_of_line;
}
} else {
CSSPixels sum_of_flex_line_cross_sizes = 0;
for (auto& line : m_flex_lines)
sum_of_flex_line_cross_sizes += line.cross_size;
// CSS-FLEXBOX-2: Account for gap between flex lines.
sum_of_flex_line_cross_sizes += cross_gap() * (m_flex_lines.size() - 1);
CSSPixels start_of_current_line = 0;
CSSPixels gap_size = 0;
switch (flex_container().computed_values().align_content()) {
case CSS::AlignContent::FlexStart:
start_of_current_line = 0;
break;
case CSS::AlignContent::FlexEnd:
start_of_current_line = cross_size_of_flex_container - sum_of_flex_line_cross_sizes;
break;
case CSS::AlignContent::Center:
start_of_current_line = (cross_size_of_flex_container / 2) - (sum_of_flex_line_cross_sizes / 2);
break;
case CSS::AlignContent::SpaceBetween: {
start_of_current_line = 0;
auto leftover_free_space = cross_size_of_flex_container - sum_of_flex_line_cross_sizes;
if (leftover_free_space >= 0) {
int gap_count = m_flex_lines.size() - 1;
gap_size = leftover_free_space / gap_count;
}
break;
}
case CSS::AlignContent::SpaceAround: {
auto leftover_free_space = cross_size_of_flex_container - sum_of_flex_line_cross_sizes;
if (leftover_free_space < 0) {
// If the leftover free-space is negative this value is identical to center.
start_of_current_line = (cross_size_of_flex_container / 2) - (sum_of_flex_line_cross_sizes / 2);
break;
}
gap_size = leftover_free_space / m_flex_lines.size();
// The spacing between the first/last lines and the flex container edges is half the size of the spacing between flex lines.
start_of_current_line = gap_size / 2;
break;
}
case CSS::AlignContent::SpaceEvenly: {
auto leftover_free_space = cross_size_of_flex_container - sum_of_flex_line_cross_sizes;
if (leftover_free_space < 0) {
// If the leftover free-space is negative this value is identical to center.
start_of_current_line = (cross_size_of_flex_container / 2) - (sum_of_flex_line_cross_sizes / 2);
break;
}
gap_size = leftover_free_space / (m_flex_lines.size() + 1);
// The spacing between the first/last lines and the flex container edges is the size of the spacing between flex lines.
start_of_current_line = gap_size;
break;
}
case CSS::AlignContent::Stretch:
start_of_current_line = 0;
break;
}
for (auto& flex_line : m_flex_lines) {
CSSPixels center_of_current_line = start_of_current_line + (flex_line.cross_size / 2);
for (auto& item : flex_line.items) {
item.cross_offset += center_of_current_line;
}
start_of_current_line += flex_line.cross_size + gap_size;
// CSS-FLEXBOX-2: Account for gap between flex lines.
start_of_current_line += cross_gap();
}
}
}
void FlexFormattingContext::copy_dimensions_from_flex_items_to_boxes()
{
for (auto& item : m_flex_items) {
auto const& box = item.box;
auto& box_state = m_state.get_mutable(box);
box_state.padding_left = box->computed_values().padding().left().to_px(box, m_flex_container_state.content_width());
box_state.padding_right = box->computed_values().padding().right().to_px(box, m_flex_container_state.content_width());
box_state.padding_top = box->computed_values().padding().top().to_px(box, m_flex_container_state.content_width());
box_state.padding_bottom = box->computed_values().padding().bottom().to_px(box, m_flex_container_state.content_width());
box_state.margin_left = box->computed_values().margin().left().to_px(box, m_flex_container_state.content_width());
box_state.margin_right = box->computed_values().margin().right().to_px(box, m_flex_container_state.content_width());
box_state.margin_top = box->computed_values().margin().top().to_px(box, m_flex_container_state.content_width());
box_state.margin_bottom = box->computed_values().margin().bottom().to_px(box, m_flex_container_state.content_width());
box_state.border_left = box->computed_values().border_left().width;
box_state.border_right = box->computed_values().border_right().width;
box_state.border_top = box->computed_values().border_top().width;
box_state.border_bottom = box->computed_values().border_bottom().width;
set_main_size(box, item.main_size.value());
set_cross_size(box, item.cross_size.value());
set_offset(box, item.main_offset, item.cross_offset);
}
}
// https://drafts.csswg.org/css-flexbox-1/#intrinsic-sizes
void FlexFormattingContext::determine_intrinsic_size_of_flex_container()
{
if (m_available_space_for_flex_container->main.is_intrinsic_sizing_constraint()) {
CSSPixels main_size = calculate_intrinsic_main_size_of_flex_container();
set_main_size(flex_container(), main_size);
}
if (m_available_space_for_items->cross.is_intrinsic_sizing_constraint()) {
CSSPixels cross_size = calculate_intrinsic_cross_size_of_flex_container();
set_cross_size(flex_container(), cross_size);
}
}
// https://drafts.csswg.org/css-flexbox-1/#intrinsic-main-sizes
CSSPixels FlexFormattingContext::calculate_intrinsic_main_size_of_flex_container()
{
// The min-content main size of a single-line flex container is calculated identically to the max-content main size,
// except that the flex items min-content contributions are used instead of their max-content contributions.
// However, for a multi-line container, it is simply the largest min-content contribution of all the non-collapsed flex items in the flex container.
if (!is_single_line() && m_available_space_for_items->main.is_min_content()) {
CSSPixels largest_contribution = 0;
for (auto const& item : m_flex_items) {
// FIXME: Skip collapsed flex items.
largest_contribution = max(largest_contribution, calculate_main_min_content_contribution(item));
}
return largest_contribution;
}
// The max-content main size of a flex container is, fundamentally, the smallest size the flex container
// can take such that when flex layout is run with that container size, each flex item ends up at least
// as large as its max-content contribution, to the extent allowed by the items flexibility.
// It is calculated, considering only non-collapsed flex items, by:
// 1. For each flex item, subtract its outer flex base size from its max-content contribution size.
// If that result is positive, divide it by the items flex grow factor if the flex grow factor is ≥ 1,
// or multiply it by the flex grow factor if the flex grow factor is < 1; if the result is negative,
// divide it by the items scaled flex shrink factor (if dividing by zero, treat the result as negative infinity).
// This is the items desired flex fraction.
for (auto& item : m_flex_items) {
CSSPixels contribution = 0;
if (m_available_space_for_items->main.is_min_content())
contribution = calculate_main_min_content_contribution(item);
else if (m_available_space_for_items->main.is_max_content())
contribution = calculate_main_max_content_contribution(item);
CSSPixels outer_flex_base_size = item.flex_base_size + item.margins.main_before + item.margins.main_after + item.borders.main_before + item.borders.main_after + item.padding.main_before + item.padding.main_after;
CSSPixels result = contribution - outer_flex_base_size;
if (result > 0) {
if (item.box->computed_values().flex_grow() >= 1) {
result /= item.box->computed_values().flex_grow();
} else {
result *= item.box->computed_values().flex_grow();
}
} else if (result < 0) {
if (item.scaled_flex_shrink_factor == 0)
result = -INFINITY;
else
result /= item.scaled_flex_shrink_factor;
}
item.desired_flex_fraction = result.to_double();
}
// 2. Place all flex items into lines of infinite length.
m_flex_lines.clear();
if (!m_flex_items.is_empty())
m_flex_lines.append(FlexLine {});
for (auto& item : m_flex_items) {
// FIXME: Honor breaking requests.
m_flex_lines.last().items.append(item);
}
// Within each line, find the greatest (most positive) desired flex fraction among all the flex items.
// This is the lines chosen flex fraction.
for (auto& flex_line : m_flex_lines) {
float greatest_desired_flex_fraction = 0;
float sum_of_flex_grow_factors = 0;
float sum_of_flex_shrink_factors = 0;
for (auto& item : flex_line.items) {
greatest_desired_flex_fraction = max(greatest_desired_flex_fraction, item.desired_flex_fraction);
sum_of_flex_grow_factors += item.box->computed_values().flex_grow();
sum_of_flex_shrink_factors += item.box->computed_values().flex_shrink();
}
float chosen_flex_fraction = greatest_desired_flex_fraction;
// 3. If the chosen flex fraction is positive, and the sum of the lines flex grow factors is less than 1,
// divide the chosen flex fraction by that sum.
if (chosen_flex_fraction > 0 && sum_of_flex_grow_factors < 1)
chosen_flex_fraction /= sum_of_flex_grow_factors;
// If the chosen flex fraction is negative, and the sum of the lines flex shrink factors is less than 1,
// multiply the chosen flex fraction by that sum.
if (chosen_flex_fraction < 0 && sum_of_flex_shrink_factors < 1)
chosen_flex_fraction *= sum_of_flex_shrink_factors;
flex_line.chosen_flex_fraction = chosen_flex_fraction;
}
auto determine_main_size = [&]() -> CSSPixels {
CSSPixels largest_sum = 0;
for (auto& flex_line : m_flex_lines) {
// 4. Add each items flex base size to the product of its flex grow factor (scaled flex shrink factor, if shrinking)
// and the chosen flex fraction, then clamp that result by the max main size floored by the min main size.
CSSPixels sum = 0;
for (auto& item : flex_line.items) {
double product = 0;
if (item.desired_flex_fraction > 0)
product = flex_line.chosen_flex_fraction * static_cast<double>(item.box->computed_values().flex_grow());
else if (item.desired_flex_fraction < 0)
product = flex_line.chosen_flex_fraction * item.scaled_flex_shrink_factor;
auto result = item.flex_base_size + product;
auto const& computed_min_size = this->computed_main_min_size(item.box);
auto const& computed_max_size = this->computed_main_max_size(item.box);
auto clamp_min = (!computed_min_size.is_auto() && !computed_min_size.contains_percentage()) ? specified_main_min_size(item.box) : automatic_minimum_size(item);
auto clamp_max = (!computed_max_size.is_none() && !computed_max_size.contains_percentage()) ? specified_main_max_size(item.box) : NumericLimits<float>::max();
result = css_clamp(result, clamp_min, clamp_max);
// NOTE: The spec doesn't mention anything about the *outer* size here, but if we don't add the margin box,
// flex items with non-zero padding/border/margin in the main axis end up overflowing the container.
result = item.add_main_margin_box_sizes(result);
sum += result;
}
// CSS-FLEXBOX-2: Account for gap between flex items.
sum += main_gap() * (flex_line.items.size() - 1);
largest_sum = max(largest_sum, sum);
}
// 5. The flex containers max-content size is the largest sum (among all the lines) of the afore-calculated sizes of all items within a single line.
return largest_sum;
};
auto main_size = determine_main_size();
set_main_size(flex_container(), main_size);
return main_size;
}
// https://drafts.csswg.org/css-flexbox-1/#intrinsic-cross-sizes
CSSPixels FlexFormattingContext::calculate_intrinsic_cross_size_of_flex_container()
{
// The min-content/max-content cross size of a single-line flex container
// is the largest min-content contribution/max-content contribution (respectively) of its flex items.
if (is_single_line()) {
auto calculate_largest_contribution = [&](bool resolve_percentage_min_max_sizes) {
CSSPixels largest_contribution = 0;
for (auto& item : m_flex_items) {
CSSPixels contribution = 0;
if (m_available_space_for_items->cross.is_min_content())
contribution = calculate_cross_min_content_contribution(item, resolve_percentage_min_max_sizes);
else if (m_available_space_for_items->cross.is_max_content())
contribution = calculate_cross_max_content_contribution(item, resolve_percentage_min_max_sizes);
largest_contribution = max(largest_contribution, contribution);
}
return largest_contribution;
};
auto first_pass_largest_contribution = calculate_largest_contribution(false);
set_cross_size(flex_container(), first_pass_largest_contribution);
auto second_pass_largest_contribution = calculate_largest_contribution(true);
return second_pass_largest_contribution;
}
if (is_row_layout()) {
// row multi-line flex container cross-size
// The min-content/max-content cross size is the sum of the flex line cross sizes resulting from
// sizing the flex container under a cross-axis min-content constraint/max-content constraint (respectively).
// NOTE: We fall through to the ad-hoc section below.
} else {
// column multi-line flex container cross-size
// The min-content cross size is the largest min-content contribution among all of its flex items.
if (m_available_space_for_items->cross.is_min_content()) {
auto calculate_largest_contribution = [&](bool resolve_percentage_min_max_sizes) {
CSSPixels largest_contribution = 0;
for (auto& item : m_flex_items) {
CSSPixels contribution = calculate_cross_min_content_contribution(item, resolve_percentage_min_max_sizes);
largest_contribution = max(largest_contribution, contribution);
}
return largest_contribution;
};
auto first_pass_largest_contribution = calculate_largest_contribution(false);
set_cross_size(flex_container(), first_pass_largest_contribution);
auto second_pass_largest_contribution = calculate_largest_contribution(true);
return second_pass_largest_contribution;
}
// The max-content cross size is the sum of the flex line cross sizes resulting from
// sizing the flex container under a cross-axis max-content constraint,
// using the largest max-content cross-size contribution among the flex items
// as the available space in the cross axis for each of the flex items during layout.
// NOTE: We fall through to the ad-hoc section below.
}
CSSPixels sum_of_flex_line_cross_sizes = 0;
for (auto& flex_line : m_flex_lines) {
sum_of_flex_line_cross_sizes += flex_line.cross_size;
}
// CSS-FLEXBOX-2: Account for gap between flex lines.
sum_of_flex_line_cross_sizes += cross_gap() * (m_flex_lines.size() - 1);
return sum_of_flex_line_cross_sizes;
}
// https://drafts.csswg.org/css-flexbox-1/#intrinsic-item-contributions
CSSPixels FlexFormattingContext::calculate_main_min_content_contribution(FlexItem const& item) const
{
// The main-size min-content contribution of a flex item is
// the larger of its outer min-content size and outer preferred size if that is not auto,
// clamped by its min/max main size.
auto larger_size = [&] {
auto inner_min_content_size = calculate_min_content_main_size(item);
if (computed_main_size(item.box).is_auto())
return inner_min_content_size;
auto inner_preferred_size = is_row_layout() ? get_pixel_width(item.box, computed_main_size(item.box)) : get_pixel_height(item.box, computed_main_size(item.box));
return max(inner_min_content_size, inner_preferred_size);
}();
auto clamp_min = has_main_min_size(item.box) ? specified_main_min_size(item.box) : automatic_minimum_size(item);
auto clamp_max = has_main_max_size(item.box) ? specified_main_max_size(item.box) : NumericLimits<float>::max();
auto clamped_inner_size = css_clamp(larger_size, clamp_min, clamp_max);
return item.add_main_margin_box_sizes(clamped_inner_size);
}
// https://drafts.csswg.org/css-flexbox-1/#intrinsic-item-contributions
CSSPixels FlexFormattingContext::calculate_main_max_content_contribution(FlexItem const& item) const
{
// The main-size max-content contribution of a flex item is
// the larger of its outer max-content size and outer preferred size if that is not auto,
// clamped by its min/max main size.
auto larger_size = [&] {
auto inner_max_content_size = calculate_max_content_main_size(item);
if (computed_main_size(item.box).is_auto())
return inner_max_content_size;
auto inner_preferred_size = is_row_layout() ? get_pixel_width(item.box, computed_main_size(item.box)) : get_pixel_height(item.box, computed_main_size(item.box));
return max(inner_max_content_size, inner_preferred_size);
}();
auto clamp_min = has_main_min_size(item.box) ? specified_main_min_size(item.box) : automatic_minimum_size(item);
auto clamp_max = has_main_max_size(item.box) ? specified_main_max_size(item.box) : NumericLimits<float>::max();
auto clamped_inner_size = css_clamp(larger_size, clamp_min, clamp_max);
return item.add_main_margin_box_sizes(clamped_inner_size);
}
bool FlexFormattingContext::should_treat_main_size_as_auto(Box const& box) const
{
if (is_row_layout())
return should_treat_width_as_auto(box, m_available_space_for_items->space);
return should_treat_height_as_auto(box, m_available_space_for_items->space);
}
bool FlexFormattingContext::should_treat_cross_size_as_auto(Box const& box) const
{
if (is_row_layout())
return should_treat_height_as_auto(box, m_available_space_for_items->space);
return should_treat_width_as_auto(box, m_available_space_for_items->space);
}
CSSPixels FlexFormattingContext::calculate_cross_min_content_contribution(FlexItem const& item, bool resolve_percentage_min_max_sizes) const
{
auto size = [&] {
if (should_treat_cross_size_as_auto(item.box))
return calculate_min_content_cross_size(item);
return !is_row_layout() ? get_pixel_width(item.box, computed_cross_size(item.box)) : get_pixel_height(item.box, computed_cross_size(item.box));
}();
auto const& computed_min_size = this->computed_cross_min_size(item.box);
auto const& computed_max_size = this->computed_cross_max_size(item.box);
auto clamp_min = (!computed_min_size.is_auto() && (resolve_percentage_min_max_sizes || !computed_min_size.contains_percentage())) ? specified_cross_min_size(item.box) : 0;
auto clamp_max = (!computed_max_size.is_none() && (resolve_percentage_min_max_sizes || !computed_max_size.contains_percentage())) ? specified_cross_max_size(item.box) : NumericLimits<float>::max();
auto clamped_inner_size = css_clamp(size, clamp_min, clamp_max);
return item.add_cross_margin_box_sizes(clamped_inner_size);
}
CSSPixels FlexFormattingContext::calculate_cross_max_content_contribution(FlexItem const& item, bool resolve_percentage_min_max_sizes) const
{
auto size = [&] {
if (should_treat_cross_size_as_auto(item.box))
return calculate_max_content_cross_size(item);
return !is_row_layout() ? get_pixel_width(item.box, computed_cross_size(item.box)) : get_pixel_height(item.box, computed_cross_size(item.box));
}();
auto const& computed_min_size = this->computed_cross_min_size(item.box);
auto const& computed_max_size = this->computed_cross_max_size(item.box);
auto clamp_min = (!computed_min_size.is_auto() && (resolve_percentage_min_max_sizes || !computed_min_size.contains_percentage())) ? specified_cross_min_size(item.box) : 0;
auto clamp_max = (!computed_max_size.is_none() && (resolve_percentage_min_max_sizes || !computed_max_size.contains_percentage())) ? specified_cross_max_size(item.box) : NumericLimits<float>::max();
auto clamped_inner_size = css_clamp(size, clamp_min, clamp_max);
return item.add_cross_margin_box_sizes(clamped_inner_size);
}
CSSPixels FlexFormattingContext::calculate_width_to_use_when_determining_intrinsic_height_of_item(FlexItem const& item) const
{
auto const& box = *item.box;
auto computed_width = box.computed_values().width();
auto const& computed_min_width = box.computed_values().min_width();
auto const& computed_max_width = box.computed_values().max_width();
auto clamp_min = (!computed_min_width.is_auto() && (!computed_min_width.contains_percentage())) ? specified_cross_min_size(box) : 0;
auto clamp_max = (!computed_max_width.is_none() && (!computed_max_width.contains_percentage())) ? specified_cross_max_size(box) : NumericLimits<float>::max();
CSSPixels width;
if (should_treat_width_as_auto(box, m_available_space_for_items->space) || computed_width.is_fit_content())
width = calculate_fit_content_width(box, m_available_space_for_items->space);
else if (computed_width.is_min_content())
width = calculate_min_content_width(box);
else if (computed_width.is_max_content())
width = calculate_max_content_width(box);
return css_clamp(width, clamp_min, clamp_max);
}
CSSPixels FlexFormattingContext::calculate_min_content_main_size(FlexItem const& item) const
{
if (is_row_layout()) {
return calculate_min_content_width(item.box);
}
auto available_space = m_state.get(item.box).available_inner_space_or_constraints_from(m_available_space_for_items->space);
if (available_space.width.is_indefinite()) {
available_space.width = AvailableSize::make_definite(calculate_width_to_use_when_determining_intrinsic_height_of_item(item));
}
return calculate_min_content_height(item.box, available_space.width.to_px_or_zero());
}
CSSPixels FlexFormattingContext::calculate_max_content_main_size(FlexItem const& item) const
{
if (is_row_layout()) {
return calculate_max_content_width(item.box);
}
auto available_space = m_state.get(item.box).available_inner_space_or_constraints_from(m_available_space_for_items->space);
if (available_space.width.is_indefinite()) {
available_space.width = AvailableSize::make_definite(calculate_width_to_use_when_determining_intrinsic_height_of_item(item));
}
return calculate_max_content_height(item.box, available_space.width.to_px_or_zero());
}
CSSPixels FlexFormattingContext::calculate_fit_content_main_size(FlexItem const& item) const
LibWeb: Express intrinsic size layout via size constraints Previously, we had three layout modes: - Normal: - Everything uses the computed values from CSS. - MinContent: - Containing blocks act as if they have 0 width. - All line breaking opportunities are taken. - MaxContent: - Containing blocks act as if they have infinite width. - Only forced line breaks are accepted. The above was based on a set of misunderstandings of CSS sizing. A major problem with the above was that *all* containing blocks behaved differently during intrinsic size layout, not just the relevant one. With this patch there are only two layout modes: - Normal: - Everything uses the computed values from CSS. - IntrinsicSizeDetermination: - One or more boxes have size constraints applied. There are two size constraints per layout box, set here: - FormattingState::NodeState::width_constraint - FormattingState::NodeState::height_constraint They are of type SizeConstraint and can be one of None, MinContent, or MaxContent. The default is None. When performing an IntrinsicSizeDetermination layout, we now assign a size constraint to the box we're trying to determine the intrinsic size of, which is then honored by using two new helpers to query the dimensions of containing blocks: - FormattingContext::containing_block_width_for(Box) - FormattingContext::containing_block_height_for(Box) If there's a relevant constraint in effect on the Box, the size of its containing block is adjusted accordingly. This is essentially an implementation of the "available space" constraints from CSS-SIZING-3. I'm sure some things will break from this, and we'll have to deal with that separately. Spec: https://drafts.csswg.org/css-sizing-3/#available
2022-07-09 16:17:47 +03:00
{
if (is_row_layout())
return calculate_fit_content_width(item.box, m_available_space_for_items->space);
return calculate_fit_content_height(item.box, m_available_space_for_items->space);
LibWeb: Express intrinsic size layout via size constraints Previously, we had three layout modes: - Normal: - Everything uses the computed values from CSS. - MinContent: - Containing blocks act as if they have 0 width. - All line breaking opportunities are taken. - MaxContent: - Containing blocks act as if they have infinite width. - Only forced line breaks are accepted. The above was based on a set of misunderstandings of CSS sizing. A major problem with the above was that *all* containing blocks behaved differently during intrinsic size layout, not just the relevant one. With this patch there are only two layout modes: - Normal: - Everything uses the computed values from CSS. - IntrinsicSizeDetermination: - One or more boxes have size constraints applied. There are two size constraints per layout box, set here: - FormattingState::NodeState::width_constraint - FormattingState::NodeState::height_constraint They are of type SizeConstraint and can be one of None, MinContent, or MaxContent. The default is None. When performing an IntrinsicSizeDetermination layout, we now assign a size constraint to the box we're trying to determine the intrinsic size of, which is then honored by using two new helpers to query the dimensions of containing blocks: - FormattingContext::containing_block_width_for(Box) - FormattingContext::containing_block_height_for(Box) If there's a relevant constraint in effect on the Box, the size of its containing block is adjusted accordingly. This is essentially an implementation of the "available space" constraints from CSS-SIZING-3. I'm sure some things will break from this, and we'll have to deal with that separately. Spec: https://drafts.csswg.org/css-sizing-3/#available
2022-07-09 16:17:47 +03:00
}
CSSPixels FlexFormattingContext::calculate_fit_content_cross_size(FlexItem const& item) const
LibWeb: Express intrinsic size layout via size constraints Previously, we had three layout modes: - Normal: - Everything uses the computed values from CSS. - MinContent: - Containing blocks act as if they have 0 width. - All line breaking opportunities are taken. - MaxContent: - Containing blocks act as if they have infinite width. - Only forced line breaks are accepted. The above was based on a set of misunderstandings of CSS sizing. A major problem with the above was that *all* containing blocks behaved differently during intrinsic size layout, not just the relevant one. With this patch there are only two layout modes: - Normal: - Everything uses the computed values from CSS. - IntrinsicSizeDetermination: - One or more boxes have size constraints applied. There are two size constraints per layout box, set here: - FormattingState::NodeState::width_constraint - FormattingState::NodeState::height_constraint They are of type SizeConstraint and can be one of None, MinContent, or MaxContent. The default is None. When performing an IntrinsicSizeDetermination layout, we now assign a size constraint to the box we're trying to determine the intrinsic size of, which is then honored by using two new helpers to query the dimensions of containing blocks: - FormattingContext::containing_block_width_for(Box) - FormattingContext::containing_block_height_for(Box) If there's a relevant constraint in effect on the Box, the size of its containing block is adjusted accordingly. This is essentially an implementation of the "available space" constraints from CSS-SIZING-3. I'm sure some things will break from this, and we'll have to deal with that separately. Spec: https://drafts.csswg.org/css-sizing-3/#available
2022-07-09 16:17:47 +03:00
{
if (!is_row_layout())
return calculate_fit_content_width(item.box, m_available_space_for_items->space);
return calculate_fit_content_height(item.box, m_available_space_for_items->space);
LibWeb: Express intrinsic size layout via size constraints Previously, we had three layout modes: - Normal: - Everything uses the computed values from CSS. - MinContent: - Containing blocks act as if they have 0 width. - All line breaking opportunities are taken. - MaxContent: - Containing blocks act as if they have infinite width. - Only forced line breaks are accepted. The above was based on a set of misunderstandings of CSS sizing. A major problem with the above was that *all* containing blocks behaved differently during intrinsic size layout, not just the relevant one. With this patch there are only two layout modes: - Normal: - Everything uses the computed values from CSS. - IntrinsicSizeDetermination: - One or more boxes have size constraints applied. There are two size constraints per layout box, set here: - FormattingState::NodeState::width_constraint - FormattingState::NodeState::height_constraint They are of type SizeConstraint and can be one of None, MinContent, or MaxContent. The default is None. When performing an IntrinsicSizeDetermination layout, we now assign a size constraint to the box we're trying to determine the intrinsic size of, which is then honored by using two new helpers to query the dimensions of containing blocks: - FormattingContext::containing_block_width_for(Box) - FormattingContext::containing_block_height_for(Box) If there's a relevant constraint in effect on the Box, the size of its containing block is adjusted accordingly. This is essentially an implementation of the "available space" constraints from CSS-SIZING-3. I'm sure some things will break from this, and we'll have to deal with that separately. Spec: https://drafts.csswg.org/css-sizing-3/#available
2022-07-09 16:17:47 +03:00
}
CSSPixels FlexFormattingContext::calculate_min_content_cross_size(FlexItem const& item) const
{
if (is_row_layout()) {
auto available_space = m_state.get(item.box).available_inner_space_or_constraints_from(m_available_space_for_flex_container->space);
if (available_space.width.is_indefinite()) {
available_space.width = AvailableSize::make_definite(calculate_width_to_use_when_determining_intrinsic_height_of_item(item));
}
return calculate_min_content_height(item.box, available_space.width.to_px_or_zero());
}
return calculate_min_content_width(item.box);
}
CSSPixels FlexFormattingContext::calculate_max_content_cross_size(FlexItem const& item) const
{
if (is_row_layout()) {
auto available_space = m_state.get(item.box).available_inner_space_or_constraints_from(m_available_space_for_flex_container->space);
if (available_space.width.is_indefinite()) {
available_space.width = AvailableSize::make_definite(calculate_width_to_use_when_determining_intrinsic_height_of_item(item));
}
return calculate_max_content_height(item.box, available_space.width.to_px_or_zero());
}
return calculate_max_content_width(item.box);
}
// https://drafts.csswg.org/css-flexbox-1/#stretched
bool FlexFormattingContext::flex_item_is_stretched(FlexItem const& item) const
{
auto alignment = alignment_for_item(item.box);
if (alignment != CSS::AlignItems::Stretch)
return false;
// If the cross size property of the flex item computes to auto, and neither of the cross-axis margins are auto, the flex item is stretched.
auto const& computed_cross_size = is_row_layout() ? item.box->computed_values().height() : item.box->computed_values().width();
return computed_cross_size.is_auto() && !item.margins.cross_before_is_auto && !item.margins.cross_after_is_auto;
}
CSS::Size const& FlexFormattingContext::computed_main_size(Box const& box) const
{
return is_row_layout() ? box.computed_values().width() : box.computed_values().height();
}
CSS::Size const& FlexFormattingContext::computed_main_min_size(Box const& box) const
{
return is_row_layout() ? box.computed_values().min_width() : box.computed_values().min_height();
}
CSS::Size const& FlexFormattingContext::computed_main_max_size(Box const& box) const
{
return is_row_layout() ? box.computed_values().max_width() : box.computed_values().max_height();
}
CSS::Size const& FlexFormattingContext::computed_cross_size(Box const& box) const
{
return !is_row_layout() ? box.computed_values().width() : box.computed_values().height();
}
CSS::Size const& FlexFormattingContext::computed_cross_min_size(Box const& box) const
{
return !is_row_layout() ? box.computed_values().min_width() : box.computed_values().min_height();
}
CSS::Size const& FlexFormattingContext::computed_cross_max_size(Box const& box) const
{
return !is_row_layout() ? box.computed_values().max_width() : box.computed_values().max_height();
}
// https://drafts.csswg.org/css-flexbox-1/#algo-cross-margins
void FlexFormattingContext::resolve_cross_axis_auto_margins()
{
for (auto& line : m_flex_lines) {
for (auto& item : line.items) {
// If a flex item has auto cross-axis margins:
if (!item.margins.cross_before_is_auto && !item.margins.cross_after_is_auto)
continue;
// If its outer cross size (treating those auto margins as zero) is less than the cross size of its flex line,
// distribute the difference in those sizes equally to the auto margins.
auto outer_cross_size = item.cross_size.value() + item.padding.cross_before + item.padding.cross_after + item.borders.cross_before + item.borders.cross_after;
if (outer_cross_size < line.cross_size) {
CSSPixels remainder = line.cross_size - outer_cross_size;
if (item.margins.cross_before_is_auto && item.margins.cross_after_is_auto) {
item.margins.cross_before = remainder / 2.0;
item.margins.cross_after = remainder / 2.0;
} else if (item.margins.cross_before_is_auto) {
item.margins.cross_before = remainder;
} else {
item.margins.cross_after = remainder;
}
} else {
// FIXME: Otherwise, if the block-start or inline-start margin (whichever is in the cross axis) is auto, set it to zero.
// Set the opposite margin so that the outer cross size of the item equals the cross size of its flex line.
}
}
}
}
// https://drafts.csswg.org/css-flexbox-1/#algo-line-stretch
void FlexFormattingContext::handle_align_content_stretch()
{
// If the flex container has a definite cross size,
if (!has_definite_cross_size(flex_container()))
return;
// align-content is stretch,
if (flex_container().computed_values().align_content() != CSS::AlignContent::Stretch)
return;
// and the sum of the flex lines' cross sizes is less than the flex containers inner cross size,
CSSPixels sum_of_flex_line_cross_sizes = 0;
for (auto& line : m_flex_lines)
sum_of_flex_line_cross_sizes += line.cross_size;
// CSS-FLEXBOX-2: Account for gap between flex lines.
sum_of_flex_line_cross_sizes += cross_gap() * (m_flex_lines.size() - 1);
if (sum_of_flex_line_cross_sizes >= inner_cross_size(flex_container()))
return;
// increase the cross size of each flex line by equal amounts
// such that the sum of their cross sizes exactly equals the flex containers inner cross size.
CSSPixels remainder = inner_cross_size(flex_container()) - sum_of_flex_line_cross_sizes;
CSSPixels extra_per_line = remainder / m_flex_lines.size();
for (auto& line : m_flex_lines)
line.cross_size += extra_per_line;
}
// https://drafts.csswg.org/css-flexbox-1/#abspos-items
CSSPixelPoint FlexFormattingContext::calculate_static_position(Box const& box) const
{
// The cross-axis edges of the static-position rectangle of an absolutely-positioned child
// of a flex container are the content edges of the flex container.
CSSPixels cross_offset = 0;
CSSPixels half_line_size = inner_cross_size(flex_container()) / 2;
auto const& box_state = m_state.get(box);
CSSPixels cross_margin_before = is_row_layout() ? box_state.margin_top : box_state.margin_left;
CSSPixels cross_margin_after = is_row_layout() ? box_state.margin_bottom : box_state.margin_right;
CSSPixels cross_border_before = is_row_layout() ? box_state.border_top : box_state.border_left;
CSSPixels cross_border_after = is_row_layout() ? box_state.border_bottom : box_state.border_right;
CSSPixels cross_padding_after = is_row_layout() ? box_state.padding_bottom : box_state.padding_right;
CSSPixels main_border_before = is_row_layout() ? box_state.border_left : box_state.border_top;
CSSPixels main_border_after = is_row_layout() ? box_state.border_right : box_state.border_bottom;
switch (alignment_for_item(box)) {
case CSS::AlignItems::Baseline:
// FIXME: Implement this
// Fallthrough
case CSS::AlignItems::Start:
case CSS::AlignItems::FlexStart:
case CSS::AlignItems::SelfStart:
case CSS::AlignItems::Stretch:
case CSS::AlignItems::Normal:
cross_offset = -half_line_size + cross_margin_before;
break;
case CSS::AlignItems::End:
case CSS::AlignItems::SelfEnd:
case CSS::AlignItems::FlexEnd:
cross_offset = half_line_size - inner_cross_size(box) - cross_margin_after - cross_border_after - cross_padding_after;
break;
case CSS::AlignItems::Center:
cross_offset = -((inner_cross_size(box) + cross_border_before + cross_border_after) / 2.0);
break;
default:
break;
}
cross_offset += inner_cross_size(flex_container()) / 2.0;
// The main-axis edges of the static-position rectangle are where the margin edges of the child
// would be positioned if it were the sole flex item in the flex container,
// assuming both the child and the flex container were fixed-size boxes of their used size.
// (For this purpose, auto margins are treated as zero.
bool pack_from_end = true;
CSSPixels main_offset = 0;
switch (flex_container().computed_values().justify_content()) {
case CSS::JustifyContent::Start:
pack_from_end = false;
break;
case CSS::JustifyContent::FlexStart:
case CSS::JustifyContent::SpaceBetween:
pack_from_end = is_direction_reverse();
break;
case CSS::JustifyContent::End:
pack_from_end = true;
break;
case CSS::JustifyContent::FlexEnd:
pack_from_end = !is_direction_reverse();
break;
case CSS::JustifyContent::Center:
case CSS::JustifyContent::SpaceAround:
case CSS::JustifyContent::SpaceEvenly:
pack_from_end = false;
main_offset = (inner_main_size(flex_container()) - inner_main_size(box) - main_border_before - main_border_after) / 2.0;
break;
}
// NOTE: Next, we add the flex container's padding since abspos boxes are placed relative to the padding edge
// of their abspos containing block.
if (pack_from_end) {
main_offset += is_row_layout() ? m_flex_container_state.padding_right : m_flex_container_state.padding_bottom;
} else {
main_offset += is_row_layout() ? m_flex_container_state.padding_left : m_flex_container_state.padding_top;
}
if (pack_from_end)
main_offset += inner_main_size(flex_container()) - inner_main_size(box) - main_border_before - main_border_after;
auto static_position_offset = is_row_layout() ? CSSPixelPoint { main_offset, cross_offset } : CSSPixelPoint { cross_offset, main_offset };
auto absolute_position_of_flex_container = absolute_content_rect(flex_container()).location();
auto absolute_position_of_abspos_containing_block = absolute_content_rect(*box.containing_block()).location();
auto diff = absolute_position_of_flex_container - absolute_position_of_abspos_containing_block;
return static_position_offset + diff;
}
double FlexFormattingContext::FlexLine::sum_of_flex_factor_of_unfrozen_items() const
{
double sum = 0;
for (auto const& item : items) {
if (!item.frozen)
sum += item.flex_factor.value();
}
return sum;
}
double FlexFormattingContext::FlexLine::sum_of_scaled_flex_shrink_factor_of_unfrozen_items() const
{
double sum = 0;
for (auto const& item : items) {
if (!item.frozen)
sum += item.scaled_flex_shrink_factor;
}
return sum;
}
CSSPixels FlexFormattingContext::main_gap() const
{
auto const& computed_values = flex_container().computed_values();
auto gap = is_row_layout() ? computed_values.column_gap() : computed_values.row_gap();
return gap.to_px(flex_container(), inner_main_size(flex_container()));
}
CSSPixels FlexFormattingContext::cross_gap() const
{
auto const& computed_values = flex_container().computed_values();
auto gap = is_row_layout() ? computed_values.row_gap() : computed_values.column_gap();
return gap.to_px(flex_container(), inner_cross_size(flex_container()));
}
}