ladybird/Userland/test-crypto.cpp

1051 lines
34 KiB
C++
Raw Normal View History

#include <LibC/limits.h>
#include <LibCore/ArgsParser.h>
#include <LibCore/File.h>
2020-04-08 00:24:50 +03:00
#include <LibCrypto/Authentication/HMAC.h>
#include <LibCrypto/BigInt/UnsignedBigInteger.h>
#include <LibCrypto/Cipher/AES.h>
#include <LibCrypto/Hash/MD5.h>
2020-04-08 02:59:07 +03:00
#include <LibCrypto/Hash/SHA2.h>
#include <LibLine/Editor.h>
#include <stdio.h>
static const char* secret_key = "WellHelloFreinds";
static const char* suite = nullptr;
static const char* filename = nullptr;
static int key_bits = 128;
static bool binary = false;
static bool interactive = false;
static bool run_tests = false;
static bool encrypting = true;
2020-04-08 02:59:07 +03:00
constexpr const char* DEFAULT_DIGEST_SUITE { "HMAC-SHA256" };
constexpr const char* DEFAULT_HASH_SUITE { "SHA256" };
constexpr const char* DEFAULT_CIPHER_SUITE { "AES_CBC" };
// listAllTests
// Cipher
int aes_cbc_tests();
// Hash
int md5_tests();
2020-04-08 02:59:07 +03:00
int sha256_tests();
int sha512_tests();
2020-04-08 00:24:50 +03:00
// Authentication
int hmac_md5_tests();
2020-04-08 02:59:07 +03:00
int hmac_sha256_tests();
int hmac_sha512_tests();
2020-04-08 00:24:50 +03:00
// Big Integer
int bigint_tests();
// stop listing tests
void print_buffer(const ByteBuffer& buffer, int split)
{
for (size_t i = 0; i < buffer.size(); ++i) {
if (split > 0) {
if (i % split == 0 && i)
puts("");
}
printf("%02x", buffer[i]);
}
puts("");
}
int run(Function<void(const char*, size_t)> fn)
{
if (interactive) {
Line::Editor editor;
editor.initialize();
for (;;) {
auto line = editor.get_line("> ");
fn(line.characters(), line.length());
}
} else {
if (filename == nullptr) {
puts("must specify a file name");
return 1;
}
if (!Core::File::exists(filename)) {
puts("File does not exist");
return 1;
}
auto file = Core::File::open(filename, Core::IODevice::OpenMode::ReadOnly);
auto buffer = file->read_all();
fn((const char*)buffer.data(), buffer.size());
}
return 0;
}
void aes_cbc(const char* message, size_t len)
{
auto buffer = ByteBuffer::wrap(message, len);
// FIXME: Take iv as an optional parameter
auto iv = ByteBuffer::create_zeroed(Crypto::Cipher::AESCipher::block_size());
if (encrypting) {
Crypto::Cipher::AESCipher::CBCMode cipher(secret_key, key_bits, Crypto::Cipher::Intent::Encryption);
auto enc = cipher.create_aligned_buffer(buffer.size());
cipher.encrypt(buffer, enc, iv);
if (binary)
printf("%.*s", (int)enc.size(), enc.data());
else
print_buffer(enc, Crypto::Cipher::AESCipher::block_size());
} else {
Crypto::Cipher::AESCipher::CBCMode cipher(secret_key, key_bits, Crypto::Cipher::Intent::Decryption);
auto dec = cipher.create_aligned_buffer(buffer.size());
cipher.decrypt(buffer, dec, iv);
printf("%.*s\n", (int)dec.size(), dec.data());
}
}
void md5(const char* message, size_t len)
{
auto digest = Crypto::Hash::MD5::hash((const u8*)message, len);
if (binary)
printf("%.*s", (int)Crypto::Hash::MD5::digest_size(), digest.data);
else
print_buffer(ByteBuffer::wrap(digest.data, Crypto::Hash::MD5::digest_size()), -1);
}
void hmac_md5(const char* message, size_t len)
{
Crypto::Authentication::HMAC<Crypto::Hash::MD5> hmac(secret_key);
auto mac = hmac.process((const u8*)message, len);
if (binary)
printf("%.*s", (int)hmac.DigestSize, mac.data);
else
print_buffer(ByteBuffer::wrap(mac.data, hmac.DigestSize), -1);
}
2020-04-08 02:59:07 +03:00
void sha256(const char* message, size_t len)
{
auto digest = Crypto::Hash::SHA256::hash((const u8*)message, len);
if (binary)
printf("%.*s", (int)Crypto::Hash::SHA256::digest_size(), digest.data);
else
print_buffer(ByteBuffer::wrap(digest.data, Crypto::Hash::SHA256::digest_size()), -1);
}
void hmac_sha256(const char* message, size_t len)
{
Crypto::Authentication::HMAC<Crypto::Hash::SHA256> hmac(secret_key);
auto mac = hmac.process((const u8*)message, len);
if (binary)
printf("%.*s", (int)hmac.DigestSize, mac.data);
else
print_buffer(ByteBuffer::wrap(mac.data, hmac.DigestSize), -1);
}
void sha512(const char* message, size_t len)
{
auto digest = Crypto::Hash::SHA512::hash((const u8*)message, len);
if (binary)
printf("%.*s", (int)Crypto::Hash::SHA512::digest_size(), digest.data);
else
print_buffer(ByteBuffer::wrap(digest.data, Crypto::Hash::SHA512::digest_size()), -1);
}
void hmac_sha512(const char* message, size_t len)
{
Crypto::Authentication::HMAC<Crypto::Hash::SHA512> hmac(secret_key);
auto mac = hmac.process((const u8*)message, len);
if (binary)
printf("%.*s", (int)hmac.DigestSize, mac.data);
else
print_buffer(ByteBuffer::wrap(mac.data, hmac.DigestSize), -1);
}
auto main(int argc, char** argv) -> int
{
const char* mode = nullptr;
Core::ArgsParser parser;
parser.add_positional_argument(mode, "mode to operate in ('list' to see modes and descriptions)", "mode");
2020-04-08 00:24:50 +03:00
parser.add_option(secret_key, "Set the secret key (default key is 'WellHelloFriends')", "secret-key", 'k', "secret key");
parser.add_option(key_bits, "Size of the key", "key-bits", 'b', "key-bits");
parser.add_option(filename, "Read from file", "file", 'f', "from file");
parser.add_option(binary, "Force binary output", "force-binary", 0);
parser.add_option(interactive, "REPL mode", "interactive", 'i');
parser.add_option(run_tests, "Run tests for the specified suite", "tests", 't');
parser.add_option(suite, "Set the suite used", "suite-name", 'n', "suite name");
parser.parse(argc, argv);
StringView mode_sv { mode };
if (mode_sv == "list") {
2020-04-08 00:24:50 +03:00
puts("test-crypto modes");
puts("\tdigest - Access digest (authentication) functions");
puts("\thash - Access hash functions");
puts("\tencrypt -- Access encryption functions");
puts("\tdecrypt -- Access decryption functions");
puts("\tlist -- List all known modes");
puts("these modes only contain tests");
puts("\tbigint -- Run big integer test suite");
puts("\tpk -- Run Public-key system tests");
return 0;
}
2020-04-08 02:59:07 +03:00
if (mode_sv == "hash") {
if (suite == nullptr)
suite = DEFAULT_HASH_SUITE;
2020-04-08 02:59:07 +03:00
StringView suite_sv { suite };
2020-04-08 02:59:07 +03:00
if (suite_sv == "MD5") {
if (run_tests)
return md5_tests();
return run(md5);
}
2020-04-08 02:59:07 +03:00
if (suite_sv == "SHA256") {
if (run_tests)
return sha256_tests();
return run(sha256);
}
if (suite_sv == "SHA512") {
if (run_tests)
return sha512_tests();
return run(sha512);
}
2020-04-08 02:59:07 +03:00
printf("unknown hash function '%s'\n", suite);
return 1;
}
2020-04-08 00:24:50 +03:00
if (mode_sv == "digest") {
if (suite == nullptr)
suite = DEFAULT_DIGEST_SUITE;
2020-04-08 02:59:07 +03:00
StringView suite_sv { suite };
2020-04-08 00:24:50 +03:00
2020-04-08 02:59:07 +03:00
if (suite_sv == "HMAC-MD5") {
2020-04-08 00:24:50 +03:00
if (run_tests)
return hmac_md5_tests();
return run(hmac_md5);
}
2020-04-08 02:59:07 +03:00
if (suite_sv == "HMAC-SHA256") {
if (run_tests)
return hmac_sha256_tests();
return run(hmac_sha256);
}
if (suite_sv == "HMAC-SHA512") {
if (run_tests)
return hmac_sha512_tests();
return run(hmac_sha512);
}
2020-04-08 02:59:07 +03:00
printf("unknown hash function '%s'\n", suite);
return 1;
2020-04-08 00:24:50 +03:00
}
if (mode_sv == "bigint") {
return bigint_tests();
}
encrypting = mode_sv == "encrypt";
if (encrypting || mode_sv == "decrypt") {
if (suite == nullptr)
suite = DEFAULT_CIPHER_SUITE;
2020-04-08 02:59:07 +03:00
StringView suite_sv { suite };
if (StringView(suite) == "AES_CBC") {
if (run_tests)
return aes_cbc_tests();
if (!Crypto::Cipher::AESCipher::KeyType::is_valid_key_size(key_bits)) {
printf("Invalid key size for AES: %d\n", key_bits);
return 1;
}
if (strlen(secret_key) != (size_t)key_bits / 8) {
printf("Key must be exactly %d bytes long\n", key_bits / 8);
return 1;
}
return run(aes_cbc);
} else {
printf("Unknown cipher suite '%s'\n", suite);
return 1;
}
}
printf("Unknown mode '%s', check out the list of modes\n", mode);
return 1;
}
#define I_TEST(thing) \
{ \
printf("Testing " #thing "... "); \
}
#define PASS printf("PASS\n")
#define FAIL(reason) printf("FAIL: " #reason "\n")
ByteBuffer operator""_b(const char* string, size_t length)
{
dbg() << "Create byte buffer of size " << length;
return ByteBuffer::copy(string, length);
}
// tests go after here
// please be reasonable with orders kthx
2020-04-08 00:24:50 +03:00
void aes_cbc_test_name();
void aes_cbc_test_encrypt();
void aes_cbc_test_decrypt();
2020-04-08 00:24:50 +03:00
void md5_test_name();
void md5_test_hash();
void md5_test_consecutive_updates();
2020-04-08 02:59:07 +03:00
void sha256_test_name();
void sha256_test_hash();
void sha512_test_name();
void sha512_test_hash();
2020-04-08 00:24:50 +03:00
void hmac_md5_test_name();
void hmac_md5_test_process();
2020-04-08 02:59:07 +03:00
void hmac_sha256_test_name();
void hmac_sha256_test_process();
void hmac_sha512_test_name();
void hmac_sha512_test_process();
void bigint_test_fibo500();
void bigint_addition_edgecases();
void bigint_subtraction();
void bigint_multiplication();
void bigint_division();
void bigint_base10();
void bigint_import_export();
int aes_cbc_tests()
{
2020-04-08 00:24:50 +03:00
aes_cbc_test_name();
if (encrypting) {
aes_cbc_test_encrypt();
} else {
aes_cbc_test_decrypt();
}
return 0;
}
2020-04-08 00:24:50 +03:00
void aes_cbc_test_name()
{
I_TEST((AES CBC class name));
Crypto::Cipher::AESCipher::CBCMode cipher("WellHelloFriends", 128, Crypto::Cipher::Intent::Encryption);
if (cipher.class_name() != "AES_CBC")
FAIL(Invalid class name);
else
PASS;
}
void aes_cbc_test_encrypt()
{
auto test_it = [](auto& cipher, auto& result) {
auto in = "This is a test! This is another test!"_b;
auto out = cipher.create_aligned_buffer(in.size());
auto iv = ByteBuffer::create_zeroed(Crypto::Cipher::AESCipher::block_size());
cipher.encrypt(in, out, iv);
if (out.size() != sizeof(result))
FAIL(size mismatch);
else if (memcmp(out.data(), result, out.size()) != 0) {
FAIL(invalid data);
print_buffer(out, Crypto::Cipher::AESCipher::block_size());
} else
PASS;
};
{
I_TEST((AES CBC with 128 bit key | Encrypt))
u8 result[] {
0xb8, 0x06, 0x7c, 0xf2, 0xa9, 0x56, 0x63, 0x58, 0x2d, 0x5c, 0xa1, 0x4b, 0xc5, 0xe3, 0x08,
0xcf, 0xb5, 0x93, 0xfb, 0x67, 0xb6, 0xf7, 0xaf, 0x45, 0x34, 0x64, 0x70, 0x9e, 0xc9, 0x1a,
0x8b, 0xd3, 0x70, 0x45, 0xf0, 0x79, 0x65, 0xca, 0xb9, 0x03, 0x88, 0x72, 0x1c, 0xdd, 0xab,
0x45, 0x6b, 0x1c
};
Crypto::Cipher::AESCipher::CBCMode cipher("WellHelloFriends", 128, Crypto::Cipher::Intent::Encryption);
test_it(cipher, result);
}
{
I_TEST((AES CBC with 192 bit key | Encrypt))
u8 result[] {
0xae, 0xd2, 0x70, 0xc4, 0x9c, 0xaa, 0x83, 0x33, 0xd3, 0xd3, 0xac, 0x11, 0x65, 0x35, 0xf7,
0x19, 0x48, 0x7c, 0x7a, 0x8a, 0x95, 0x64, 0xe7, 0xc6, 0x0a, 0xdf, 0x10, 0x06, 0xdc, 0x90,
0x68, 0x51, 0x09, 0xd7, 0x3b, 0x48, 0x1b, 0x8a, 0xd3, 0x50, 0x09, 0xba, 0xfc, 0xde, 0x11,
0xe0, 0x3f, 0xcb
};
Crypto::Cipher::AESCipher::CBCMode cipher("Well Hello Friends! whf!", 192, Crypto::Cipher::Intent::Encryption);
test_it(cipher, result);
}
{
I_TEST((AES CBC with 256 bit key | Encrypt))
u8 result[] {
0x0a, 0x44, 0x4d, 0x62, 0x9e, 0x8b, 0xd8, 0x11, 0x80, 0x48, 0x2a, 0x32, 0x53, 0x61, 0xe7,
0x59, 0x62, 0x55, 0x9e, 0xf4, 0xe6, 0xad, 0xea, 0xc5, 0x0b, 0xf6, 0xbc, 0x6a, 0xcb, 0x9c,
0x47, 0x9f, 0xc2, 0x21, 0xe6, 0x19, 0x62, 0xc3, 0x75, 0xca, 0xab, 0x2d, 0x18, 0xa1, 0x54,
0xd1, 0x41, 0xe6
};
Crypto::Cipher::AESCipher::CBCMode cipher("WellHelloFriendsWellHelloFriends", 256, Crypto::Cipher::Intent::Encryption);
test_it(cipher, result);
}
// TODO: Test non-CMS padding options
}
void aes_cbc_test_decrypt()
{
auto test_it = [](auto& cipher, auto& result, auto result_len) {
auto true_value = "This is a test! This is another test!";
auto in = ByteBuffer::copy(result, result_len);
auto out = cipher.create_aligned_buffer(in.size());
auto iv = ByteBuffer::create_zeroed(Crypto::Cipher::AESCipher::block_size());
cipher.decrypt(in, out, iv);
if (out.size() != strlen(true_value)) {
FAIL(size mismatch);
printf("Expected %zu bytes but got %zu\n", strlen(true_value), out.size());
} else if (memcmp(out.data(), true_value, strlen(true_value)) != 0) {
FAIL(invalid data);
print_buffer(out, Crypto::Cipher::AESCipher::block_size());
} else
PASS;
};
{
I_TEST((AES CBC with 128 bit key | Decrypt))
u8 result[] {
0xb8, 0x06, 0x7c, 0xf2, 0xa9, 0x56, 0x63, 0x58, 0x2d, 0x5c, 0xa1, 0x4b, 0xc5, 0xe3, 0x08,
0xcf, 0xb5, 0x93, 0xfb, 0x67, 0xb6, 0xf7, 0xaf, 0x45, 0x34, 0x64, 0x70, 0x9e, 0xc9, 0x1a,
0x8b, 0xd3, 0x70, 0x45, 0xf0, 0x79, 0x65, 0xca, 0xb9, 0x03, 0x88, 0x72, 0x1c, 0xdd, 0xab,
0x45, 0x6b, 0x1c
};
Crypto::Cipher::AESCipher::CBCMode cipher("WellHelloFriends", 128, Crypto::Cipher::Intent::Decryption);
test_it(cipher, result, 48);
}
{
I_TEST((AES CBC with 192 bit key | Decrypt))
u8 result[] {
0xae, 0xd2, 0x70, 0xc4, 0x9c, 0xaa, 0x83, 0x33, 0xd3, 0xd3, 0xac, 0x11, 0x65, 0x35, 0xf7,
0x19, 0x48, 0x7c, 0x7a, 0x8a, 0x95, 0x64, 0xe7, 0xc6, 0x0a, 0xdf, 0x10, 0x06, 0xdc, 0x90,
0x68, 0x51, 0x09, 0xd7, 0x3b, 0x48, 0x1b, 0x8a, 0xd3, 0x50, 0x09, 0xba, 0xfc, 0xde, 0x11,
0xe0, 0x3f, 0xcb
};
Crypto::Cipher::AESCipher::CBCMode cipher("Well Hello Friends! whf!", 192, Crypto::Cipher::Intent::Decryption);
test_it(cipher, result, 48);
}
{
I_TEST((AES CBC with 256 bit key | Decrypt))
u8 result[] {
0x0a, 0x44, 0x4d, 0x62, 0x9e, 0x8b, 0xd8, 0x11, 0x80, 0x48, 0x2a, 0x32, 0x53, 0x61, 0xe7,
0x59, 0x62, 0x55, 0x9e, 0xf4, 0xe6, 0xad, 0xea, 0xc5, 0x0b, 0xf6, 0xbc, 0x6a, 0xcb, 0x9c,
0x47, 0x9f, 0xc2, 0x21, 0xe6, 0x19, 0x62, 0xc3, 0x75, 0xca, 0xab, 0x2d, 0x18, 0xa1, 0x54,
0xd1, 0x41, 0xe6
};
Crypto::Cipher::AESCipher::CBCMode cipher("WellHelloFriendsWellHelloFriends", 256, Crypto::Cipher::Intent::Decryption);
test_it(cipher, result, 48);
}
// TODO: Test non-CMS padding options
}
int md5_tests()
{
2020-04-08 00:24:50 +03:00
md5_test_name();
md5_test_hash();
md5_test_consecutive_updates();
return 0;
}
2020-04-08 00:24:50 +03:00
void md5_test_name()
{
I_TEST((MD5 class name));
Crypto::Hash::MD5 md5;
if (md5.class_name() != "MD5")
FAIL(Invalid class name);
else
PASS;
}
void md5_test_hash()
{
{
I_TEST((MD5 Hashing | "Well hello friends"));
u8 result[] {
0xaf, 0x04, 0x3a, 0x08, 0x94, 0x38, 0x6e, 0x7f, 0xbf, 0x73, 0xe4, 0xaa, 0xf0, 0x8e, 0xee, 0x4c
};
auto digest = Crypto::Hash::MD5::hash("Well hello friends");
if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0) {
FAIL(Invalid hash);
print_buffer(ByteBuffer::wrap(digest.data, Crypto::Hash::MD5::digest_size()), -1);
} else {
PASS;
}
}
// RFC tests
{
I_TEST((MD5 Hashing | ""));
u8 result[] {
0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04, 0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e
};
auto digest = Crypto::Hash::MD5::hash("");
if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0) {
FAIL(Invalid hash);
print_buffer(ByteBuffer::wrap(digest.data, Crypto::Hash::MD5::digest_size()), -1);
} else {
PASS;
}
}
{
I_TEST((MD5 Hashing | "a"));
u8 result[] {
0x0c, 0xc1, 0x75, 0xb9, 0xc0, 0xf1, 0xb6, 0xa8, 0x31, 0xc3, 0x99, 0xe2, 0x69, 0x77, 0x26, 0x61
};
auto digest = Crypto::Hash::MD5::hash("a");
if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0) {
FAIL(Invalid hash);
print_buffer(ByteBuffer::wrap(digest.data, Crypto::Hash::MD5::digest_size()), -1);
} else {
PASS;
}
}
{
I_TEST((MD5 Hashing | "abcdefghijklmnopqrstuvwxyz"));
u8 result[] {
0xc3, 0xfc, 0xd3, 0xd7, 0x61, 0x92, 0xe4, 0x00, 0x7d, 0xfb, 0x49, 0x6c, 0xca, 0x67, 0xe1, 0x3b
};
auto digest = Crypto::Hash::MD5::hash("abcdefghijklmnopqrstuvwxyz");
if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0) {
FAIL(Invalid hash);
print_buffer(ByteBuffer::wrap(digest.data, Crypto::Hash::MD5::digest_size()), -1);
} else {
PASS;
}
}
{
I_TEST((MD5 Hashing | Long Sequence));
u8 result[] {
0x57, 0xed, 0xf4, 0xa2, 0x2b, 0xe3, 0xc9, 0x55, 0xac, 0x49, 0xda, 0x2e, 0x21, 0x07, 0xb6, 0x7a
};
auto digest = Crypto::Hash::MD5::hash("12345678901234567890123456789012345678901234567890123456789012345678901234567890");
if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0) {
FAIL(Invalid hash);
print_buffer(ByteBuffer::wrap(digest.data, Crypto::Hash::MD5::digest_size()), -1);
} else {
PASS;
}
}
}
void md5_test_consecutive_updates()
{
{
I_TEST((MD5 Hashing | Multiple Updates));
u8 result[] {
0xaf, 0x04, 0x3a, 0x08, 0x94, 0x38, 0x6e, 0x7f, 0xbf, 0x73, 0xe4, 0xaa, 0xf0, 0x8e, 0xee, 0x4c
};
Crypto::Hash::MD5 md5;
md5.update("Well");
md5.update(" hello ");
md5.update("friends");
auto digest = md5.digest();
if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0)
FAIL(Invalid hash);
else
PASS;
}
{
I_TEST((MD5 Hashing | Reuse));
Crypto::Hash::MD5 md5;
md5.update("Well");
md5.update(" hello ");
md5.update("friends");
auto digest0 = md5.digest();
md5.update("Well");
md5.update(" hello ");
md5.update("friends");
auto digest1 = md5.digest();
2020-04-08 00:24:50 +03:00
if (memcmp(digest0.data, digest1.data, Crypto::Hash::MD5::digest_size()) != 0)
FAIL(Cannot reuse);
else
PASS;
}
}
2020-04-08 00:24:50 +03:00
int hmac_md5_tests()
{
hmac_md5_test_name();
hmac_md5_test_process();
return 0;
}
2020-04-08 02:59:07 +03:00
int hmac_sha256_tests()
{
hmac_sha256_test_name();
hmac_sha256_test_process();
return 0;
}
int hmac_sha512_tests()
{
hmac_sha512_test_name();
hmac_sha512_test_process();
return 0;
}
2020-04-08 00:24:50 +03:00
void hmac_md5_test_name()
{
I_TEST((HMAC - MD5 | Class name));
Crypto::Authentication::HMAC<Crypto::Hash::MD5> hmac("Well Hello Friends");
if (hmac.class_name() != "HMAC-MD5")
FAIL(Invalid class name);
else
PASS;
}
void hmac_md5_test_process()
{
{
I_TEST((HMAC - MD5 | Basic));
Crypto::Authentication::HMAC<Crypto::Hash::MD5> hmac("Well Hello Friends");
u8 result[] {
0x3b, 0x5b, 0xde, 0x30, 0x3a, 0x54, 0x7b, 0xbb, 0x09, 0xfe, 0x78, 0x89, 0xbc, 0x9f, 0x22, 0xa3
};
auto mac = hmac.process("Some bogus data");
if (memcmp(result, mac.data, hmac.DigestSize) != 0) {
FAIL(Invalid mac);
print_buffer(ByteBuffer::wrap(mac.data, hmac.DigestSize), -1);
} else
PASS;
}
{
I_TEST((HMAC - MD5 | Reuse));
Crypto::Authentication::HMAC<Crypto::Hash::MD5> hmac("Well Hello Friends");
auto mac_0 = hmac.process("Some bogus data");
auto mac_1 = hmac.process("Some bogus data");
if (memcmp(mac_0.data, mac_1.data, hmac.DigestSize) != 0) {
FAIL(Cannot reuse);
} else
PASS;
}
}
2020-04-08 02:59:07 +03:00
int sha256_tests()
{
sha256_test_name();
sha256_test_hash();
return 0;
}
void sha256_test_name()
{
I_TEST((SHA256 class name));
Crypto::Hash::SHA256 sha;
if (sha.class_name() != "SHA256") {
FAIL(Invalid class name);
printf("%s\n", sha.class_name().characters());
} else
PASS;
}
void sha256_test_hash()
{
{
I_TEST((SHA256 Hashing | "Well hello friends"));
u8 result[] {
0x9a, 0xcd, 0x50, 0xf9, 0xa2, 0xaf, 0x37, 0xe4, 0x71, 0xf7, 0x61, 0xc3, 0xfe, 0x7b, 0x8d, 0xea, 0x56, 0x17, 0xe5, 0x1d, 0xac, 0x80, 0x2f, 0xe6, 0xc1, 0x77, 0xb7, 0x4a, 0xbf, 0x0a, 0xbb, 0x5a
};
auto digest = Crypto::Hash::SHA256::hash("Well hello friends");
if (memcmp(result, digest.data, Crypto::Hash::SHA256::digest_size()) != 0) {
FAIL(Invalid hash);
print_buffer(ByteBuffer::wrap(digest.data, Crypto::Hash::SHA256::digest_size()), -1);
} else
PASS;
}
{
I_TEST((SHA256 Hashing | ""));
u8 result[] {
0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55
};
auto digest = Crypto::Hash::SHA256::hash("");
if (memcmp(result, digest.data, Crypto::Hash::SHA256::digest_size()) != 0) {
FAIL(Invalid hash);
print_buffer(ByteBuffer::wrap(digest.data, Crypto::Hash::SHA256::digest_size()), -1);
} else
PASS;
}
}
void hmac_sha256_test_name()
{
I_TEST((HMAC - SHA256 | Class name));
Crypto::Authentication::HMAC<Crypto::Hash::SHA256> hmac("Well Hello Friends");
if (hmac.class_name() != "HMAC-SHA256")
FAIL(Invalid class name);
else
PASS;
}
void hmac_sha256_test_process()
{
{
I_TEST((HMAC - SHA256 | Basic));
Crypto::Authentication::HMAC<Crypto::Hash::SHA256> hmac("Well Hello Friends");
u8 result[] {
0x1a, 0xf2, 0x20, 0x62, 0xde, 0x3b, 0x84, 0x65, 0xc1, 0x25, 0x23, 0x99, 0x76, 0x15, 0x1b, 0xec, 0x15, 0x21, 0x82, 0x1f, 0x23, 0xca, 0x11, 0x66, 0xdd, 0x8c, 0x6e, 0xf1, 0x81, 0x3b, 0x7f, 0x1b
};
auto mac = hmac.process("Some bogus data");
if (memcmp(result, mac.data, hmac.DigestSize) != 0) {
FAIL(Invalid mac);
print_buffer(ByteBuffer::wrap(mac.data, hmac.DigestSize), -1);
} else
PASS;
}
{
I_TEST((HMAC - SHA256 | Reuse));
Crypto::Authentication::HMAC<Crypto::Hash::SHA256> hmac("Well Hello Friends");
auto mac_0 = hmac.process("Some bogus data");
auto mac_1 = hmac.process("Some bogus data");
if (memcmp(mac_0.data, mac_1.data, hmac.DigestSize) != 0) {
FAIL(Cannot reuse);
} else
PASS;
}
}
int sha512_tests()
{
sha512_test_name();
sha512_test_hash();
return 0;
}
void sha512_test_name()
{
I_TEST((SHA512 class name));
Crypto::Hash::SHA512 sha;
if (sha.class_name() != "SHA512") {
FAIL(Invalid class name);
printf("%s\n", sha.class_name().characters());
} else
PASS;
}
void sha512_test_hash()
{
{
I_TEST((SHA512 Hashing | "Well hello friends"));
u8 result[] {
0x00, 0xfe, 0x68, 0x09, 0x71, 0x0e, 0xcb, 0x2b, 0xe9, 0x58, 0x00, 0x13, 0x69, 0x6a, 0x9e, 0x9e, 0xbd, 0x09, 0x1b, 0xfe, 0x14, 0xc9, 0x13, 0x82, 0xc7, 0x40, 0x34, 0xfe, 0xca, 0xe6, 0x87, 0xcb, 0x26, 0x36, 0x92, 0xe6, 0x34, 0x94, 0x3a, 0x11, 0xe5, 0xbb, 0xb5, 0xeb, 0x8e, 0x70, 0xef, 0x64, 0xca, 0xf7, 0x21, 0xb1, 0xde, 0xf2, 0x34, 0x85, 0x6f, 0xa8, 0x56, 0xd8, 0x23, 0xa1, 0x3b, 0x29
};
auto digest = Crypto::Hash::SHA512::hash("Well hello friends");
if (memcmp(result, digest.data, Crypto::Hash::SHA512::digest_size()) != 0) {
FAIL(Invalid hash);
print_buffer(ByteBuffer::wrap(digest.data, Crypto::Hash::SHA512::digest_size()), -1);
} else
PASS;
}
{
I_TEST((SHA512 Hashing | ""));
u8 result[] {
0xcf, 0x83, 0xe1, 0x35, 0x7e, 0xef, 0xb8, 0xbd, 0xf1, 0x54, 0x28, 0x50, 0xd6, 0x6d, 0x80, 0x07, 0xd6, 0x20, 0xe4, 0x05, 0x0b, 0x57, 0x15, 0xdc, 0x83, 0xf4, 0xa9, 0x21, 0xd3, 0x6c, 0xe9, 0xce, 0x47, 0xd0, 0xd1, 0x3c, 0x5d, 0x85, 0xf2, 0xb0, 0xff, 0x83, 0x18, 0xd2, 0x87, 0x7e, 0xec, 0x2f, 0x63, 0xb9, 0x31, 0xbd, 0x47, 0x41, 0x7a, 0x81, 0xa5, 0x38, 0x32, 0x7a, 0xf9, 0x27, 0xda, 0x3e
};
auto digest = Crypto::Hash::SHA512::hash("");
if (memcmp(result, digest.data, Crypto::Hash::SHA512::digest_size()) != 0) {
FAIL(Invalid hash);
print_buffer(ByteBuffer::wrap(digest.data, Crypto::Hash::SHA512::digest_size()), -1);
} else
PASS;
}
}
void hmac_sha512_test_name()
{
I_TEST((HMAC - SHA512 | Class name));
Crypto::Authentication::HMAC<Crypto::Hash::SHA512> hmac("Well Hello Friends");
if (hmac.class_name() != "HMAC-SHA512")
FAIL(Invalid class name);
else
PASS;
}
void hmac_sha512_test_process()
{
{
I_TEST((HMAC - SHA512 | Basic));
Crypto::Authentication::HMAC<Crypto::Hash::SHA512> hmac("Well Hello Friends");
u8 result[] {
0xeb, 0xa8, 0x34, 0x11, 0xfd, 0x5b, 0x46, 0x5b, 0xef, 0xbb, 0x67, 0x5e, 0x7d, 0xc2, 0x7c, 0x2c, 0x6b, 0xe1, 0xcf, 0xe6, 0xc7, 0xe4, 0x7d, 0xeb, 0xca, 0x97, 0xb7, 0x4c, 0xd3, 0x4d, 0x6f, 0x08, 0x9f, 0x0d, 0x3a, 0xf1, 0xcb, 0x00, 0x79, 0x78, 0x2f, 0x05, 0x8e, 0xeb, 0x94, 0x48, 0x0d, 0x50, 0x64, 0x3b, 0xca, 0x70, 0xe2, 0x69, 0x38, 0x4f, 0xe4, 0xb0, 0x49, 0x0f, 0xc5, 0x4c, 0x7a, 0xa7
};
auto mac = hmac.process("Some bogus data");
if (memcmp(result, mac.data, hmac.DigestSize) != 0) {
FAIL(Invalid mac);
print_buffer(ByteBuffer::wrap(mac.data, hmac.DigestSize), -1);
} else
PASS;
}
{
I_TEST((HMAC - SHA512 | Reuse));
Crypto::Authentication::HMAC<Crypto::Hash::SHA512> hmac("Well Hello Friends");
auto mac_0 = hmac.process("Some bogus data");
auto mac_1 = hmac.process("Some bogus data");
if (memcmp(mac_0.data, mac_1.data, hmac.DigestSize) != 0) {
FAIL(Cannot reuse);
} else
PASS;
}
}
int bigint_tests()
{
bigint_test_fibo500();
bigint_addition_edgecases();
bigint_subtraction();
bigint_multiplication();
bigint_division();
bigint_base10();
bigint_import_export();
return 0;
}
Crypto::UnsignedBigInteger bigint_fibonacci(size_t n)
{
Crypto::UnsignedBigInteger num1(0);
Crypto::UnsignedBigInteger num2(1);
for (size_t i = 0; i < n; ++i) {
Crypto::UnsignedBigInteger t = num1.add(num2);
num2 = num1;
num1 = t;
}
return num1;
}
void bigint_test_fibo500()
{
{
I_TEST((BigInteger | Fibonacci500));
bool pass = (bigint_fibonacci(500).words() == AK::Vector<u32> { 315178285, 505575602, 1883328078, 125027121, 3649625763, 347570207, 74535262, 3832543808, 2472133297, 1600064941, 65273441 });
if (pass)
PASS;
else {
FAIL(Incorrect Result);
}
}
}
void bigint_addition_edgecases()
{
{
I_TEST((BigInteger | Edge Cases));
Crypto::UnsignedBigInteger num1;
Crypto::UnsignedBigInteger num2(70);
Crypto::UnsignedBigInteger num3 = num1.add(num2);
bool pass = (num3 == num2);
pass &= (num1 == Crypto::UnsignedBigInteger(0));
if (pass) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((BigInteger | Borrow with zero));
Crypto::UnsignedBigInteger num1({ UINT32_MAX - 3, UINT32_MAX });
Crypto::UnsignedBigInteger num2({ UINT32_MAX - 2, 0 });
if (num1.add(num2).words() == Vector<u32> { 4294967289, 0, 1 }) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
}
void bigint_subtraction()
{
{
I_TEST((BigInteger | Simple Subtraction 1));
Crypto::UnsignedBigInteger num1(80);
Crypto::UnsignedBigInteger num2(70);
if (num1.sub(num2) == Crypto::UnsignedBigInteger(10)) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((BigInteger | Simple Subtraction 2));
Crypto::UnsignedBigInteger num1(50);
Crypto::UnsignedBigInteger num2(70);
if (num1.sub(num2).is_invalid()) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((BigInteger | Subtraction with borrow));
Crypto::UnsignedBigInteger num1(UINT32_MAX);
Crypto::UnsignedBigInteger num2(1);
Crypto::UnsignedBigInteger num3 = num1.add(num2);
Crypto::UnsignedBigInteger result = num3.sub(num2);
if (result == num1) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((BigInteger | Subtraction with large numbers));
Crypto::UnsignedBigInteger num1 = bigint_fibonacci(343);
Crypto::UnsignedBigInteger num2 = bigint_fibonacci(218);
Crypto::UnsignedBigInteger result = num1.sub(num2);
if ((result.add(num2) == num1)
&& (result.words() == Vector<u32> { 811430588, 2958904896, 1130908877, 2830569969, 3243275482, 3047460725, 774025231, 7990 })) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((BigInteger | Subtraction with large numbers 2));
Crypto::UnsignedBigInteger num1(Vector<u32> { 1483061863, 446680044, 1123294122, 191895498, 3347106536, 16, 0, 0, 0 });
Crypto::UnsignedBigInteger num2(Vector<u32> { 4196414175, 1117247942, 1123294122, 191895498, 3347106536, 16 });
Crypto::UnsignedBigInteger result = num1.sub(num2);
// this test only verifies that we don't crash on an assertion
PASS;
}
{
I_TEST((BigInteger | Subtraction Regerssion 1));
auto num = Crypto::UnsignedBigInteger { 1 }.shift_left(256);
if (num.sub(1).words() == Vector<u32> { 4294967295, 4294967295, 4294967295, 4294967295, 4294967295, 4294967295, 4294967295, 4294967295, 0 }) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
}
void bigint_multiplication()
{
{
I_TEST((BigInteger | Simple Multipliction));
Crypto::UnsignedBigInteger num1(8);
Crypto::UnsignedBigInteger num2(251);
Crypto::UnsignedBigInteger result = num1.multiply(num2);
if (result.words() == Vector<u32> { 2008 }) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((BigInteger | Multiplications with big numbers 1));
Crypto::UnsignedBigInteger num1 = bigint_fibonacci(200);
Crypto::UnsignedBigInteger num2(12345678);
Crypto::UnsignedBigInteger result = num1.multiply(num2);
if (result.words() == Vector<u32> { 669961318, 143970113, 4028714974, 3164551305, 1589380278, 2 }) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((BigInteger | Multiplications with big numbers 2));
Crypto::UnsignedBigInteger num1 = bigint_fibonacci(200);
Crypto::UnsignedBigInteger num2 = bigint_fibonacci(341);
Crypto::UnsignedBigInteger result = num1.multiply(num2);
if (result.words() == Vector<u32> { 3017415433, 2741793511, 1957755698, 3731653885, 3154681877, 785762127, 3200178098, 4260616581, 529754471, 3632684436, 1073347813, 2516430 }) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
}
void bigint_division()
{
{
I_TEST((BigInteger | Simple Division));
Crypto::UnsignedBigInteger num1(27194);
Crypto::UnsignedBigInteger num2(251);
auto result = num1.divide(num2);
Crypto::UnsignedDivisionResult expected = { Crypto::UnsignedBigInteger(108), Crypto::UnsignedBigInteger(86) };
if (result.quotient == expected.quotient && result.remainder == expected.remainder) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((BigInteger | Division with big numbers));
Crypto::UnsignedBigInteger num1 = bigint_fibonacci(386);
Crypto::UnsignedBigInteger num2 = bigint_fibonacci(238);
auto result = num1.divide(num2);
Crypto::UnsignedDivisionResult expected = {
Crypto::UnsignedBigInteger(Vector<u32> { 2300984486, 2637503534, 2022805584, 107 }),
Crypto::UnsignedBigInteger(Vector<u32> { 1483061863, 446680044, 1123294122, 191895498, 3347106536, 16, 0, 0, 0 })
};
if (result.quotient == expected.quotient && result.remainder == expected.remainder) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((BigInteger | Combined test));
auto num1 = bigint_fibonacci(497);
auto num2 = bigint_fibonacci(238);
auto div_result = num1.divide(num2);
if (div_result.quotient.multiply(num2).add(div_result.remainder) == num1) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
}
void bigint_base10()
{
{
I_TEST((BigInteger | From String));
auto result = Crypto::UnsignedBigInteger::from_base10("57195071295721390579057195715793");
if (result.words() == Vector<u32> { 3806301393, 954919431, 3879607298, 721 }) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((BigInteger | To String));
auto result = Crypto::UnsignedBigInteger { Vector<u32> { 3806301393, 954919431, 3879607298, 721 } }.to_base10();
if (result == "57195071295721390579057195715793") {
PASS;
} else {
FAIL(Incorrect Result);
}
}
}
void bigint_import_export()
{
{
I_TEST((BigInteger | BigEndian Decode / Encode roundtrip));
u8 random_bytes[128];
u8 target_buffer[128];
arc4random_buf(random_bytes, 128);
auto encoded = Crypto::UnsignedBigInteger::import_data(random_bytes, 128);
encoded.export_data(target_buffer, 128);
if (memcmp(target_buffer, random_bytes, 128) != 0)
FAIL(Could not roundtrip);
else
PASS;
}
}