ladybird/Userland/Libraries/LibJS/Bytecode/Op.cpp

538 lines
19 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, Linus Groh <linusg@serenityos.org>
* Copyright (c) 2021, Gunnar Beutner <gbeutner@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <LibJS/AST.h>
#include <LibJS/Bytecode/Interpreter.h>
#include <LibJS/Bytecode/Op.h>
#include <LibJS/Runtime/Array.h>
#include <LibJS/Runtime/BigInt.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/LexicalEnvironment.h>
#include <LibJS/Runtime/ScopeObject.h>
#include <LibJS/Runtime/ScriptFunction.h>
#include <LibJS/Runtime/Value.h>
namespace JS::Bytecode {
String Instruction::to_string(Bytecode::Executable const& executable) const
{
#define __BYTECODE_OP(op) \
case Instruction::Type::op: \
return static_cast<Bytecode::Op::op const&>(*this).to_string_impl(executable);
switch (type()) {
ENUMERATE_BYTECODE_OPS(__BYTECODE_OP)
default:
VERIFY_NOT_REACHED();
}
#undef __BYTECODE_OP
}
}
namespace JS::Bytecode::Op {
void Load::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.accumulator() = interpreter.reg(m_src);
}
void LoadImmediate::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.accumulator() = m_value;
}
void Store::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.reg(m_dst) = interpreter.accumulator();
}
static Value abstract_inequals(GlobalObject& global_object, Value src1, Value src2)
{
return Value(!abstract_eq(global_object, src1, src2));
}
static Value abstract_equals(GlobalObject& global_object, Value src1, Value src2)
{
return Value(abstract_eq(global_object, src1, src2));
}
static Value typed_inequals(GlobalObject&, Value src1, Value src2)
{
return Value(!strict_eq(src1, src2));
}
static Value typed_equals(GlobalObject&, Value src1, Value src2)
{
return Value(strict_eq(src1, src2));
}
#define JS_DEFINE_COMMON_BINARY_OP(OpTitleCase, op_snake_case) \
void OpTitleCase::execute_impl(Bytecode::Interpreter& interpreter) const \
{ \
auto lhs = interpreter.reg(m_lhs_reg); \
auto rhs = interpreter.accumulator(); \
interpreter.accumulator() = op_snake_case(interpreter.global_object(), lhs, rhs); \
} \
String OpTitleCase::to_string_impl(Bytecode::Executable const&) const \
{ \
return String::formatted(#OpTitleCase " {}", m_lhs_reg); \
}
JS_ENUMERATE_COMMON_BINARY_OPS(JS_DEFINE_COMMON_BINARY_OP)
static Value not_(GlobalObject&, Value value)
{
return Value(!value.to_boolean());
}
static Value typeof_(GlobalObject& global_object, Value value)
{
return js_string(global_object.vm(), value.typeof());
}
#define JS_DEFINE_COMMON_UNARY_OP(OpTitleCase, op_snake_case) \
void OpTitleCase::execute_impl(Bytecode::Interpreter& interpreter) const \
{ \
interpreter.accumulator() = op_snake_case(interpreter.global_object(), interpreter.accumulator()); \
} \
String OpTitleCase::to_string_impl(Bytecode::Executable const&) const \
{ \
return #OpTitleCase; \
}
JS_ENUMERATE_COMMON_UNARY_OPS(JS_DEFINE_COMMON_UNARY_OP)
void NewBigInt::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.accumulator() = js_bigint(interpreter.vm().heap(), m_bigint);
}
void NewArray::execute_impl(Bytecode::Interpreter& interpreter) const
{
Vector<Value> elements;
elements.ensure_capacity(m_element_count);
for (size_t i = 0; i < m_element_count; i++)
elements.append(interpreter.reg(m_elements[i]));
interpreter.accumulator() = Array::create_from(interpreter.global_object(), elements);
}
void NewString::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.accumulator() = js_string(interpreter.vm(), interpreter.current_executable().get_string(m_string));
}
void NewObject::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.accumulator() = Object::create(interpreter.global_object(), interpreter.global_object().object_prototype());
}
void ConcatString::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.reg(m_lhs) = add(interpreter.global_object(), interpreter.reg(m_lhs), interpreter.accumulator());
}
void GetVariable::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.accumulator() = interpreter.vm().get_variable(interpreter.current_executable().get_string(m_identifier), interpreter.global_object());
}
void SetVariable::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.vm().set_variable(interpreter.current_executable().get_string(m_identifier), interpreter.accumulator(), interpreter.global_object());
}
void GetById::execute_impl(Bytecode::Interpreter& interpreter) const
{
if (auto* object = interpreter.accumulator().to_object(interpreter.global_object()))
interpreter.accumulator() = object->get(interpreter.current_executable().get_string(m_property)).value_or(js_undefined());
}
void PutById::execute_impl(Bytecode::Interpreter& interpreter) const
{
if (auto* object = interpreter.reg(m_base).to_object(interpreter.global_object()))
object->put(interpreter.current_executable().get_string(m_property), interpreter.accumulator());
}
void Jump::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.jump(*m_true_target);
}
void Jump::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
{
if (m_true_target.has_value() && &m_true_target->block() == &from)
m_true_target = Label { to };
if (m_false_target.has_value() && &m_false_target->block() == &from)
m_false_target = Label { to };
}
void JumpConditional::execute_impl(Bytecode::Interpreter& interpreter) const
{
VERIFY(m_true_target.has_value());
VERIFY(m_false_target.has_value());
auto result = interpreter.accumulator();
if (result.to_boolean())
interpreter.jump(m_true_target.value());
else
interpreter.jump(m_false_target.value());
}
void JumpNullish::execute_impl(Bytecode::Interpreter& interpreter) const
{
VERIFY(m_true_target.has_value());
VERIFY(m_false_target.has_value());
auto result = interpreter.accumulator();
if (result.is_nullish())
interpreter.jump(m_true_target.value());
else
interpreter.jump(m_false_target.value());
}
void Call::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto callee = interpreter.reg(m_callee);
if (!callee.is_function()) {
TODO();
}
auto& function = callee.as_function();
auto this_value = interpreter.reg(m_this_value);
Value return_value;
if (m_argument_count == 0 && m_type == CallType::Call) {
return_value = interpreter.vm().call(function, this_value);
} else {
MarkedValueList argument_values { interpreter.vm().heap() };
for (size_t i = 0; i < m_argument_count; ++i) {
argument_values.append(interpreter.reg(m_arguments[i]));
}
if (m_type == CallType::Call)
return_value = interpreter.vm().call(function, this_value, move(argument_values));
else
return_value = interpreter.vm().construct(function, function, move(argument_values));
}
interpreter.accumulator() = return_value;
}
void NewFunction::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto& vm = interpreter.vm();
interpreter.accumulator() = ScriptFunction::create(interpreter.global_object(), m_function_node.name(), m_function_node.body(), m_function_node.parameters(), m_function_node.function_length(), vm.current_scope(), m_function_node.kind(), m_function_node.is_strict_mode(), m_function_node.is_arrow_function());
}
void Return::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.do_return(interpreter.accumulator().value_or(js_undefined()));
}
void Increment::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto old_value = interpreter.accumulator().to_numeric(interpreter.global_object());
if (interpreter.vm().exception())
return;
if (old_value.is_number())
interpreter.accumulator() = Value(old_value.as_double() + 1);
else
interpreter.accumulator() = js_bigint(interpreter.vm().heap(), old_value.as_bigint().big_integer().plus(Crypto::SignedBigInteger { 1 }));
}
void Decrement::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto old_value = interpreter.accumulator().to_numeric(interpreter.global_object());
if (interpreter.vm().exception())
return;
if (old_value.is_number())
interpreter.accumulator() = Value(old_value.as_double() - 1);
else
interpreter.accumulator() = js_bigint(interpreter.vm().heap(), old_value.as_bigint().big_integer().minus(Crypto::SignedBigInteger { 1 }));
}
void Throw::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.vm().throw_exception(interpreter.global_object(), interpreter.accumulator());
}
void EnterUnwindContext::execute_impl(Bytecode::Interpreter& interpreter) const
LibJS: Implement bytecode generation for try..catch..finally EnterUnwindContext pushes an unwind context (exception handler and/or finalizer) onto a stack. LeaveUnwindContext pops the unwind context from that stack. Upon return to the interpreter loop we check whether the VM has an exception pending. If no unwind context is available we return from the loop. If an exception handler is available we clear the VM's exception, put the exception value into the accumulator register, clear the unwind context's handler and jump to the handler. If no handler is available but a finalizer is available we save the exception value + metadata (for later use by ContinuePendingUnwind), clear the VM's exception, pop the unwind context and jump to the finalizer. ContinuePendingUnwind checks whether a saved exception is available. If no saved exception is available it jumps to the resume label. Otherwise it stores the exception into the VM. The Jump after LeaveUnwindContext could be integrated into the LeaveUnwindContext instruction. I've kept them separate for now to make the bytecode more readable. > try { 1; throw "x" } catch (e) { 2 } finally { 3 }; 4 1: [ 0] EnterScope [ 10] EnterUnwindContext handler:@4 finalizer:@3 [ 38] EnterScope [ 48] LoadImmediate 1 [ 60] NewString 1 ("x") [ 70] Throw <for non-terminated blocks: insert LeaveUnwindContext + Jump @3 here> 2: [ 0] LoadImmediate 4 3: [ 0] EnterScope [ 10] LoadImmediate 3 [ 28] ContinuePendingUnwind resume:@2 4: [ 0] SetVariable 0 (e) [ 10] EnterScope [ 20] LoadImmediate 2 [ 38] LeaveUnwindContext [ 3c] Jump @3 String Table: 0: e 1: x
2021-06-10 16:04:38 +03:00
{
interpreter.enter_unwind_context(m_handler_target, m_finalizer_target);
interpreter.jump(m_entry_point);
LibJS: Implement bytecode generation for try..catch..finally EnterUnwindContext pushes an unwind context (exception handler and/or finalizer) onto a stack. LeaveUnwindContext pops the unwind context from that stack. Upon return to the interpreter loop we check whether the VM has an exception pending. If no unwind context is available we return from the loop. If an exception handler is available we clear the VM's exception, put the exception value into the accumulator register, clear the unwind context's handler and jump to the handler. If no handler is available but a finalizer is available we save the exception value + metadata (for later use by ContinuePendingUnwind), clear the VM's exception, pop the unwind context and jump to the finalizer. ContinuePendingUnwind checks whether a saved exception is available. If no saved exception is available it jumps to the resume label. Otherwise it stores the exception into the VM. The Jump after LeaveUnwindContext could be integrated into the LeaveUnwindContext instruction. I've kept them separate for now to make the bytecode more readable. > try { 1; throw "x" } catch (e) { 2 } finally { 3 }; 4 1: [ 0] EnterScope [ 10] EnterUnwindContext handler:@4 finalizer:@3 [ 38] EnterScope [ 48] LoadImmediate 1 [ 60] NewString 1 ("x") [ 70] Throw <for non-terminated blocks: insert LeaveUnwindContext + Jump @3 here> 2: [ 0] LoadImmediate 4 3: [ 0] EnterScope [ 10] LoadImmediate 3 [ 28] ContinuePendingUnwind resume:@2 4: [ 0] SetVariable 0 (e) [ 10] EnterScope [ 20] LoadImmediate 2 [ 38] LeaveUnwindContext [ 3c] Jump @3 String Table: 0: e 1: x
2021-06-10 16:04:38 +03:00
}
void EnterUnwindContext::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
{
if (&m_entry_point.block() == &from)
m_entry_point = Label { to };
if (m_handler_target.has_value() && &m_handler_target->block() == &from)
m_handler_target = Label { to };
if (m_finalizer_target.has_value() && &m_finalizer_target->block() == &from)
m_finalizer_target = Label { to };
}
void LeaveUnwindContext::execute_impl(Bytecode::Interpreter& interpreter) const
LibJS: Implement bytecode generation for try..catch..finally EnterUnwindContext pushes an unwind context (exception handler and/or finalizer) onto a stack. LeaveUnwindContext pops the unwind context from that stack. Upon return to the interpreter loop we check whether the VM has an exception pending. If no unwind context is available we return from the loop. If an exception handler is available we clear the VM's exception, put the exception value into the accumulator register, clear the unwind context's handler and jump to the handler. If no handler is available but a finalizer is available we save the exception value + metadata (for later use by ContinuePendingUnwind), clear the VM's exception, pop the unwind context and jump to the finalizer. ContinuePendingUnwind checks whether a saved exception is available. If no saved exception is available it jumps to the resume label. Otherwise it stores the exception into the VM. The Jump after LeaveUnwindContext could be integrated into the LeaveUnwindContext instruction. I've kept them separate for now to make the bytecode more readable. > try { 1; throw "x" } catch (e) { 2 } finally { 3 }; 4 1: [ 0] EnterScope [ 10] EnterUnwindContext handler:@4 finalizer:@3 [ 38] EnterScope [ 48] LoadImmediate 1 [ 60] NewString 1 ("x") [ 70] Throw <for non-terminated blocks: insert LeaveUnwindContext + Jump @3 here> 2: [ 0] LoadImmediate 4 3: [ 0] EnterScope [ 10] LoadImmediate 3 [ 28] ContinuePendingUnwind resume:@2 4: [ 0] SetVariable 0 (e) [ 10] EnterScope [ 20] LoadImmediate 2 [ 38] LeaveUnwindContext [ 3c] Jump @3 String Table: 0: e 1: x
2021-06-10 16:04:38 +03:00
{
interpreter.leave_unwind_context();
}
void ContinuePendingUnwind::execute_impl(Bytecode::Interpreter& interpreter) const
LibJS: Implement bytecode generation for try..catch..finally EnterUnwindContext pushes an unwind context (exception handler and/or finalizer) onto a stack. LeaveUnwindContext pops the unwind context from that stack. Upon return to the interpreter loop we check whether the VM has an exception pending. If no unwind context is available we return from the loop. If an exception handler is available we clear the VM's exception, put the exception value into the accumulator register, clear the unwind context's handler and jump to the handler. If no handler is available but a finalizer is available we save the exception value + metadata (for later use by ContinuePendingUnwind), clear the VM's exception, pop the unwind context and jump to the finalizer. ContinuePendingUnwind checks whether a saved exception is available. If no saved exception is available it jumps to the resume label. Otherwise it stores the exception into the VM. The Jump after LeaveUnwindContext could be integrated into the LeaveUnwindContext instruction. I've kept them separate for now to make the bytecode more readable. > try { 1; throw "x" } catch (e) { 2 } finally { 3 }; 4 1: [ 0] EnterScope [ 10] EnterUnwindContext handler:@4 finalizer:@3 [ 38] EnterScope [ 48] LoadImmediate 1 [ 60] NewString 1 ("x") [ 70] Throw <for non-terminated blocks: insert LeaveUnwindContext + Jump @3 here> 2: [ 0] LoadImmediate 4 3: [ 0] EnterScope [ 10] LoadImmediate 3 [ 28] ContinuePendingUnwind resume:@2 4: [ 0] SetVariable 0 (e) [ 10] EnterScope [ 20] LoadImmediate 2 [ 38] LeaveUnwindContext [ 3c] Jump @3 String Table: 0: e 1: x
2021-06-10 16:04:38 +03:00
{
interpreter.continue_pending_unwind(m_resume_target);
}
void ContinuePendingUnwind::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
{
if (&m_resume_target.block() == &from)
m_resume_target = Label { to };
}
void PushLexicalEnvironment::execute_impl(Bytecode::Interpreter& interpreter) const
{
HashMap<FlyString, Variable> resolved_variables;
for (auto& it : m_variables)
resolved_variables.set(interpreter.current_executable().get_string(it.key), it.value);
auto* block_lexical_environment = interpreter.vm().heap().allocate<LexicalEnvironment>(interpreter.global_object(), move(resolved_variables), interpreter.vm().current_scope());
interpreter.vm().call_frame().scope = block_lexical_environment;
}
void Yield::execute_impl(Bytecode::Interpreter& interpreter) const
{
auto yielded_value = interpreter.accumulator().value_or(js_undefined());
auto object = JS::Object::create(interpreter.global_object(), nullptr);
object->put("result", yielded_value);
if (m_continuation_label.has_value())
object->put("continuation", Value(static_cast<double>(reinterpret_cast<u64>(&m_continuation_label->block()))));
else
object->put("continuation", Value(0));
interpreter.do_return(object);
}
void Yield::replace_references_impl(BasicBlock const& from, BasicBlock const& to)
{
if (m_continuation_label.has_value() && &m_continuation_label->block() == &from)
m_continuation_label = Label { to };
}
void GetByValue::execute_impl(Bytecode::Interpreter& interpreter) const
{
if (auto* object = interpreter.reg(m_base).to_object(interpreter.global_object())) {
auto property_key = interpreter.accumulator().to_property_key(interpreter.global_object());
if (interpreter.vm().exception())
return;
interpreter.accumulator() = object->get(property_key).value_or(js_undefined());
}
}
void PutByValue::execute_impl(Bytecode::Interpreter& interpreter) const
{
if (auto* object = interpreter.reg(m_base).to_object(interpreter.global_object())) {
auto property_key = interpreter.reg(m_property).to_property_key(interpreter.global_object());
if (interpreter.vm().exception())
return;
object->put(property_key, interpreter.accumulator());
}
}
void LoadArgument::execute_impl(Bytecode::Interpreter& interpreter) const
{
interpreter.accumulator() = interpreter.vm().argument(m_index);
}
String Load::to_string_impl(Bytecode::Executable const&) const
{
return String::formatted("Load {}", m_src);
}
String LoadImmediate::to_string_impl(Bytecode::Executable const&) const
{
return String::formatted("LoadImmediate {}", m_value);
}
String Store::to_string_impl(Bytecode::Executable const&) const
{
return String::formatted("Store {}", m_dst);
}
String NewBigInt::to_string_impl(Bytecode::Executable const&) const
{
return String::formatted("NewBigInt \"{}\"", m_bigint.to_base10());
}
String NewArray::to_string_impl(Bytecode::Executable const&) const
{
StringBuilder builder;
builder.append("NewArray");
if (m_element_count != 0) {
builder.append(" [");
for (size_t i = 0; i < m_element_count; ++i) {
builder.appendff("{}", m_elements[i]);
if (i != m_element_count - 1)
builder.append(',');
}
builder.append(']');
}
return builder.to_string();
}
String NewString::to_string_impl(Bytecode::Executable const& executable) const
{
return String::formatted("NewString {} (\"{}\")", m_string, executable.string_table->get(m_string));
}
String NewObject::to_string_impl(Bytecode::Executable const&) const
{
return "NewObject";
}
String ConcatString::to_string_impl(Bytecode::Executable const&) const
{
return String::formatted("ConcatString {}", m_lhs);
}
String GetVariable::to_string_impl(Bytecode::Executable const& executable) const
{
return String::formatted("GetVariable {} ({})", m_identifier, executable.string_table->get(m_identifier));
}
String SetVariable::to_string_impl(Bytecode::Executable const& executable) const
{
return String::formatted("SetVariable {} ({})", m_identifier, executable.string_table->get(m_identifier));
}
String PutById::to_string_impl(Bytecode::Executable const& executable) const
{
return String::formatted("PutById base:{}, property:{} ({})", m_base, m_property, executable.string_table->get(m_property));
}
String GetById::to_string_impl(Bytecode::Executable const& executable) const
{
return String::formatted("GetById {} ({})", m_property, executable.string_table->get(m_property));
}
String Jump::to_string_impl(Bytecode::Executable const&) const
{
if (m_true_target.has_value())
return String::formatted("Jump {}", *m_true_target);
return String::formatted("Jump <empty>");
}
String JumpConditional::to_string_impl(Bytecode::Executable const&) const
{
auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : "<empty>";
auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : "<empty>";
return String::formatted("JumpConditional true:{} false:{}", true_string, false_string);
}
String JumpNullish::to_string_impl(Bytecode::Executable const&) const
{
auto true_string = m_true_target.has_value() ? String::formatted("{}", *m_true_target) : "<empty>";
auto false_string = m_false_target.has_value() ? String::formatted("{}", *m_false_target) : "<empty>";
return String::formatted("JumpNullish null:{} nonnull:{}", true_string, false_string);
}
String Call::to_string_impl(Bytecode::Executable const&) const
{
StringBuilder builder;
builder.appendff("Call callee:{}, this:{}", m_callee, m_this_value);
if (m_argument_count != 0) {
builder.append(", arguments:[");
for (size_t i = 0; i < m_argument_count; ++i) {
builder.appendff("{}", m_arguments[i]);
if (i != m_argument_count - 1)
builder.append(',');
}
builder.append(']');
}
return builder.to_string();
}
String NewFunction::to_string_impl(Bytecode::Executable const&) const
{
return "NewFunction";
}
String Return::to_string_impl(Bytecode::Executable const&) const
{
return "Return";
}
String Increment::to_string_impl(Bytecode::Executable const&) const
{
return "Increment";
}
String Decrement::to_string_impl(Bytecode::Executable const&) const
{
return "Decrement";
}
String Throw::to_string_impl(Bytecode::Executable const&) const
{
return "Throw";
}
String EnterUnwindContext::to_string_impl(Bytecode::Executable const&) const
LibJS: Implement bytecode generation for try..catch..finally EnterUnwindContext pushes an unwind context (exception handler and/or finalizer) onto a stack. LeaveUnwindContext pops the unwind context from that stack. Upon return to the interpreter loop we check whether the VM has an exception pending. If no unwind context is available we return from the loop. If an exception handler is available we clear the VM's exception, put the exception value into the accumulator register, clear the unwind context's handler and jump to the handler. If no handler is available but a finalizer is available we save the exception value + metadata (for later use by ContinuePendingUnwind), clear the VM's exception, pop the unwind context and jump to the finalizer. ContinuePendingUnwind checks whether a saved exception is available. If no saved exception is available it jumps to the resume label. Otherwise it stores the exception into the VM. The Jump after LeaveUnwindContext could be integrated into the LeaveUnwindContext instruction. I've kept them separate for now to make the bytecode more readable. > try { 1; throw "x" } catch (e) { 2 } finally { 3 }; 4 1: [ 0] EnterScope [ 10] EnterUnwindContext handler:@4 finalizer:@3 [ 38] EnterScope [ 48] LoadImmediate 1 [ 60] NewString 1 ("x") [ 70] Throw <for non-terminated blocks: insert LeaveUnwindContext + Jump @3 here> 2: [ 0] LoadImmediate 4 3: [ 0] EnterScope [ 10] LoadImmediate 3 [ 28] ContinuePendingUnwind resume:@2 4: [ 0] SetVariable 0 (e) [ 10] EnterScope [ 20] LoadImmediate 2 [ 38] LeaveUnwindContext [ 3c] Jump @3 String Table: 0: e 1: x
2021-06-10 16:04:38 +03:00
{
auto handler_string = m_handler_target.has_value() ? String::formatted("{}", *m_handler_target) : "<empty>";
auto finalizer_string = m_finalizer_target.has_value() ? String::formatted("{}", *m_finalizer_target) : "<empty>";
return String::formatted("EnterUnwindContext handler:{} finalizer:{} entry:{}", handler_string, finalizer_string, m_entry_point);
LibJS: Implement bytecode generation for try..catch..finally EnterUnwindContext pushes an unwind context (exception handler and/or finalizer) onto a stack. LeaveUnwindContext pops the unwind context from that stack. Upon return to the interpreter loop we check whether the VM has an exception pending. If no unwind context is available we return from the loop. If an exception handler is available we clear the VM's exception, put the exception value into the accumulator register, clear the unwind context's handler and jump to the handler. If no handler is available but a finalizer is available we save the exception value + metadata (for later use by ContinuePendingUnwind), clear the VM's exception, pop the unwind context and jump to the finalizer. ContinuePendingUnwind checks whether a saved exception is available. If no saved exception is available it jumps to the resume label. Otherwise it stores the exception into the VM. The Jump after LeaveUnwindContext could be integrated into the LeaveUnwindContext instruction. I've kept them separate for now to make the bytecode more readable. > try { 1; throw "x" } catch (e) { 2 } finally { 3 }; 4 1: [ 0] EnterScope [ 10] EnterUnwindContext handler:@4 finalizer:@3 [ 38] EnterScope [ 48] LoadImmediate 1 [ 60] NewString 1 ("x") [ 70] Throw <for non-terminated blocks: insert LeaveUnwindContext + Jump @3 here> 2: [ 0] LoadImmediate 4 3: [ 0] EnterScope [ 10] LoadImmediate 3 [ 28] ContinuePendingUnwind resume:@2 4: [ 0] SetVariable 0 (e) [ 10] EnterScope [ 20] LoadImmediate 2 [ 38] LeaveUnwindContext [ 3c] Jump @3 String Table: 0: e 1: x
2021-06-10 16:04:38 +03:00
}
String LeaveUnwindContext::to_string_impl(Bytecode::Executable const&) const
LibJS: Implement bytecode generation for try..catch..finally EnterUnwindContext pushes an unwind context (exception handler and/or finalizer) onto a stack. LeaveUnwindContext pops the unwind context from that stack. Upon return to the interpreter loop we check whether the VM has an exception pending. If no unwind context is available we return from the loop. If an exception handler is available we clear the VM's exception, put the exception value into the accumulator register, clear the unwind context's handler and jump to the handler. If no handler is available but a finalizer is available we save the exception value + metadata (for later use by ContinuePendingUnwind), clear the VM's exception, pop the unwind context and jump to the finalizer. ContinuePendingUnwind checks whether a saved exception is available. If no saved exception is available it jumps to the resume label. Otherwise it stores the exception into the VM. The Jump after LeaveUnwindContext could be integrated into the LeaveUnwindContext instruction. I've kept them separate for now to make the bytecode more readable. > try { 1; throw "x" } catch (e) { 2 } finally { 3 }; 4 1: [ 0] EnterScope [ 10] EnterUnwindContext handler:@4 finalizer:@3 [ 38] EnterScope [ 48] LoadImmediate 1 [ 60] NewString 1 ("x") [ 70] Throw <for non-terminated blocks: insert LeaveUnwindContext + Jump @3 here> 2: [ 0] LoadImmediate 4 3: [ 0] EnterScope [ 10] LoadImmediate 3 [ 28] ContinuePendingUnwind resume:@2 4: [ 0] SetVariable 0 (e) [ 10] EnterScope [ 20] LoadImmediate 2 [ 38] LeaveUnwindContext [ 3c] Jump @3 String Table: 0: e 1: x
2021-06-10 16:04:38 +03:00
{
return "LeaveUnwindContext";
}
String ContinuePendingUnwind::to_string_impl(Bytecode::Executable const&) const
LibJS: Implement bytecode generation for try..catch..finally EnterUnwindContext pushes an unwind context (exception handler and/or finalizer) onto a stack. LeaveUnwindContext pops the unwind context from that stack. Upon return to the interpreter loop we check whether the VM has an exception pending. If no unwind context is available we return from the loop. If an exception handler is available we clear the VM's exception, put the exception value into the accumulator register, clear the unwind context's handler and jump to the handler. If no handler is available but a finalizer is available we save the exception value + metadata (for later use by ContinuePendingUnwind), clear the VM's exception, pop the unwind context and jump to the finalizer. ContinuePendingUnwind checks whether a saved exception is available. If no saved exception is available it jumps to the resume label. Otherwise it stores the exception into the VM. The Jump after LeaveUnwindContext could be integrated into the LeaveUnwindContext instruction. I've kept them separate for now to make the bytecode more readable. > try { 1; throw "x" } catch (e) { 2 } finally { 3 }; 4 1: [ 0] EnterScope [ 10] EnterUnwindContext handler:@4 finalizer:@3 [ 38] EnterScope [ 48] LoadImmediate 1 [ 60] NewString 1 ("x") [ 70] Throw <for non-terminated blocks: insert LeaveUnwindContext + Jump @3 here> 2: [ 0] LoadImmediate 4 3: [ 0] EnterScope [ 10] LoadImmediate 3 [ 28] ContinuePendingUnwind resume:@2 4: [ 0] SetVariable 0 (e) [ 10] EnterScope [ 20] LoadImmediate 2 [ 38] LeaveUnwindContext [ 3c] Jump @3 String Table: 0: e 1: x
2021-06-10 16:04:38 +03:00
{
return String::formatted("ContinuePendingUnwind resume:{}", m_resume_target);
}
String PushLexicalEnvironment::to_string_impl(const Bytecode::Executable& executable) const
{
StringBuilder builder;
builder.append("PushLexicalEnvironment");
if (!m_variables.is_empty()) {
builder.append(" {");
Vector<String> names;
for (auto& it : m_variables)
names.append(executable.get_string(it.key));
builder.join(", ", names);
builder.append("}");
}
return builder.to_string();
}
String Yield::to_string_impl(Bytecode::Executable const&) const
{
if (m_continuation_label.has_value())
return String::formatted("Yield continuation:@{}", m_continuation_label->block().name());
return String::formatted("Yield return");
}
String GetByValue::to_string_impl(const Bytecode::Executable&) const
{
return String::formatted("GetByValue base:{}", m_base);
}
String PutByValue::to_string_impl(const Bytecode::Executable&) const
{
return String::formatted("PutByValue base:{}, property:{}", m_base, m_property);
}
String LoadArgument::to_string_impl(const Bytecode::Executable&) const
{
return String::formatted("LoadArgument {}", m_index);
}
}