ladybird/Kernel/Scheduler.cpp

267 lines
8.1 KiB
C++
Raw Normal View History

#include "Scheduler.h"
#include "Process.h"
#include "system.h"
//#define LOG_EVERY_CONTEXT_SWITCH
//#define SCHEDULER_DEBUG
static const dword time_slice = 5; // *10 = 50ms
Process* current;
static Process* s_colonel_process;
struct TaskRedirectionData {
word selector;
TSS32 tss;
};
static TaskRedirectionData s_redirection;
bool Scheduler::pick_next()
{
ASSERT_INTERRUPTS_DISABLED();
if (!current) {
// XXX: The first ever context_switch() goes to the idle process.
// This to setup a reliable place we can return to.
return context_switch(*s_colonel_process);
}
// Check and unblock processes whose wait conditions have been met.
Process::for_each([] (auto& process) {
if (process.state() == Process::BlockedSleep) {
if (process.wakeupTime() <= system.uptime)
process.unblock();
return true;
}
if (process.state() == Process::BlockedWait) {
auto* waitee = Process::from_pid(process.waitee());
if (!waitee) {
kprintf("waitee %u of %s(%u) reaped before I could wait?\n", process.waitee(), process.name().characters(), process.pid());
ASSERT_NOT_REACHED();
}
if (waitee->state() == Process::Dead) {
process.m_waitee_status = (waitee->m_termination_status << 8) | waitee->m_termination_signal;
process.unblock();
waitee->set_state(Process::Forgiven);
}
return true;
}
if (process.state() == Process::BlockedRead) {
ASSERT(process.m_fdBlockedOnRead != -1);
// FIXME: Block until the amount of data wanted is available.
if (process.m_file_descriptors[process.m_fdBlockedOnRead]->hasDataAvailableForRead())
process.unblock();
return true;
}
if (process.state() == Process::ExecPhase1) {
process.set_state(Process::ExecPhase2);
return true;
}
if (process.state() == Process::ExecPhase2) {
process.set_state(Process::Runnable);
return true;
}
// Forgive dead orphans.
if (process.state() == Process::Dead) {
if (!Process::from_pid(process.ppid()))
process.set_state(Process::Forgiven);
}
// Release the forgiven.
if (process.state() == Process::Forgiven) {
g_processes->remove(&process);
g_dead_processes->append(&process);
return true;
};
return true;
});
// Dispatch any pending signals.
// FIXME: Do we really need this to be a separate pass over the process list?
Process::for_each_not_in_state(Process::Dead, [] (auto& process) {
if (!process.has_unmasked_pending_signals())
return true;
// We know how to interrupt blocked processes, but if they are just executing
// at some random point in the kernel, let them continue. They'll be in userspace
// sooner or later and we can deliver the signal then.
// FIXME: Maybe we could check when returning from a syscall if there's a pending
// signal and dispatch it then and there? Would that be doable without the
// syscall effectively being "interrupted" despite having completed?
if (process.in_kernel() && !process.is_blocked())
return true;
process.dispatch_one_pending_signal();
if (process.is_blocked()) {
process.m_was_interrupted_while_blocked = true;
process.unblock();
}
return true;
});
#ifdef SCHEDULER_DEBUG
dbgprintf("Scheduler choices:\n");
for (auto* process = g_processes->head(); process; process = process->next()) {
//if (process->state() == Process::BlockedWait || process->state() == Process::BlockedSleep)
// continue;
dbgprintf("% 12s %s(%u) @ %w:%x\n", toString(process->state()), process->name().characters(), process->pid(), process->tss().cs, process->tss().eip);
}
#endif
auto* prevHead = g_processes->head();
for (;;) {
// Move head to tail.
g_processes->append(g_processes->removeHead());
auto* process = g_processes->head();
if (process->state() == Process::Runnable || process->state() == Process::Running) {
#ifdef SCHEDULER_DEBUG
dbgprintf("switch to %s(%u) @ %w:%x\n", process->name().characters(), process->pid(), process->tss().cs, process->tss().eip);
#endif
return context_switch(*process);
}
if (process == prevHead) {
// Back at process_head, nothing wants to run. Send in the colonel!
return context_switch(*s_colonel_process);
}
}
}
bool Scheduler::yield()
{
if (!current) {
kprintf("PANIC: sched_yield() with !current");
HANG;
}
//dbgprintf("%s<%u> yield()\n", current->name().characters(), current->pid());
InterruptDisabler disabler;
if (!pick_next())
return 1;
//dbgprintf("yield() jumping to new process: %x (%s)\n", current->farPtr().selector, current->name().characters());
switch_now();
return 0;
}
void Scheduler::pick_next_and_switch_now()
{
bool someone_wants_to_run = pick_next();
ASSERT(someone_wants_to_run);
switch_now();
}
void Scheduler::switch_now()
{
Descriptor& descriptor = getGDTEntry(current->selector());
descriptor.type = 9;
flushGDT();
asm("sti\n"
"ljmp *(%%eax)\n"
::"a"(&current->farPtr())
);
}
bool Scheduler::context_switch(Process& process)
{
process.set_ticks_left(time_slice);
process.did_schedule();
if (current == &process)
return false;
if (current) {
// If the last process hasn't blocked (still marked as running),
// mark it as runnable for the next round.
if (current->state() == Process::Running)
current->set_state(Process::Runnable);
#ifdef LOG_EVERY_CONTEXT_SWITCH
dbgprintf("Scheduler: %s(%u) -> %s(%u)\n", current->name().characters(), current->pid(), process.name().characters(), process.pid());
#endif
}
current = &process;
process.set_state(Process::Running);
#ifdef COOL_GLOBALS
g_cool_globals->current_pid = process.pid();
#endif
if (!process.selector()) {
process.setSelector(gdt_alloc_entry());
auto& descriptor = getGDTEntry(process.selector());
descriptor.setBase(&process.tss());
descriptor.setLimit(0xffff);
descriptor.dpl = 0;
descriptor.segment_present = 1;
descriptor.granularity = 1;
descriptor.zero = 0;
descriptor.operation_size = 1;
descriptor.descriptor_type = 0;
}
auto& descriptor = getGDTEntry(process.selector());
descriptor.type = 11; // Busy TSS
flushGDT();
return true;
}
int sched_yield()
{
return Scheduler::yield();
}
static void initialize_redirection()
{
auto& descriptor = getGDTEntry(s_redirection.selector);
descriptor.setBase(&s_redirection.tss);
descriptor.setLimit(0xffff);
descriptor.dpl = 0;
descriptor.segment_present = 1;
descriptor.granularity = 1;
descriptor.zero = 0;
descriptor.operation_size = 1;
descriptor.descriptor_type = 0;
descriptor.type = 9;
flushGDT();
}
void Scheduler::prepare_for_iret_to_new_process()
{
auto& descriptor = getGDTEntry(s_redirection.selector);
descriptor.type = 9;
s_redirection.tss.backlink = current->selector();
load_task_register(s_redirection.selector);
}
void Scheduler::prepare_to_modify_own_tss()
{
// This ensures that a process modifying its own TSS in order to yield()
// and end up somewhere else doesn't just end up right after the yield().
load_task_register(s_redirection.selector);
}
static void hlt_loop()
{
for (;;) {
asm volatile("hlt");
}
}
void Scheduler::initialize()
{
memset(&s_redirection, 0, sizeof(s_redirection));
s_redirection.selector = gdt_alloc_entry();
initialize_redirection();
s_colonel_process = Process::create_kernel_process(hlt_loop, "colonel");
current = nullptr;
load_task_register(s_redirection.selector);
}