ladybird/AK/BitmapView.h

375 lines
13 KiB
C
Raw Normal View History

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Array.h>
#include <AK/BuiltinWrappers.h>
#include <AK/Optional.h>
#include <AK/StdLibExtras.h>
#include <AK/Types.h>
namespace AK {
static constexpr Array bitmask_first_byte = { 0xFF, 0xFE, 0xFC, 0xF8, 0xF0, 0xE0, 0xC0, 0x80 };
static constexpr Array bitmask_last_byte = { 0x00, 0x1, 0x3, 0x7, 0xF, 0x1F, 0x3F, 0x7F };
class BitmapView {
public:
BitmapView() = default;
BitmapView(u8* data, size_t size)
: m_data(data)
, m_size(size)
{
}
[[nodiscard]] size_t size() const { return m_size; }
[[nodiscard]] size_t size_in_bytes() const { return ceil_div(m_size, static_cast<size_t>(8)); }
[[nodiscard]] bool get(size_t index) const
{
VERIFY(index < m_size);
return 0 != (m_data[index / 8] & (1u << (index % 8)));
}
[[nodiscard]] size_t count_slow(bool value) const
{
return count_in_range(0, m_size, value);
}
[[nodiscard]] size_t count_in_range(size_t start, size_t len, bool value) const
{
VERIFY(start < m_size);
VERIFY(start + len <= m_size);
if (len == 0)
return 0;
size_t count;
2022-04-01 20:58:27 +03:00
u8 const* first = &m_data[start / 8];
u8 const* last = &m_data[(start + len) / 8];
u8 byte = *first;
byte &= bitmask_first_byte[start % 8];
if (first == last) {
byte &= bitmask_last_byte[(start + len) % 8];
count = popcount(byte);
} else {
count = popcount(byte);
// Don't access *last if it's out of bounds
if (last < &m_data[size_in_bytes()]) {
byte = *last;
byte &= bitmask_last_byte[(start + len) % 8];
count += popcount(byte);
}
if (++first < last) {
2023-03-07 17:28:21 +03:00
size_t const* ptr_large = reinterpret_cast<size_t const*>((reinterpret_cast<FlatPtr>(first) + sizeof(size_t) - 1) & ~(sizeof(size_t) - 1));
if (reinterpret_cast<u8 const*>(ptr_large) > last)
ptr_large = reinterpret_cast<size_t const*>(last);
while (first < reinterpret_cast<u8 const*>(ptr_large)) {
count += popcount(*first);
first++;
}
2023-03-07 17:28:21 +03:00
size_t const* last_large = reinterpret_cast<size_t const*>(reinterpret_cast<FlatPtr>(last) & ~(sizeof(size_t) - 1));
while (ptr_large < last_large) {
count += popcount(*ptr_large);
ptr_large++;
}
2023-03-07 17:28:21 +03:00
for (first = reinterpret_cast<u8 const*>(ptr_large); first < last; first++)
count += popcount(*first);
}
}
if (!value)
count = len - count;
return count;
}
[[nodiscard]] bool is_null() const { return m_data == nullptr; }
2022-04-01 20:58:27 +03:00
[[nodiscard]] u8 const* data() const { return m_data; }
template<bool VALUE>
Optional<size_t> find_one_anywhere(size_t hint = 0) const
{
VERIFY(hint < m_size);
2022-04-01 20:58:27 +03:00
u8 const* end = &m_data[m_size / 8];
for (;;) {
// We will use hint as what it is: a hint. Because we try to
// scan over entire 32 bit words, we may start searching before
// the hint!
2023-03-07 17:28:21 +03:00
size_t const* ptr_large = reinterpret_cast<size_t const*>(reinterpret_cast<FlatPtr>(&m_data[hint / 8]) & ~(sizeof(size_t) - 1));
if (reinterpret_cast<u8 const*>(ptr_large) < &m_data[0]) {
ptr_large++;
// m_data isn't aligned, check first bytes
2023-03-07 17:28:21 +03:00
size_t start_ptr_large = reinterpret_cast<u8 const*>(ptr_large) - &m_data[0];
size_t i = 0;
u8 byte = VALUE ? 0x00 : 0xff;
while (i < start_ptr_large && m_data[i] == byte)
i++;
if (i < start_ptr_large) {
byte = m_data[i];
if constexpr (!VALUE)
byte = ~byte;
VERIFY(byte != 0);
return i * 8 + bit_scan_forward(byte) - 1;
}
}
size_t val_large = VALUE ? 0x0 : NumericLimits<size_t>::max();
2023-03-07 17:28:21 +03:00
size_t const* end_large = reinterpret_cast<size_t const*>(reinterpret_cast<FlatPtr>(end) & ~(sizeof(size_t) - 1));
while (ptr_large < end_large && *ptr_large == val_large)
ptr_large++;
if (ptr_large == end_large) {
// We didn't find anything, check the remaining few bytes (if any)
u8 byte = VALUE ? 0x00 : 0xff;
2023-03-07 17:28:21 +03:00
size_t i = reinterpret_cast<u8 const*>(ptr_large) - &m_data[0];
size_t byte_count = m_size / 8;
VERIFY(i <= byte_count);
while (i < byte_count && m_data[i] == byte)
i++;
if (i == byte_count) {
if (hint <= 8)
return {}; // We already checked from the beginning
// Try scanning before the hint
2023-03-07 17:28:21 +03:00
end = reinterpret_cast<u8 const*>(reinterpret_cast<FlatPtr>(&m_data[hint / 8]) & ~(sizeof(size_t) - 1));
hint = 0;
continue;
}
byte = m_data[i];
if constexpr (!VALUE)
byte = ~byte;
VERIFY(byte != 0);
return i * 8 + bit_scan_forward(byte) - 1;
}
// NOTE: We don't really care about byte ordering. We found *one*
// free bit, just calculate the position and return it
val_large = *ptr_large;
if constexpr (!VALUE)
val_large = ~val_large;
VERIFY(val_large != 0);
2023-03-07 17:28:21 +03:00
return (reinterpret_cast<u8 const*>(ptr_large) - &m_data[0]) * 8 + bit_scan_forward(val_large) - 1;
}
}
Optional<size_t> find_one_anywhere_set(size_t hint = 0) const
{
return find_one_anywhere<true>(hint);
}
Optional<size_t> find_one_anywhere_unset(size_t hint = 0) const
{
return find_one_anywhere<false>(hint);
}
template<bool VALUE>
Optional<size_t> find_first() const
{
size_t byte_count = m_size / 8;
size_t i = 0;
u8 byte = VALUE ? 0x00 : 0xff;
while (i < byte_count && m_data[i] == byte)
i++;
if (i == byte_count)
return {};
byte = m_data[i];
if constexpr (!VALUE)
byte = ~byte;
VERIFY(byte != 0);
return i * 8 + bit_scan_forward(byte) - 1;
}
Optional<size_t> find_first_set() const { return find_first<true>(); }
Optional<size_t> find_first_unset() const { return find_first<false>(); }
// The function will return the next range of unset bits starting from the
// @from value.
// @from: the position from which the search starts. The var will be
// changed and new value is the offset of the found block.
// @min_length: minimum size of the range which will be returned.
// @max_length: maximum size of the range which will be returned.
// This is used to increase performance, since the range of
// unset bits can be long, and we don't need the while range,
// so we can stop when we've reached @max_length.
inline Optional<size_t> find_next_range_of_unset_bits(size_t& from, size_t min_length = 1, size_t max_length = max_size) const
{
if (min_length > max_length) {
return {};
}
size_t bit_size = 8 * sizeof(size_t);
2023-03-07 17:28:21 +03:00
size_t* bitmap = reinterpret_cast<size_t*>(m_data);
// Calculating the start offset.
size_t start_bucket_index = from / bit_size;
size_t start_bucket_bit = from % bit_size;
size_t* start_of_free_chunks = &from;
size_t free_chunks = 0;
for (size_t bucket_index = start_bucket_index; bucket_index < m_size / bit_size; ++bucket_index) {
if (bitmap[bucket_index] == NumericLimits<size_t>::max()) {
// Skip over completely full bucket of size bit_size.
if (free_chunks >= min_length) {
return min(free_chunks, max_length);
}
free_chunks = 0;
start_bucket_bit = 0;
continue;
}
if (bitmap[bucket_index] == 0x0) {
// Skip over completely empty bucket of size bit_size.
if (free_chunks == 0) {
*start_of_free_chunks = bucket_index * bit_size;
}
free_chunks += bit_size;
if (free_chunks >= max_length) {
return max_length;
}
start_bucket_bit = 0;
continue;
}
size_t bucket = bitmap[bucket_index];
u8 viewed_bits = start_bucket_bit;
u32 trailing_zeroes = 0;
bucket >>= viewed_bits;
start_bucket_bit = 0;
while (viewed_bits < bit_size) {
if (bucket == 0) {
if (free_chunks == 0) {
*start_of_free_chunks = bucket_index * bit_size + viewed_bits;
}
free_chunks += bit_size - viewed_bits;
viewed_bits = bit_size;
} else {
trailing_zeroes = count_trailing_zeroes(bucket);
bucket >>= trailing_zeroes;
if (free_chunks == 0) {
*start_of_free_chunks = bucket_index * bit_size + viewed_bits;
}
free_chunks += trailing_zeroes;
viewed_bits += trailing_zeroes;
if (free_chunks >= min_length) {
return min(free_chunks, max_length);
}
// Deleting trailing ones.
u32 trailing_ones = count_trailing_zeroes(~bucket);
bucket >>= trailing_ones;
viewed_bits += trailing_ones;
free_chunks = 0;
}
}
}
if (free_chunks < min_length) {
size_t first_trailing_bit = (m_size / bit_size) * bit_size;
size_t trailing_bits = size() % bit_size;
for (size_t i = 0; i < trailing_bits; ++i) {
if (!get(first_trailing_bit + i)) {
if (free_chunks == 0)
*start_of_free_chunks = first_trailing_bit + i;
if (++free_chunks >= min_length)
return min(free_chunks, max_length);
} else {
free_chunks = 0;
}
}
return {};
}
return min(free_chunks, max_length);
}
Optional<size_t> find_longest_range_of_unset_bits(size_t max_length, size_t& found_range_size) const
{
size_t start = 0;
size_t max_region_start = 0;
size_t max_region_size = 0;
while (true) {
// Look for the next block which is bigger than currunt.
auto length_of_found_range = find_next_range_of_unset_bits(start, max_region_size + 1, max_length);
if (length_of_found_range.has_value()) {
max_region_start = start;
max_region_size = length_of_found_range.value();
start += max_region_size;
} else {
// No ranges which are bigger than current were found.
break;
}
}
found_range_size = max_region_size;
if (max_region_size != 0) {
return max_region_start;
}
return {};
}
Optional<size_t> find_first_fit(size_t minimum_length) const
{
size_t start = 0;
auto length_of_found_range = find_next_range_of_unset_bits(start, minimum_length, minimum_length);
if (length_of_found_range.has_value()) {
return start;
}
return {};
}
Optional<size_t> find_best_fit(size_t minimum_length) const
{
size_t start = 0;
size_t best_region_start = 0;
size_t best_region_size = max_size;
bool found = false;
while (true) {
// Look for the next block which is bigger than requested length.
auto length_of_found_range = find_next_range_of_unset_bits(start, minimum_length, best_region_size);
if (length_of_found_range.has_value()) {
if (best_region_size > length_of_found_range.value() || !found) {
best_region_start = start;
best_region_size = length_of_found_range.value();
found = true;
}
start += length_of_found_range.value();
} else {
// There are no ranges which can fit requested length.
break;
}
}
if (found) {
return best_region_start;
}
return {};
}
static constexpr size_t max_size = 0xffffffff;
protected:
u8* m_data { nullptr };
size_t m_size { 0 };
};
}
#if USING_AK_GLOBALLY
using AK::BitmapView;
#endif