ladybird/Userland/Libraries/LibWeb/Layout/FlexFormattingContext.cpp

710 lines
29 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, Tobias Christiansen <tobi@tobyase.de>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/StdLibExtras.h>
#include <LibWeb/Layout/BlockBox.h>
#include <LibWeb/Layout/BlockFormattingContext.h>
#include <LibWeb/Layout/Box.h>
#include <LibWeb/Layout/FlexFormattingContext.h>
#include <LibWeb/Layout/InitialContainingBlockBox.h>
#include <LibWeb/Layout/TextNode.h>
namespace Web::Layout {
FlexFormattingContext::FlexFormattingContext(Box& context_box, FormattingContext* parent)
: FormattingContext(context_box, parent)
{
}
FlexFormattingContext::~FlexFormattingContext()
{
}
struct FlexItem {
Box& box;
float flex_base_size { 0 };
float hypothetical_main_size { 0 };
float hypothetical_cross_size { 0 };
float target_main_size { 0 };
bool frozen { false };
Optional<float> flex_factor {};
float scaled_flex_shrink_factor { 0 };
float max_content_flex_fraction { 0 };
float main_size { 0 };
float cross_size { 0 };
float main_offset { 0 };
float cross_offset { 0 };
bool is_min_violation { false };
bool is_max_violation { false };
};
struct FlexLine {
Vector<FlexItem*> items;
float cross_size { 0 };
};
void FlexFormattingContext::run(Box& box, LayoutMode)
{
// This implements https://www.w3.org/TR/css-flexbox-1/#layout-algorithm
// FIXME: Implement reverse and ordering.
// Determine main/cross direction
auto flex_direction = box.computed_values().flex_direction();
auto is_row = (flex_direction == CSS::FlexDirection::Row || flex_direction == CSS::FlexDirection::RowReverse);
auto main_size_is_infinite = false;
auto get_pixel_size = [](Box& box, const CSS::Length& length) {
return length.resolved(CSS::Length::make_px(0), box, box.containing_block()->width()).to_px(box);
};
auto layout_for_maximum_main_size = [&](Box& box) {
if (is_row)
layout_inside(box, LayoutMode::OnlyRequiredLineBreaks);
else
layout_inside(box, LayoutMode::AllPossibleLineBreaks);
};
auto containing_block_effective_main_size = [&is_row, &main_size_is_infinite](Box& box) {
if (is_row) {
if (box.containing_block()->has_definite_width())
return box.containing_block()->width();
main_size_is_infinite = true;
return NumericLimits<float>::max();
} else {
if (box.containing_block()->has_definite_height())
return box.containing_block()->height();
main_size_is_infinite = true;
return NumericLimits<float>::max();
}
};
auto has_definite_main_size = [&is_row](Box& box) {
return is_row ? box.has_definite_width() : box.has_definite_height();
};
auto has_definite_cross_size = [&is_row](Box& box) {
return is_row ? box.has_definite_height() : box.has_definite_width();
};
auto specified_main_size = [&is_row, &get_pixel_size](Box& box) {
return is_row
? get_pixel_size(box, box.computed_values().width())
: get_pixel_size(box, box.computed_values().height());
};
auto specified_cross_size = [&is_row, &get_pixel_size](Box& box) {
return is_row
? get_pixel_size(box, box.computed_values().height())
: get_pixel_size(box, box.computed_values().width());
};
auto has_main_min_size = [&is_row](Box& box) {
return is_row
? !box.computed_values().min_width().is_undefined_or_auto()
: !box.computed_values().min_height().is_undefined_or_auto();
};
auto has_cross_min_size = [&is_row](Box& box) {
return is_row
? !box.computed_values().min_height().is_undefined_or_auto()
: !box.computed_values().min_width().is_undefined_or_auto();
};
auto specified_main_min_size = [&is_row, &get_pixel_size](Box& box) {
return is_row
? get_pixel_size(box, box.computed_values().min_width())
: get_pixel_size(box, box.computed_values().min_height());
};
auto specified_cross_min_size = [&is_row, &get_pixel_size](Box& box) {
return is_row
? get_pixel_size(box, box.computed_values().min_height())
: get_pixel_size(box, box.computed_values().min_width());
};
auto has_main_max_size = [&is_row](Box& box) {
return is_row
? !box.computed_values().max_width().is_undefined_or_auto()
: !box.computed_values().max_height().is_undefined_or_auto();
};
auto has_cross_max_size = [&is_row](Box& box) {
return is_row
? !box.computed_values().max_height().is_undefined_or_auto()
: !box.computed_values().max_width().is_undefined_or_auto();
};
auto specified_main_max_size = [&is_row, &get_pixel_size](Box& box) {
return is_row
? get_pixel_size(box, box.computed_values().max_width())
: get_pixel_size(box, box.computed_values().max_height());
};
auto specified_cross_max_size = [&is_row, &get_pixel_size](Box& box) {
return is_row
? get_pixel_size(box, box.computed_values().max_height())
: get_pixel_size(box, box.computed_values().max_width());
};
auto calculated_main_size = [&is_row](Box& box) {
return is_row ? box.width() : box.height();
};
auto is_cross_auto = [&is_row](Box& box) {
return is_row ? box.computed_values().height().is_auto() : box.computed_values().width().is_auto();
};
auto is_main_axis_margin_first_auto = [&is_row](Box& box) {
return is_row ? box.computed_values().margin().left.is_auto() : box.computed_values().margin().top.is_auto();
};
auto is_main_axis_margin_second_auto = [&is_row](Box& box) {
return is_row ? box.computed_values().margin().right.is_auto() : box.computed_values().margin().bottom.is_auto();
};
auto sum_of_margin_padding_border_in_main_axis = [&is_row](Box& box) {
if (is_row) {
return box.box_model().margin.left
+ box.box_model().margin.right
+ box.box_model().padding.left
+ box.box_model().padding.right
+ box.box_model().border.left
+ box.box_model().border.right;
} else {
return box.box_model().margin.top
+ box.box_model().margin.bottom
+ box.box_model().padding.top
+ box.box_model().padding.bottom
+ box.box_model().border.top
+ box.box_model().border.bottom;
}
};
auto calculate_hypothetical_cross_size = [&is_row, this](Box& box) {
// FIXME: Don't use BFC exclusively, there are more FormattingContexts.
if (is_row) {
return BlockFormattingContext::compute_theoretical_height(box);
} else {
// FIXME: This is very bad.
BlockFormattingContext context(box, this);
context.compute_width(box);
return box.width();
}
};
auto set_main_size = [&is_row](Box& box, float size) {
if (is_row)
box.set_width(size);
else
box.set_height(size);
};
auto set_cross_size = [&is_row](Box& box, float size) {
if (is_row)
box.set_height(size);
else
box.set_width(size);
};
auto set_offset = [&is_row](Box& box, float main_offset, float cross_offset) {
if (is_row)
box.set_offset(main_offset, cross_offset);
else
box.set_offset(cross_offset, main_offset);
};
auto set_main_axis_first_margin = [&is_row](Box& box, float margin) {
if (is_row)
box.box_model().margin.left = margin;
else
box.box_model().margin.top = margin;
};
auto set_main_axis_second_margin = [&is_row](Box& box, float margin) {
if (is_row)
box.box_model().margin.right = margin;
else
box.box_model().margin.bottom = margin;
};
// 1. Generate anonymous flex items
// More like, sift through the already generated items.
// After this step no items are to be added or removed from flex_items!
// It holds every item we need to consider and there should be nothing in the following
// calculations that could change that.
// This is particularly important since we take references to the items stored in flex_items
// later, whose addresses won't be stable if we added or removed any items.
Vector<FlexItem> flex_items;
box.for_each_child_of_type<Box>([&](Box& child_box) {
layout_inside(child_box, LayoutMode::Default);
// Skip anonymous text runs that are only whitespace.
if (child_box.is_anonymous()) {
bool contains_only_white_space = true;
child_box.for_each_in_inclusive_subtree_of_type<TextNode>([&contains_only_white_space](auto& text_node) {
if (!text_node.text_for_rendering().is_whitespace()) {
contains_only_white_space = false;
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
if (contains_only_white_space)
return IterationDecision::Continue;
}
child_box.set_flex_item(true);
flex_items.append({ child_box });
return IterationDecision::Continue;
});
// 2. Determine the available main and cross space for the flex items
float main_available_size = 0;
[[maybe_unused]] float cross_available_size = 0;
[[maybe_unused]] float main_max_size = NumericLimits<float>::max();
[[maybe_unused]] float main_min_size = 0;
float cross_max_size = NumericLimits<float>::max();
float cross_min_size = 0;
bool main_is_constrained = false;
bool cross_is_constrained = false;
if (has_definite_main_size(box)) {
main_is_constrained = true;
main_available_size = specified_main_size(box);
} else {
if (has_main_max_size(box)) {
main_max_size = specified_main_max_size(box);
main_is_constrained = true;
}
if (has_main_min_size(box)) {
main_min_size = specified_main_min_size(box);
main_is_constrained = true;
}
if (!main_is_constrained) {
auto available_main_size = containing_block_effective_main_size(box);
main_available_size = available_main_size - sum_of_margin_padding_border_in_main_axis(box);
}
}
if (has_definite_cross_size(box)) {
cross_available_size = specified_cross_size(box);
} else {
if (has_cross_max_size(box)) {
cross_max_size = specified_cross_max_size(box);
cross_is_constrained = true;
}
if (has_cross_min_size(box)) {
cross_min_size = specified_cross_min_size(box);
cross_is_constrained = true;
}
// FIXME: Is this right? Probably not.
if (!cross_is_constrained)
cross_available_size = cross_max_size;
}
// 3. Determine the flex base size and hypothetical main size of each item
for (auto& flex_item : flex_items) {
auto& child_box = flex_item.box;
auto flex_basis = child_box.computed_values().flex_basis();
if (flex_basis.type == CSS::FlexBasis::Length) {
// A
flex_item.flex_base_size = get_pixel_size(child_box, flex_basis.length);
} else if (flex_basis.type == CSS::FlexBasis::Content
&& has_definite_cross_size(child_box)
// FIXME: && has intrinsic aspect ratio.
&& false) {
// B
TODO();
// flex_base_size is calculated from definite cross size and intrinsic aspect ratio
} else if (flex_basis.type == CSS::FlexBasis::Content
// FIXME: && sized under min-content or max-content contstraints
&& false) {
// C
TODO();
// Size child_box under the constraints, flex_base_size is then the resulting main_size.
} else if (flex_basis.type == CSS::FlexBasis::Content
// FIXME: && main_size is infinite && inline axis is parallel to the main axis
&& false && false) {
// D
TODO();
// Use rules for a box in orthogonal flow
} else {
// E
// FIXME: This is probably too naive.
if (has_definite_main_size(child_box)) {
flex_item.flex_base_size = specified_main_size(child_box);
} else {
layout_for_maximum_main_size(child_box);
flex_item.flex_base_size = calculated_main_size(child_box);
}
}
auto clamp_min = has_main_min_size(child_box)
? specified_main_min_size(child_box)
: 0;
auto clamp_max = has_main_max_size(child_box)
? specified_main_max_size(child_box)
: NumericLimits<float>::max();
flex_item.hypothetical_main_size = clamp(flex_item.flex_base_size, clamp_min, clamp_max);
}
// 4. Determine the main size of the flex container
if (!main_is_constrained || main_available_size == 0) {
// Uses https://www.w3.org/TR/css-flexbox-1/#intrinsic-main-sizes
// 9.9.1
// 1.
float largest_max_content_flex_fraction = 0;
for (auto& flex_item : flex_items) {
// FIXME: This needs some serious work.
float max_content_contribution = calculated_main_size(flex_item.box);
float max_content_flex_fraction = max_content_contribution - flex_item.flex_base_size;
if (max_content_flex_fraction > 0) {
max_content_flex_fraction /= max(flex_item.box.computed_values().flex_grow_factor().value_or(1), 1.0f);
} else {
max_content_flex_fraction /= max(flex_item.box.computed_values().flex_shrink_factor().value_or(1), 1.0f) * flex_item.flex_base_size;
}
flex_item.max_content_flex_fraction = max_content_flex_fraction;
if (max_content_flex_fraction > largest_max_content_flex_fraction)
largest_max_content_flex_fraction = max_content_flex_fraction;
}
// 2. Omitted
// 3.
float result = 0;
for (auto& flex_item : flex_items) {
auto product = 0;
if (flex_item.max_content_flex_fraction > 0) {
product = largest_max_content_flex_fraction * flex_item.box.computed_values().flex_grow_factor().value_or(1);
} else {
product = largest_max_content_flex_fraction * max(flex_item.box.computed_values().flex_shrink_factor().value_or(1), 1.0f) * flex_item.flex_base_size;
}
result += flex_item.flex_base_size + product;
}
main_available_size = clamp(result, main_min_size, main_max_size);
}
set_main_size(box, main_available_size);
// 5. Collect flex items into flex lines:
// After this step no additional items are to be added to flex_lines or any of its items!
Vector<FlexLine> flex_lines;
// FIXME: Also support wrap-reverse
if (box.computed_values().flex_wrap() == CSS::FlexWrap::Nowrap) {
FlexLine line;
for (auto& flex_item : flex_items) {
line.items.append(&flex_item);
}
flex_lines.append(line);
} else {
FlexLine line;
float line_main_size = 0;
for (auto& flex_item : flex_items) {
if ((line_main_size + flex_item.hypothetical_main_size) > main_available_size) {
flex_lines.append(line);
line = {};
line_main_size = 0;
}
line.items.append(&flex_item);
line_main_size += flex_item.hypothetical_main_size;
}
flex_lines.append(line);
}
// 6. Resolve the flexible lengths
enum FlexFactor {
FlexGrowFactor,
FlexShrinkFactor
};
FlexFactor used_flex_factor;
// 6.1. Determine used flex factor
for (auto& flex_line : flex_lines) {
size_t number_of_unfrozen_items_on_line = flex_line.items.size();
float sum_of_hypothetical_main_sizes = 0;
for (auto& flex_item : flex_line.items) {
sum_of_hypothetical_main_sizes += flex_item->hypothetical_main_size;
}
if (sum_of_hypothetical_main_sizes < main_available_size)
used_flex_factor = FlexFactor::FlexGrowFactor;
else
used_flex_factor = FlexFactor::FlexShrinkFactor;
for (auto& flex_item : flex_line.items) {
if (used_flex_factor == FlexFactor::FlexGrowFactor)
flex_item->flex_factor = flex_item->box.computed_values().flex_grow_factor();
else if (used_flex_factor == FlexFactor::FlexShrinkFactor)
flex_item->flex_factor = flex_item->box.computed_values().flex_shrink_factor();
}
// 6.2. Size inflexible items
auto freeze_item_setting_target_main_size_to_hypothetical_main_size = [&number_of_unfrozen_items_on_line](FlexItem& item) {
item.target_main_size = item.hypothetical_main_size;
number_of_unfrozen_items_on_line--;
item.frozen = true;
};
for (auto& flex_item : flex_line.items) {
if (flex_item->flex_factor.has_value() && flex_item->flex_factor.value() == 0) {
freeze_item_setting_target_main_size_to_hypothetical_main_size(*flex_item);
} else if (flex_item->flex_factor.has_value()) {
// FIXME: This isn't spec
continue;
} else if (used_flex_factor == FlexFactor::FlexGrowFactor) {
// FIXME: Spec doesn't include the == case, but we take a too basic approach to calculating the values used so this is appropriate
if (flex_item->flex_base_size >= flex_item->hypothetical_main_size) {
freeze_item_setting_target_main_size_to_hypothetical_main_size(*flex_item);
}
} else if (used_flex_factor == FlexFactor::FlexShrinkFactor) {
if (flex_item->flex_base_size < flex_item->hypothetical_main_size) {
freeze_item_setting_target_main_size_to_hypothetical_main_size(*flex_item);
}
}
}
// 6.3. Calculate initial free space
auto calculate_free_space = [&]() {
float sum_of_items_on_line = 0;
for (auto& flex_item : flex_line.items) {
if (flex_item->frozen)
sum_of_items_on_line += flex_item->target_main_size;
else
sum_of_items_on_line += flex_item->flex_base_size;
}
return main_available_size - sum_of_items_on_line;
};
float initial_free_space = calculate_free_space();
// 6.4 Loop
auto for_each_unfrozen_item = [&flex_line](auto callback) {
for (auto& flex_item : flex_line.items) {
if (!flex_item->frozen)
callback(flex_item);
}
};
while (number_of_unfrozen_items_on_line > 0) {
// b Calculate the remaining free space
auto remaining_free_space = calculate_free_space();
float sum_of_unfrozen_flex_items_flex_factors = 0;
for_each_unfrozen_item([&](FlexItem* item) {
sum_of_unfrozen_flex_items_flex_factors += item->flex_factor.value_or(1);
});
if (sum_of_unfrozen_flex_items_flex_factors < 1) {
auto intermediate_free_space = initial_free_space * sum_of_unfrozen_flex_items_flex_factors;
if (AK::abs(intermediate_free_space) < AK::abs(remaining_free_space))
remaining_free_space = intermediate_free_space;
}
// c Distribute free space proportional to the flex factors
if (remaining_free_space != 0) {
if (used_flex_factor == FlexFactor::FlexGrowFactor) {
float sum_of_flex_grow_factor_of_unfrozen_items = sum_of_unfrozen_flex_items_flex_factors;
for_each_unfrozen_item([&](FlexItem* flex_item) {
float ratio = flex_item->flex_factor.value_or(1) / sum_of_flex_grow_factor_of_unfrozen_items;
flex_item->target_main_size = flex_item->flex_base_size + (remaining_free_space * ratio);
});
} else if (used_flex_factor == FlexFactor::FlexShrinkFactor) {
float sum_of_scaled_flex_shrink_factor_of_unfrozen_items = 0;
for_each_unfrozen_item([&](FlexItem* flex_item) {
flex_item->scaled_flex_shrink_factor = flex_item->flex_factor.value_or(1) * flex_item->flex_base_size;
sum_of_scaled_flex_shrink_factor_of_unfrozen_items += flex_item->scaled_flex_shrink_factor;
});
for_each_unfrozen_item([&](FlexItem* flex_item) {
float ratio = flex_item->scaled_flex_shrink_factor / sum_of_scaled_flex_shrink_factor_of_unfrozen_items;
flex_item->target_main_size = flex_item->flex_base_size - (AK::abs(remaining_free_space) * ratio);
});
}
} else {
// This isn't spec but makes sense.
for_each_unfrozen_item([&](FlexItem* flex_item) {
flex_item->target_main_size = flex_item->flex_base_size;
});
}
// d Fix min/max violations.
float adjustments = 0;
for_each_unfrozen_item([&](FlexItem* item) {
auto min_main = has_main_min_size(item->box)
? specified_main_min_size(item->box)
: 0;
auto max_main = has_main_max_size(item->box)
? specified_main_max_size(item->box)
: NumericLimits<float>::max();
float original_target_size = item->target_main_size;
if (item->target_main_size < min_main) {
item->target_main_size = min_main;
item->is_min_violation = true;
}
if (item->target_main_size > max_main) {
item->target_main_size = max_main;
item->is_max_violation = true;
}
float delta = item->target_main_size - original_target_size;
adjustments += delta;
});
// e Freeze over-flexed items
if (adjustments == 0) {
for_each_unfrozen_item([&](FlexItem* item) {
--number_of_unfrozen_items_on_line;
item->frozen = true;
});
} else if (adjustments > 0) {
for_each_unfrozen_item([&](FlexItem* item) {
if (item->is_min_violation) {
--number_of_unfrozen_items_on_line;
item->frozen = true;
}
});
} else if (adjustments < 0) {
for_each_unfrozen_item([&](FlexItem* item) {
if (item->is_max_violation) {
--number_of_unfrozen_items_on_line;
item->frozen = true;
}
});
}
}
// 6.5.
for (auto& flex_item : flex_line.items) {
flex_item->main_size = flex_item->target_main_size;
};
}
// Cross Size Determination
// 7. Determine the hypothetical cross size of each item
for (auto& flex_item : flex_items) {
flex_item.hypothetical_cross_size = calculate_hypothetical_cross_size(flex_item.box);
}
// 8. Calculate the cross size of each flex line.
if (flex_lines.size() == 1 && has_definite_cross_size(box)) {
flex_lines[0].cross_size = specified_cross_size(box);
} else {
for (auto& flex_line : flex_lines) {
// FIXME: Implement 8.1
// 8.2
float largest_hypothetical_cross_size = 0;
for (auto& flex_item : flex_line.items) {
if (largest_hypothetical_cross_size < flex_item->hypothetical_cross_size)
largest_hypothetical_cross_size = flex_item->hypothetical_cross_size;
}
// 8.3
flex_line.cross_size = max(0.0f, largest_hypothetical_cross_size);
}
if (flex_lines.size() == 1) {
clamp(flex_lines[0].cross_size, cross_min_size, cross_max_size);
}
}
// 9. Handle 'align-content: stretch'.
// FIXME: This
// 10. Collapse visibility:collapse items.
// FIXME: This
// 11. Determine the used cross size of each flex item.
// FIXME: align-stretch
for (auto& flex_line : flex_lines) {
for (auto& flex_item : flex_line.items) {
if (is_cross_auto(flex_item->box)) {
// FIXME: Take margins into account
flex_item->cross_size = flex_line.cross_size;
} else {
flex_item->cross_size = flex_item->hypothetical_cross_size;
}
}
}
// 12. Distribute any remaining free space.
for (auto& flex_line : flex_lines) {
// 12.1.
float used_main_space = 0;
size_t auto_margins = 0;
for (auto& flex_item : flex_line.items) {
used_main_space += flex_item->cross_size;
if (is_main_axis_margin_first_auto(flex_item->box))
++auto_margins;
if (is_main_axis_margin_second_auto(flex_item->box))
++auto_margins;
}
float remaining_free_space = main_available_size - used_main_space;
if (remaining_free_space > 0) {
float size_per_auto_margin = remaining_free_space / (float)auto_margins;
for (auto& flex_item : flex_line.items) {
if (is_main_axis_margin_first_auto(flex_item->box))
set_main_axis_first_margin(flex_item->box, size_per_auto_margin);
if (is_main_axis_margin_second_auto(flex_item->box))
set_main_axis_second_margin(flex_item->box, size_per_auto_margin);
}
} else {
for (auto& flex_item : flex_line.items) {
if (is_main_axis_margin_first_auto(flex_item->box))
set_main_axis_first_margin(flex_item->box, 0);
if (is_main_axis_margin_second_auto(flex_item->box))
set_main_axis_second_margin(flex_item->box, 0);
}
}
// 12.2.
float space_between_items = 0;
float space_before_first_item = 0;
auto number_of_items = flex_line.items.size();
switch (box.computed_values().justify_content()) {
case CSS::JustifyContent::FlexStart:
break;
case CSS::JustifyContent::FlexEnd:
space_before_first_item = main_available_size - used_main_space;
break;
case CSS::JustifyContent::Center:
space_before_first_item = (main_available_size - used_main_space) / 2.0f;
break;
case CSS::JustifyContent::SpaceBetween:
space_between_items = remaining_free_space / (number_of_items - 1);
break;
case CSS::JustifyContent::SpaceAround:
space_between_items = remaining_free_space / number_of_items;
space_before_first_item = space_between_items / 2.0f;
break;
}
// FIXME: Support reverse
float main_offset = space_before_first_item;
for (auto& flex_item : flex_line.items) {
flex_item->main_offset = main_offset;
main_offset += flex_item->main_size + space_between_items;
}
}
// 13. Resolve cross-axis auto margins.
// FIXME: This
// 14. Align all flex items along the cross-axis
// FIXME: Support align-self
// 15. Determine the flex containers used cross size:
if (has_definite_cross_size(box)) {
float clamped_cross_size = clamp(specified_cross_size(box), cross_min_size, cross_max_size);
set_cross_size(box, clamped_cross_size);
} else {
float sum_of_flex_lines_cross_sizes = 0;
for (auto& flex_line : flex_lines) {
sum_of_flex_lines_cross_sizes += flex_line.cross_size;
}
float clamped_cross_size = clamp(sum_of_flex_lines_cross_sizes, cross_min_size, cross_max_size);
set_cross_size(box, clamped_cross_size);
}
// 16. Align all flex lines
// FIXME: Support align-content
// FIXME: Support reverse
float cross_offset = 0;
for (auto& flex_line : flex_lines) {
for (auto* flex_item : flex_line.items) {
flex_item->cross_offset = cross_offset;
}
cross_offset += flex_line.cross_size;
}
for (auto& flex_line : flex_lines) {
for (auto* flex_item : flex_line.items) {
set_main_size(flex_item->box, flex_item->main_size);
set_cross_size(flex_item->box, flex_item->cross_size);
set_offset(flex_item->box, flex_item->main_offset, flex_item->cross_offset);
}
}
}
}