ladybird/Libraries/LibTLS/TLSv12.cpp

1853 lines
63 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2020, Ali Mohammad Pur <ali.mpfard@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <LibCore/Timer.h>
#include <LibCrypto/ASN1/DER.h>
#include <LibCrypto/PK/Code/EMSA_PSS.h>
#include <LibTLS/TLSv12.h>
//#define TLS_DEBUG
namespace {
inline static void print_buffer(const ByteBuffer& buffer)
{
for (size_t i { 0 }; i < buffer.size(); ++i)
dbgprintf("%02x ", buffer[i]);
dbgprintf("\n");
}
inline static void print_buffer(const u8* buffer, size_t size)
{
for (size_t i { 0 }; i < size; ++i)
dbgprintf("%02x ", buffer[i]);
dbgprintf("\n");
}
}
using namespace Crypto;
namespace {
struct OIDChain {
void* root;
u8* oid;
};
}
namespace TLS {
// "for now" q&d implementation of ASN1
namespace {
static bool _asn1_is_field_present(const u32* fields, const u32* prefix)
{
size_t i = 0;
while (prefix[i]) {
if (fields[i] != prefix[i])
return false;
++i;
}
return true;
}
static bool _asn1_is_oid(const u8* oid, const u8* compare, size_t length = 3)
{
size_t i = 0;
while (oid[i] && i < length) {
if (oid[i] != compare[i])
return false;
++i;
}
return true;
}
static void _set_algorithm(u32&, const u8* value, size_t length)
{
if (length != 9) {
dbg() << "unsupported algorithm " << value;
}
dbg() << "FIXME: Set algorithm";
}
static size_t _get_asn1_length(const u8* buffer, size_t length, size_t& octets)
{
octets = 0;
if (length < 1)
return 0;
u8 size = buffer[0];
if (size & 0x80) {
octets = size & 0x7f;
if (octets > length - 1) {
return 0;
}
auto reference_octets = octets;
if (octets > 4)
reference_octets = 4;
size_t long_size = 0, coeff = 1;
for (auto i = reference_octets; i > 0; --i) {
long_size += buffer[i] * coeff;
coeff *= 0x100;
}
++octets;
return long_size;
}
++octets;
return size;
}
static ssize_t _parse_asn1(Context& context, Certificate& cert, const u8* buffer, size_t size, int level, u32* fields, u8* has_key, int client_cert, u8* root_oid, OIDChain* chain)
{
OIDChain local_chain;
local_chain.root = chain;
size_t position = 0;
// parse DER...again
size_t index = 0;
u8 oid[16] { 0 };
local_chain.oid = oid;
if (has_key)
*has_key = 0;
u8 local_has_key = 0;
const u8* cert_data = nullptr;
size_t cert_length = 0;
while (position < size) {
size_t start_position = position;
if (size - position < 2) {
dbg() << "not enough data for certificate size";
return (i8)Error::NeedMoreData;
}
u8 first = buffer[position++];
u8 type = first & 0x1f;
u8 constructed = first & 0x20;
size_t octets = 0;
u32 temp;
index++;
if (level <= 0xff)
fields[level - 1] = index;
size_t length = _get_asn1_length((const u8*)&buffer[position], size - position, octets);
if (octets > 4 || octets > size - position) {
dbg() << "could not read the certificate";
return position;
}
position += octets;
if (size - position < length) {
dbg() << "not enough data for sequence";
return (i8)Error::NeedMoreData;
}
if (length && constructed) {
switch (type) {
case 0x03:
break;
case 0x10:
if (level == 2 && index == 1) {
cert_length = length + position - start_position;
cert_data = buffer + start_position;
}
// public key data
if (!cert.version && _asn1_is_field_present(fields, Constants::priv_der_id)) {
temp = length + position - start_position;
if (cert.der.size() < temp) {
cert.der.grow(temp);
} else {
cert.der.trim(temp);
}
cert.der.overwrite(0, buffer + start_position, temp);
}
break;
default:
break;
}
local_has_key = false;
_parse_asn1(context, cert, buffer + position, length, level + 1, fields, &local_has_key, client_cert, root_oid, &local_chain);
if ((local_has_key && (!context.is_server || client_cert)) || (client_cert || _asn1_is_field_present(fields, Constants::pk_id))) {
temp = length + position - start_position;
if (cert.der.size() < temp) {
cert.der.grow(temp);
} else {
cert.der.trim(temp);
}
cert.der.overwrite(0, buffer + start_position, temp);
}
} else {
switch (type) {
case 0x00:
return position;
break;
case 0x01:
temp = buffer[position];
break;
case 0x02:
if (_asn1_is_field_present(fields, Constants::pk_id)) {
if (has_key)
*has_key = true;
if (index == 1)
cert.public_key.set(
Crypto::UnsignedBigInteger::import_data(buffer + position, length),
cert.public_key.public_exponent());
else if (index == 2)
cert.public_key.set(
cert.public_key.modulus(),
Crypto::UnsignedBigInteger::import_data(buffer + position, length));
} else if (_asn1_is_field_present(fields, Constants::serial_id)) {
cert.serial_number = Crypto::UnsignedBigInteger::import_data(buffer + position, length);
}
if (_asn1_is_field_present(fields, Constants::version_id)) {
if (length == 1)
cert.version = buffer[position];
}
// print_buffer(ByteBuffer::wrap(buffer + position, length));
break;
case 0x03:
if (_asn1_is_field_present(fields, Constants::pk_id)) {
if (has_key)
*has_key = true;
}
if (_asn1_is_field_present(fields, Constants::sign_id)) {
auto* value = buffer + position;
auto len = length;
if (!value[0] && len % 2) {
++value;
--len;
}
cert.sign_key = ByteBuffer::copy(value, len);
} else {
if (buffer[position] == 0 && length > 256) {
_parse_asn1(context, cert, buffer + position + 1, length - 1, level + 1, fields, &local_has_key, client_cert, root_oid, &local_chain);
} else {
_parse_asn1(context, cert, buffer + position, length, level + 1, fields, &local_has_key, client_cert, root_oid, &local_chain);
}
}
break;
case 0x04:
_parse_asn1(context, cert, buffer + position, length, level + 1, fields, &local_has_key, client_cert, root_oid, &local_chain);
break;
case 0x05:
break;
case 0x06:
if (_asn1_is_field_present(fields, Constants::pk_id)) {
_set_algorithm(cert.key_algorithm, buffer + position, length);
}
if (_asn1_is_field_present(fields, Constants::algorithm_id)) {
_set_algorithm(cert.algorithm, buffer + position, length);
}
if (length < 16)
memcpy(oid, buffer + position, length);
else
memcpy(oid, buffer + position, 16);
if (root_oid)
memcpy(root_oid, oid, 16);
break;
case 0x09:
break;
case 0x17:
case 0x018:
// time
// ignore
break;
case 0x013:
case 0x0c:
case 0x14:
case 0x15:
case 0x16:
case 0x19:
case 0x1a:
case 0x1b:
case 0x1c:
case 0x1d:
case 0x1e:
// printable string and such
if (_asn1_is_field_present(fields, Constants::issurer_id)) {
if (_asn1_is_oid(oid, Constants::country_oid)) {
cert.issuer_country = String { (const char*)buffer + position, length };
} else if (_asn1_is_oid(oid, Constants::state_oid)) {
cert.issuer_state = String { (const char*)buffer + position, length };
} else if (_asn1_is_oid(oid, Constants::location_oid)) {
cert.issuer_location = String { (const char*)buffer + position, length };
} else if (_asn1_is_oid(oid, Constants::entity_oid)) {
cert.issuer_entity = String { (const char*)buffer + position, length };
} else if (_asn1_is_oid(oid, Constants::subject_oid)) {
cert.issuer_subject = String { (const char*)buffer + position, length };
}
} else if (_asn1_is_field_present(fields, Constants::owner_id)) {
if (_asn1_is_oid(oid, Constants::country_oid)) {
cert.country = String { (const char*)buffer + position, length };
} else if (_asn1_is_oid(oid, Constants::state_oid)) {
cert.state = String { (const char*)buffer + position, length };
} else if (_asn1_is_oid(oid, Constants::location_oid)) {
cert.location = String { (const char*)buffer + position, length };
} else if (_asn1_is_oid(oid, Constants::entity_oid)) {
cert.entity = String { (const char*)buffer + position, length };
} else if (_asn1_is_oid(oid, Constants::subject_oid)) {
cert.subject = String { (const char*)buffer + position, length };
}
}
break;
default:
// dbg() << "unused field " << type;
break;
}
}
position += length;
}
if (level == 2 && cert.sign_key.size() && cert_length && cert_data) {
dbg() << "FIXME: Cert.fingerprint";
}
return position;
}
}
Optional<Certificate> TLSv12::parse_asn1(const ByteBuffer& buffer, bool)
{
// FIXME: Our ASN.1 parser is not quite up to the task of
// parsing this X.509 certificate, so for the
// time being, we will "parse" the certificate
// manually right here.
Certificate cert;
u32 fields[0xff];
_parse_asn1(m_context, cert, buffer.data(), buffer.size(), 1, fields, nullptr, 0, nullptr, nullptr);
#ifdef TLS_DEBUG
dbg() << "Certificate issued for " << cert.subject << " by " << cert.issuer_subject;
#endif
return cert;
}
ByteBuffer TLSv12::build_hello()
{
// arc4random_buf(&m_context.local_random, 32);
auto packet_version = (u16)m_context.version;
auto version = (u16)m_context.version;
PacketBuilder builder { MessageType::Handshake, packet_version };
// client hello
builder.append((u8)0x1);
// hello length (for later)
u8 dummy[3];
builder.append(dummy, 3);
auto start_length = builder.length();
builder.append(version);
builder.append(m_context.local_random, sizeof(m_context.local_random));
builder.append(m_context.session_id_size);
if (m_context.session_id_size)
builder.append(m_context.session_id, m_context.session_id_size);
size_t extension_length = 0;
size_t alpn_length = 0;
size_t alpn_negotiated_length = 0;
// ALPN
if (!m_context.negotiated_alpn.is_null()) {
alpn_negotiated_length = m_context.negotiated_alpn.length();
alpn_length = alpn_negotiated_length + 1;
extension_length += alpn_length + 6;
} else if (m_context.alpn.size()) {
for (auto& alpn : m_context.alpn) {
size_t length = alpn.length();
alpn_length += length + 1;
}
if (alpn_length)
extension_length += alpn_length + 6;
}
// Ciphers
builder.append((u16)(4 * sizeof(u16)));
builder.append((u16)CipherSuite::RSA_WITH_AES_128_CBC_SHA256);
builder.append((u16)CipherSuite::RSA_WITH_AES_256_CBC_SHA256);
builder.append((u16)CipherSuite::RSA_WITH_AES_128_CBC_SHA);
builder.append((u16)CipherSuite::RSA_WITH_AES_256_CBC_SHA);
// we don't like compression
builder.append((u8)1);
builder.append((u8)0);
// set SNI if we have one
auto sni_length = 0;
if (!m_context.SNI.is_null())
sni_length = m_context.SNI.length();
if (sni_length)
extension_length += sni_length + 9;
builder.append((u16)extension_length);
if (sni_length) {
// SNI extension
builder.append((u16)0x00);
// extension length
builder.append((u16)(sni_length + 5));
// SNI length
builder.append((u16)(sni_length + 3));
// SNI type
builder.append((u8)0);
// SNI host length + value
builder.append((u16)sni_length);
builder.append((const u8*)m_context.SNI.characters(), sni_length);
}
if (alpn_length) {
// TODO
ASSERT_NOT_REACHED();
}
// set the "length" field of the packet
size_t remaining = builder.length() - start_length;
size_t payload_position = 6;
builder.set(payload_position, remaining / 0x10000);
remaining %= 0x10000;
builder.set(payload_position + 1, remaining / 0x100);
remaining %= 0x100;
builder.set(payload_position + 2, remaining);
auto packet = builder.build();
update_packet(packet);
return packet;
}
ByteBuffer TLSv12::build_alert(bool critical, u8 code)
{
dbg() << "FIXME: build_alert";
(void)critical;
(void)code;
return {};
}
ByteBuffer TLSv12::build_finished()
{
PacketBuilder builder { MessageType::Handshake, m_context.version, 12 + 64 };
builder.append((u8)0x14);
builder.append_u24(12);
size_t out_size = 12;
u8 out[out_size];
auto outbuffer = ByteBuffer::wrap(out, out_size);
auto dummy = ByteBuffer::create_zeroed(0);
auto digest = m_context.handshake_hash.digest();
auto hashbuf = ByteBuffer::wrap(digest.immutable_data(), m_context.handshake_hash.digest_size());
pseudorandom_function(outbuffer, m_context.master_key, (const u8*)"client finished", 15, hashbuf, dummy);
builder.append(outbuffer);
auto packet = builder.build();
update_packet(packet);
return packet;
}
ByteBuffer TLSv12::build_certificate()
{
dbg() << "FIXME: build_certificate";
return {};
}
ByteBuffer TLSv12::build_change_cipher_spec()
{
PacketBuilder builder { MessageType::ChangeCipher, m_context.version, 64 };
builder.append((u8)1);
auto packet = builder.build();
update_packet(packet);
m_context.local_sequence_number = 0;
return packet;
}
ByteBuffer TLSv12::build_server_key_exchange()
{
dbg() << "FIXME: build_server_key_exchange";
return {};
}
ByteBuffer TLSv12::build_client_key_exchange()
{
PacketBuilder builder { MessageType::Handshake, m_context.version };
builder.append((u8)0x10);
build_random(builder);
m_context.connection_status = 2;
auto packet = builder.build();
update_packet(packet);
return packet;
}
bool TLSv12::expand_key()
{
u8 key[192]; // soooooooo many constants
auto key_buffer = ByteBuffer::wrap(key, 192);
if (m_context.master_key.size() == 0) {
dbg() << "expand_key() with empty master key";
return false;
}
auto key_size = key_length();
auto mac_size = mac_length();
auto iv_size = iv_length();
pseudorandom_function(
key_buffer,
m_context.master_key,
(const u8*)"key expansion", 13,
ByteBuffer::wrap(m_context.remote_random, 32),
ByteBuffer::wrap(m_context.local_random, 32));
size_t offset = 0;
memcpy(m_context.crypto.local_mac, key + offset, mac_size);
offset += mac_size;
memcpy(m_context.crypto.remote_mac, key + offset, mac_size);
offset += mac_size;
auto client_key = key + offset;
offset += key_size;
auto server_key = key + offset;
offset += key_size;
auto client_iv = key + offset;
offset += iv_size;
auto server_iv = key + offset;
offset += iv_size;
#ifdef TLS_DEBUG
dbg() << "client key";
print_buffer(client_key, key_size);
dbg() << "server key";
print_buffer(server_key, key_size);
dbg() << "client iv";
print_buffer(client_iv, iv_size);
dbg() << "server iv";
print_buffer(server_iv, iv_size);
dbg() << "client mac key";
print_buffer(m_context.crypto.local_mac, mac_size);
dbg() << "server mac key";
print_buffer(m_context.crypto.remote_mac, mac_size);
#endif
memcpy(m_context.crypto.local_iv, client_iv, iv_size);
memcpy(m_context.crypto.remote_iv, server_iv, iv_size);
m_aes_local = make<Crypto::Cipher::AESCipher::CBCMode>(ByteBuffer::wrap(client_key, key_size), key_size * 8, Crypto::Cipher::Intent::Encryption, Crypto::Cipher::PaddingMode::RFC5246);
m_aes_remote = make<Crypto::Cipher::AESCipher::CBCMode>(ByteBuffer::wrap(server_key, key_size), key_size * 8, Crypto::Cipher::Intent::Decryption, Crypto::Cipher::PaddingMode::RFC5246);
m_context.crypto.created = 1;
return true;
}
void TLSv12::pseudorandom_function(ByteBuffer& output, const ByteBuffer& secret, const u8* label, size_t label_length, const ByteBuffer& seed, const ByteBuffer& seed_b)
{
if (!secret.size()) {
dbg() << "null secret";
return;
}
// RFC 5246: "In this section, we define one PRF, based on HMAC. This PRF with the
// SHA-256 hash function is used for all cipher suites defined in this
// document and in TLS documents published prior to this document when
// TLS 1.2 is negotiated."
// Apparently this PRF _always_ uses SHA256
Crypto::Authentication::HMAC<Crypto::Hash::SHA256> hmac(secret);
auto l_seed_size = label_length + seed.size() + seed_b.size();
u8 l_seed[l_seed_size];
auto label_seed_buffer = ByteBuffer::wrap(l_seed, l_seed_size);
label_seed_buffer.overwrite(0, label, label_length);
label_seed_buffer.overwrite(label_length, seed.data(), seed.size());
label_seed_buffer.overwrite(label_length + seed.size(), seed_b.data(), seed_b.size());
auto digest_size = hmac.digest_size();
u8 digest[digest_size];
auto digest_0 = ByteBuffer::wrap(digest, digest_size);
digest_0.overwrite(0, hmac.process(label_seed_buffer).immutable_data(), digest_size);
size_t index = 0;
while (index < output.size()) {
hmac.update(digest_0);
hmac.update(label_seed_buffer);
auto digest_1 = hmac.digest();
auto copy_size = min(digest_size, output.size() - index);
output.overwrite(index, digest_1.immutable_data(), copy_size);
index += copy_size;
digest_0.overwrite(0, hmac.process(digest_0).immutable_data(), digest_size);
}
}
bool TLSv12::compute_master_secret(size_t length)
{
if (m_context.premaster_key.size() == 0 || length < 48) {
dbg() << "there's no way I can make a master secret like this";
dbg() << "I'd like to talk to your manager about this length of " << length;
return false;
}
m_context.master_key.clear();
m_context.master_key.grow(length);
pseudorandom_function(
m_context.master_key,
m_context.premaster_key,
(const u8*)"master secret", 13,
ByteBuffer::wrap(m_context.local_random, 32),
ByteBuffer::wrap(m_context.remote_random, 32));
m_context.premaster_key.clear();
#ifdef TLS_DEBUG
dbg() << "master key:";
print_buffer(m_context.master_key);
#endif
expand_key();
return true;
}
void TLSv12::build_random(PacketBuilder& builder)
{
u8 random_bytes[48] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48 };
size_t bytes = 48;
// arc4random_buf(random_bytes, bytes);
if (m_context.is_server) {
dbg() << "Server mode not supported";
return;
} else {
*(u16*)random_bytes = convert_between_host_and_network((u16)Version::V12);
}
m_context.premaster_key = ByteBuffer::copy(random_bytes, bytes);
const auto& certificate = m_context.certificates[0];
#ifdef TLS_DEBUG
dbg() << "PreMaster secret";
print_buffer(m_context.premaster_key);
#endif
Crypto::PK::RSA_PKCS1_EME rsa(certificate.public_key.modulus(), 0, certificate.public_key.public_exponent());
u8 out[rsa.output_size()];
auto outbuf = ByteBuffer::wrap(out, rsa.output_size());
rsa.encrypt(m_context.premaster_key, outbuf);
#ifdef TLS_DEBUG
dbg() << "Encrypted: ";
print_buffer(outbuf);
#endif
if (!compute_master_secret(bytes)) {
dbg() << "oh noes we could not derive a master key :(";
return;
}
builder.append_u24(outbuf.size() + 2);
builder.append((u16)outbuf.size());
builder.append(outbuf);
}
Optional<ByteBuffer> TLSv12::read()
{
if (m_context.application_buffer.size()) {
auto buf = m_context.application_buffer.slice(0, m_context.application_buffer.size());
m_context.application_buffer.clear();
return buf;
} else
return {};
}
ByteBuffer TLSv12::read(size_t max_size)
{
if (m_context.application_buffer.size()) {
auto length = min(m_context.application_buffer.size(), max_size);
auto buf = m_context.application_buffer.slice(0, length);
m_context.application_buffer = m_context.application_buffer.slice(length, m_context.application_buffer.size() - length);
return buf;
} else
return {};
}
ByteBuffer TLSv12::read_line(size_t max_size)
{
if (!can_read_line())
return {};
auto* start = m_context.application_buffer.data();
auto* newline = (u8*)memchr(m_context.application_buffer.data(), '\n', m_context.application_buffer.size());
ASSERT(newline);
size_t offset = newline - start;
if (offset > max_size)
return {};
auto buffer = ByteBuffer::copy(start, offset);
m_context.application_buffer = m_context.application_buffer.slice(offset + 1, m_context.application_buffer.size() - offset - 1);
return buffer;
}
bool TLSv12::write(const ByteBuffer& buffer)
{
if (m_context.connection_status != 0xff) {
dbg() << "write request while not connected";
return false;
}
PacketBuilder builder { MessageType::ApplicationData, m_context.version, buffer.size() };
builder.append(buffer);
auto packet = builder.build();
update_packet(packet);
write_packet(packet);
return true;
}
void TLSv12::write_packet(ByteBuffer& packet)
{
m_context.tls_buffer.append(packet.data(), packet.size());
}
void TLSv12::update_packet(ByteBuffer& packet)
{
u32 header_size = 5;
*(u16*)packet.offset_pointer(3) = convert_between_host_and_network((u16)(packet.size() - header_size));
if (packet[0] != (u8)MessageType::ChangeCipher) {
if (packet[0] == (u8)MessageType::Handshake && packet.size() > header_size) {
u8 handshake_type = packet[header_size];
if (handshake_type != 0x00 && handshake_type != 0x03) {
update_hash(packet.slice_view(header_size, packet.size() - header_size));
}
}
if (m_context.cipher_spec_set && m_context.crypto.created) {
size_t length = packet.size() - header_size + mac_length();
auto block_size = m_aes_local->cipher().block_size();
// if length is a multiple of block size, pad it up again
// since it seems no one handles aligned unpadded blocks
size_t padding = 0;
if (length % block_size == 0) {
padding = block_size;
length += padding;
}
size_t mac_size = mac_length();
if (m_context.crypto.created == 1) {
// `buffer' will continue to be encrypted
auto buffer = ByteBuffer::create_zeroed(length);
size_t buffer_position = 0;
u16 aligned_length = length + block_size - length % block_size;
auto iv_size = iv_length();
// we need enough space for a header, iv_length bytes of IV and whatever the packet contains
auto ct = ByteBuffer::create_zeroed(aligned_length + header_size + iv_size);
// copy the header over
ct.overwrite(0, packet.data(), header_size - 2);
// copy the packet, sans the header
buffer.overwrite(buffer_position, packet.offset_pointer(header_size), packet.size() - header_size);
buffer_position += packet.size() - header_size;
// get the appropricate HMAC value for the entire packet
auto mac = hmac_message(packet, {}, mac_size, true);
// write the MAC
buffer.overwrite(buffer_position, mac.data(), mac.size());
buffer_position += mac.size();
// if there's some padding to be done (since a packet MUST always be padded)
// apply it manually
if (padding) {
memset(buffer.offset_pointer(buffer_position), padding - 1, padding);
buffer_position += padding;
}
// should be the same value, but the manual padding
// throws a wrench into our plans
buffer.trim(buffer_position);
// FIXME: REALLY Should be filled with random bytes
auto iv = ByteBuffer::create_zeroed(iv_size);
// write it into the ciphertext portion of the message
ct.overwrite(header_size, iv.data(), iv.size());
ct.trim(length + block_size - length % block_size + header_size + block_size - padding);
// get a block to encrypt into
auto view = ct.slice_view(header_size + iv_size, length + block_size - length % block_size + block_size - padding - iv_size);
// encrypt the message
m_aes_local->encrypt(buffer, view, iv);
// store the correct ciphertext length into the packet
u16 ct_length = (u16)ct.size() - header_size;
*(u16*)ct.offset_pointer(header_size - 2) = convert_between_host_and_network(ct_length);
// replace the packet with the ciphertext
packet = ct;
}
}
}
++m_context.local_sequence_number;
}
ssize_t TLSv12::handle_hello(const ByteBuffer& buffer, size_t& write_packets)
{
write_packets = 0;
if (m_context.connection_status != 0 && m_context.connection_status != 4) {
dbg() << "unexpected hello message";
return (i8)Error::UnexpectedMessage;
}
ssize_t res = 0;
size_t min_hello_size = 41;
if (min_hello_size > buffer.size()) {
dbg() << "need more data";
return (i8)Error::NeedMoreData;
}
size_t following_bytes = buffer[0] * 0x10000 + buffer[1] * 0x100 + buffer[2];
res += 3;
if (buffer.size() - res < following_bytes) {
dbg() << "not enough data after header: " << buffer.size() - res << " < " << following_bytes;
return (i8)Error::NeedMoreData;
}
if (buffer.size() - res < 2) {
dbg() << "not enough data for version";
return (i8)Error::NeedMoreData;
}
auto version = (Version)convert_between_host_and_network(*(const u16*)buffer.offset_pointer(res));
res += 2;
if (!version_supported(version))
return (i8)Error::NotSafe;
memcpy(m_context.remote_random, buffer.offset_pointer(res), sizeof(m_context.remote_random));
res += sizeof(m_context.remote_random);
u8 session_length = buffer[res++];
if (buffer.size() - res < session_length) {
dbg() << "not enough data for session id";
return (i8)Error::NeedMoreData;
}
if (session_length && session_length <= 32) {
memcpy(m_context.session_id, buffer.offset_pointer(res), session_length);
m_context.session_id_size = session_length;
dbg() << "Remote session ID:";
print_buffer(ByteBuffer::wrap(m_context.session_id, session_length));
} else {
m_context.session_id_size = 0;
}
res += session_length;
if (buffer.size() - res < 2) {
dbg() << "not enough data for cipher suite listing";
return (i8)Error::NeedMoreData;
}
auto cipher = (CipherSuite)convert_between_host_and_network(*(const u16*)buffer.offset_pointer(res));
res += 2;
if (!cipher_supported(cipher)) {
m_context.cipher = CipherSuite::Invalid;
dbg() << "No supported cipher could be agreed upon";
return (i8)Error::NoCommonCipher;
}
m_context.cipher = cipher;
dbg() << "Cipher: " << (u16)cipher;
// The handshake hash function is _always_ SHA256
m_context.handshake_hash.initialize(Crypto::Hash::HashKind::SHA256);
if (buffer.size() - res < 1) {
dbg() << "not enough data for compression spec";
return (i8)Error::NeedMoreData;
}
u8 compression = buffer[res++];
if (compression != 0) {
dbg() << "Server told us to compress, we will not!";
return (i8)Error::CompressionNotSupported;
}
if (res > 0) {
if (m_context.connection_status != 4)
m_context.connection_status = 1;
if (m_context.is_server) {
dbg() << "unsupported: server mode";
write_packets = 2;
}
}
if (res > 2) {
res += 2;
}
while ((ssize_t)buffer.size() - res >= 4) {
u16 extension_type = convert_between_host_and_network(*(const u16*)buffer.offset_pointer(res));
res += 2;
u16 extension_length = convert_between_host_and_network(*(const u16*)buffer.offset_pointer(res));
res += 2;
dbg() << "extension " << extension_type << " with length " << extension_length;
if (extension_length) {
if (buffer.size() - res < extension_length) {
dbg() << "not enough data for extension";
return (i8)Error::NeedMoreData;
}
// SNI
if (extension_type == 0x00) {
u16 sni_host_length = convert_between_host_and_network(*(const u16*)buffer.offset_pointer(res + 3));
if (buffer.size() - res - 5 < sni_host_length) {
dbg() << "Not enough data for sni " << (buffer.size() - res - 5) << " < " << sni_host_length;
return (i8)Error::NeedMoreData;
}
if (sni_host_length) {
m_context.SNI = String { (const char*)buffer.offset_pointer(res + 5), sni_host_length };
dbg() << "server name indicator: " << m_context.SNI;
}
} else if (extension_type == 0x10 && m_context.alpn.size()) {
if (buffer.size() - res > 2) {
auto alpn_length = convert_between_host_and_network(*(const u16*)buffer.offset_pointer(res));
if (alpn_length && alpn_length <= extension_length - 2) {
const u8* alpn = buffer.offset_pointer(res + 2);
size_t alpn_position = 0;
while (alpn_position < alpn_length) {
u8 alpn_size = alpn[alpn_position++];
if (alpn_size + alpn_position >= extension_length)
break;
String alpn_str { (const char*)alpn + alpn_position, alpn_length };
if (alpn_size && m_context.alpn.contains_slow(alpn_str)) {
m_context.negotiated_alpn = alpn_str;
dbg() << "negotiated alpn: " << alpn_str;
break;
}
alpn_position += alpn_length;
if (!m_context.is_server) // server hello must contain one ALPN
break;
}
}
}
} else if (extension_type == 0x0d) {
dbg() << "supported signatures: ";
print_buffer(buffer.slice_view(res, extension_length));
// FIXME: what are we supposed to do here?
}
res += extension_length;
}
}
return res;
}
ssize_t TLSv12::handle_finished(const ByteBuffer& buffer, size_t& write_packets)
{
if (m_context.connection_status < 2 || m_context.connection_status == 0xff) {
dbg() << "unexpected finished message";
return (i8)Error::UnexpectedMessage;
}
write_packets = 0;
if (buffer.size() < 3) {
return (i8)Error::NeedMoreData;
}
size_t index = 3;
u32 size = buffer[0] * 0x10000 + buffer[1] * 0x100 + buffer[2];
index += 3;
if (size < 12) {
dbg() << "finished packet smaller than minimum size: " << size;
return (i8)Error::BrokenPacket;
}
if (size < buffer.size() - index) {
dbg() << "not enough data after length: " << size << " > " << buffer.size() - index;
return (i8)Error::NeedMoreData;
}
// TODO: Compare Hashes
dbg() << "FIXME: handle_finished :: Check message validity";
m_context.connection_status = 0xff;
return handle_message(buffer);
}
ssize_t TLSv12::handle_certificate(const ByteBuffer& buffer)
{
ssize_t res = 0;
if (buffer.size() < 3) {
dbg() << "not enough certificate header data";
return (i8)Error::NeedMoreData;
}
u32 certificate_total_length = buffer[0] * 0x10000 + buffer[1] * 0x100 + buffer[2];
dbg() << "total length: " << certificate_total_length;
if (certificate_total_length <= 4)
return 3 * certificate_total_length;
res += 3;
if (certificate_total_length > buffer.size() - res) {
dbg() << "not enough data for claimed total cert length";
return (i8)Error::NeedMoreData;
}
size_t size = certificate_total_length;
size_t index = 0;
bool valid_certificate = false;
while (size > 0) {
++index;
if (buffer.size() - res < 3) {
dbg() << "not enough data for certificate length";
return (i8)Error::NeedMoreData;
}
size_t certificate_size = buffer[res] * 0x10000 + buffer[res + 1] * 0x100 + buffer[res + 2];
res += 3;
if (buffer.size() - res < certificate_size) {
dbg() << "not enough data for certificate body";
return (i8)Error::NeedMoreData;
}
auto res_cert = res;
auto remaining = certificate_size;
size_t certificates_in_chain = 0;
do {
if (remaining <= 3)
break;
++certificates_in_chain;
if (buffer.size() < (size_t)res_cert + 3)
break;
size_t certificate_size_specific = buffer[res_cert] * 0x10000 + buffer[res_cert + 1] * 0x100 + buffer[res_cert + 2];
res_cert += 3;
remaining -= 3;
if (certificate_size_specific > remaining) {
dbg() << "invalid certificate size (expected " << remaining << " but got " << certificate_size_specific << ")";
break;
}
remaining -= certificate_size_specific;
auto certificate = parse_asn1(buffer.slice_view(res_cert, certificate_size_specific), false);
if (certificate.has_value()) {
m_context.certificates.append(certificate.value());
valid_certificate = true;
}
res_cert += certificate_size;
} while (remaining > 0);
if (remaining) {
dbg() << "extraneous " << remaining << " bytes left over after parsing certificates";
}
size -= certificate_size + 3;
res += certificate_size;
}
if (!valid_certificate)
return (i8)Error::UnsupportedCertificate;
if ((size_t)res != buffer.size())
dbg() << "some data left unread: " << (size_t)res << " bytes out of " << buffer.size();
return res;
}
ssize_t TLSv12::handle_server_key_exchange(const ByteBuffer&)
{
dbg() << "FIXME: parse_server_key_exchange";
return 0;
}
ssize_t TLSv12::handle_server_hello_done(const ByteBuffer& buffer)
{
if (buffer.size() < 3)
return (i8)Error::NeedMoreData;
size_t size = buffer[0] * 0x10000 + buffer[1] * 0x100 + buffer[2];
if (buffer.size() - 3 < size)
return (i8)Error::NeedMoreData;
return size + 3;
}
ssize_t TLSv12::handle_verify(const ByteBuffer&)
{
dbg() << "FIXME: parse_verify";
return 0;
}
void TLSv12::update_hash(const ByteBuffer& message)
{
m_context.handshake_hash.update(message);
}
bool TLSv12::connect(const String& hostname, int port)
{
set_sni(hostname);
return Core::Socket::connect(hostname, port);
}
bool TLSv12::common_connect(const struct sockaddr* saddr, socklen_t length)
{
if (m_context.critical_error)
return false;
if (Core::Socket::is_connected()) {
if (established()) {
ASSERT_NOT_REACHED();
} else {
Core::Socket::close(); // reuse?
}
}
auto packet = build_hello();
write_packet(packet);
Core::Socket::on_connected = [this] {
Core::Socket::on_ready_to_read = [this] {
if (!Core::Socket::is_open()) {
// an abrupt closure (the server is a jerk)
dbg() << "Socket not open, assuming abrupt closure";
m_context.connection_finished = true;
}
if (m_context.critical_error) {
dbg() << "READ CRITICAL ERROR " << m_context.critical_error << " :(";
if (on_tls_error)
on_tls_error((AlertDescription)m_context.critical_error);
return;
}
if (m_context.connection_finished) {
if (on_tls_finished)
on_tls_finished();
if (m_context.tls_buffer.size()) {
dbg() << "connection closed without finishing data transfer, " << m_context.tls_buffer.size() << " bytes still in buffer";
} else {
m_context.connection_finished = false;
}
if (!m_context.application_buffer.size())
m_context.connection_status = 0;
return;
}
flush();
consume(Core::Socket::read(4096)); // FIXME: how much is proper?
if (established() && m_context.application_buffer.size())
if (on_tls_ready_to_read)
on_tls_ready_to_read(*this);
};
Core::Socket::on_ready_to_write = [this] {
if (!Core::Socket::is_open()) {
// an abrupt closure (the server is a jerk)
dbg() << "Socket not open, assuming abrupt closure";
m_context.connection_finished = true;
}
if (m_context.critical_error) {
dbg() << "WRITE CRITICAL ERROR " << m_context.critical_error << " :(";
if (on_tls_error)
on_tls_error((AlertDescription)m_context.critical_error);
return;
}
if (m_context.connection_finished) {
if (on_tls_finished)
on_tls_finished();
if (m_context.tls_buffer.size()) {
dbg() << "connection closed without finishing data transfer, " << m_context.tls_buffer.size() << " bytes still in buffer";
} else {
m_context.connection_finished = false;
dbg() << "FINISHED";
}
if (!m_context.application_buffer.size()) {
m_context.connection_status = 0;
return;
}
}
flush();
if (established() && !m_context.application_buffer.size()) // hey client, you still have stuff to read...
if (on_tls_ready_to_write)
on_tls_ready_to_write(*this);
};
if (on_tls_connected)
on_tls_connected();
};
bool success = Core::Socket::common_connect(saddr, length);
if (!success)
return false;
return true;
}
bool TLSv12::flush()
{
auto out_buffer = write_buffer().data();
size_t out_buffer_index { 0 };
size_t out_buffer_length = write_buffer().size();
if (out_buffer_length == 0)
return true;
#ifdef TLS_DEBUG
dbg() << "SENDING...";
print_buffer(out_buffer, out_buffer_length);
#endif
if (Core::Socket::write(&out_buffer[out_buffer_index], out_buffer_length)) {
write_buffer().clear();
return true;
} else
return false;
}
void TLSv12::consume(const ByteBuffer& record)
{
if (m_context.critical_error) {
dbg() << "There has been a critical error (" << (i8)m_context.critical_error << "), refusing to continue";
return;
}
if (record.size() == 0) {
return;
}
#ifdef TLS_DEBUG
dbg() << "Consuming " << record.size() << " bytes";
#endif
m_context.message_buffer.append(record.data(), record.size());
size_t index { 0 };
size_t buffer_length = m_context.message_buffer.size();
size_t size_offset { 3 }; // read the common record header
size_t header_size { 5 };
#ifdef TLS_DEBUG
dbg() << "message buffer length " << buffer_length;
#endif
while (buffer_length >= 5) {
auto length = convert_between_host_and_network(*(u16*)m_context.message_buffer.offset_pointer(index + size_offset)) + header_size;
if (length > buffer_length) {
dbg() << "Need more data: " << length << " | " << buffer_length;
break;
}
auto consumed = handle_message(m_context.message_buffer.slice_view(index, length));
if (consumed > 0)
dbg() << "consumed " << (size_t)consumed << " bytes";
else
dbg() << "error: " << (int)consumed;
if (consumed != (i8)Error::NeedMoreData) {
if (consumed < 0) {
dbg() << "Consumed an error: " << (int)consumed;
if (!m_context.critical_error)
m_context.critical_error = (i8)consumed;
m_context.error_code = (Error)consumed;
break;
}
} else {
continue;
}
index += length;
buffer_length -= length;
if (m_context.critical_error) {
dbg() << "Broken connection";
m_context.error_code = Error::BrokenConnection;
break;
}
}
if (m_context.error_code != Error::NoError && m_context.error_code != Error::NeedMoreData) {
dbg() << "consume error: " << (i8)m_context.error_code;
m_context.message_buffer.clear();
return;
}
if (index) {
m_context.message_buffer = m_context.message_buffer.slice(index, m_context.message_buffer.size() - index);
}
}
ssize_t TLSv12::handle_message(const ByteBuffer& buffer)
{
auto res { 5ll };
size_t header_size = res;
ssize_t payload_res = 0;
#ifdef TLS_DEBUG
dbg() << "buffer size: " << buffer.size();
#endif
if (buffer.size() < 5) {
return (i8)Error::NeedMoreData;
}
auto type = (MessageType)buffer[0];
size_t buffer_position { 1 };
// FIXME: Read the version and verify it
#ifdef TLS_DEBUG
auto version = (Version) * (const u16*)buffer.offset_pointer(buffer_position);
dbg() << "type: " << (u8)type << " version: " << (u16)version;
#endif
buffer_position += 2;
auto length = convert_between_host_and_network(*(const u16*)buffer.offset_pointer(buffer_position));
dbg() << "record length: " << length << " at offset: " << buffer_position;
buffer_position += 2;
if (buffer_position + length > buffer.size()) {
dbg() << "record length more than what we have: " << buffer.size();
return (i8)Error::NeedMoreData;
}
#ifdef TLS_DEBUG
dbg() << "message type: " << (u8)type << ", length: " << length;
#endif
ByteBuffer plain = buffer.slice_view(buffer_position, buffer.size() - buffer_position);
if (m_context.cipher_spec_set && type != MessageType::ChangeCipher) {
#ifdef TLS_DEBUG
dbg() << "Encrypted: ";
print_buffer(buffer.slice_view(header_size, length));
#endif
ASSERT(m_aes_remote);
auto iv_size = iv_length();
auto decrypted = m_aes_remote->create_aligned_buffer(length - iv_size);
auto iv = buffer.slice_view(header_size, iv_size);
m_aes_remote->decrypt(buffer.slice_view(header_size + iv_size, length - iv_size), decrypted, iv);
length = decrypted.size();
#ifdef TLS_DEBUG
dbg() << "Decrypted: ";
print_buffer(decrypted);
#endif
auto mac_size = mac_length();
if (length < mac_size) {
dbg() << "broken packet";
auto packet = build_alert(true, (u8)AlertDescription::DecryptError);
write_packet(packet);
return (i8)Error::BrokenPacket;
}
const u8* message_hmac = decrypted.offset_pointer(length - mac_size);
u8 temp_buf[5];
memcpy(temp_buf, buffer.offset_pointer(0), 3);
*(u16*)(temp_buf + 3) = convert_between_host_and_network(length);
auto hmac = hmac_message(ByteBuffer::wrap(temp_buf, 5), decrypted, mac_size);
auto message_mac = ByteBuffer::wrap(message_hmac, mac_size);
if (hmac != message_mac) {
dbg() << "integrity check failed (mac length " << length << ")";
dbg() << "mac received:";
print_buffer(message_mac);
dbg() << "mac computed:";
print_buffer(hmac);
auto packet = build_alert(true, (u8)AlertDescription::BadRecordMAC);
write_packet(packet);
return (i8)Error::IntegrityCheckFailed;
}
plain = decrypted.slice(0, length - mac_size);
}
m_context.remote_sequence_number++;
switch (type) {
case MessageType::ApplicationData:
if (m_context.connection_status != 0xff) {
dbg() << "unexpected application data";
payload_res = (i8)Error::UnexpectedMessage;
auto packet = build_alert(true, (u8)AlertDescription::UnexpectedMessage);
write_packet(packet);
} else {
#ifdef TLS_DEBUG
dbg() << "application data message of size " << plain.size();
#endif
m_context.application_buffer.append(plain.data(), plain.size());
}
break;
case MessageType::Handshake:
#ifdef TLS_DEBUG
dbg() << "tls handshake message";
#endif
payload_res = handle_payload(plain);
break;
case MessageType::ChangeCipher:
if (m_context.connection_status != 2) {
dbg() << "unexpected change cipher message";
auto packet = build_alert(true, (u8)AlertDescription::UnexpectedMessage);
payload_res = (i8)Error::UnexpectedMessage;
} else {
#ifdef TLS_DEBUG
dbg() << "change cipher spec message";
#endif
m_context.cipher_spec_set = true;
m_context.remote_sequence_number = 0;
}
break;
case MessageType::Alert:
dbg() << "alert message of length " << length;
if (length >= 2) {
print_buffer(plain);
auto level = plain[0];
auto code = plain[1];
if (level == (u8)AlertLevel::Critical) {
dbg() << "We were alerted of a critical error: " << code;
m_context.critical_error = code;
res = (i8)Error::UnknownError;
} else {
dbg() << "Alert: " << code;
}
if (code == 0) {
// close notify
res += 2;
auto closure_alert = build_alert(true, (u8)AlertDescription::CloseNotify);
write_packet(closure_alert);
flush();
m_context.connection_finished = true;
}
m_context.error_code = (Error)code;
}
break;
default:
dbg() << "message not understood";
return (i8)Error::NotUnderstood;
}
if (payload_res < 0)
return payload_res;
if (res > 0)
return header_size + length;
return res;
}
ByteBuffer TLSv12::hmac_message(const ByteBuffer& buf, const Optional<ByteBuffer> buf2, size_t mac_length, bool local)
{
u64 sequence_number = convert_between_host_and_network(local ? m_context.local_sequence_number : m_context.remote_sequence_number);
auto digest = [&](auto& hmac) {
#ifdef TLS_DEBUG
dbg() << "========================= PACKET DATA ==========================";
print_buffer((const u8*)&sequence_number, sizeof(u64));
print_buffer(buf);
if (buf2.has_value())
print_buffer(buf2.value());
dbg() << "========================= PACKET DATA ==========================";
#endif
hmac.update((const u8*)&sequence_number, sizeof(u64));
hmac.update(buf);
if (buf2.has_value() && buf2.value().size()) {
hmac.update(buf2.value());
}
auto digest = hmac.digest();
auto mac = ByteBuffer::copy(digest.immutable_data(), digest.data_length());
#ifdef TLS_DEBUG
dbg() << "HMAC of the block for sequence number " << m_context.local_sequence_number;
print_buffer(mac);
#endif
return mac;
};
switch (mac_length) {
case Crypto::Hash::SHA1::DigestSize: {
Crypto::Authentication::HMAC<Crypto::Hash::SHA1> hmac(ByteBuffer::wrap(local ? m_context.crypto.local_mac : m_context.crypto.remote_mac, mac_length));
return digest(hmac);
}
case Crypto::Hash::SHA256::DigestSize: {
Crypto::Authentication::HMAC<Crypto::Hash::SHA256> hmac(ByteBuffer::wrap(local ? m_context.crypto.local_mac : m_context.crypto.remote_mac, mac_length));
return digest(hmac);
}
case Crypto::Hash::SHA512::DigestSize: {
Crypto::Authentication::HMAC<Crypto::Hash::SHA512> hmac(ByteBuffer::wrap(local ? m_context.crypto.local_mac : m_context.crypto.remote_mac, mac_length));
return digest(hmac);
}
default:
return {};
}
}
ssize_t TLSv12::handle_payload(const ByteBuffer& vbuffer)
{
if (m_context.connection_status == 0xff) {
auto packet = build_alert(false, (u8)AlertDescription::NoRenegotiation);
write_packet(packet);
return 1;
}
auto buffer = vbuffer;
auto buffer_length = buffer.size();
auto original_length = buffer_length;
while (buffer_length >= 4 && !m_context.critical_error) {
ssize_t payload_res = 0;
if (buffer_length < 1)
return (i8)Error::NeedMoreData;
auto type = buffer[0];
size_t write_packets = 0;
size_t payload_size = buffer[1] * 0x10000 + buffer[2] * 0x100 + buffer[3] + 3;
#ifdef TLS_DEBUG
dbg() << "payload size: " << payload_size << " buffer length: " << buffer_length;
#endif
if (payload_size + 1 > buffer_length)
return (i8)Error::NeedMoreData;
switch (type) {
// hello request
case 0x00:
if (m_context.handshake_messages[0] >= 1) {
dbg() << "unexpected hello request message";
payload_res = (i8)Error::UnexpectedMessage;
break;
}
++m_context.handshake_messages[0];
dbg() << "hello request (renegotiation?)";
if (m_context.connection_status == 0xff) {
// renegotiation
payload_res = (i8)Error::NoRenegotiation;
} else {
// :shrug:
payload_res = (i8)Error::UnexpectedMessage;
}
break;
// client hello
case 0x01:
// FIXME: We only support client mode right now
if (m_context.is_server) {
ASSERT_NOT_REACHED();
}
payload_res = (i8)Error::UnexpectedMessage;
break;
// server hello
case 0x02:
if (m_context.handshake_messages[2] >= 1) {
dbg() << "unexpected server hello message";
payload_res = (i8)Error::UnexpectedMessage;
break;
}
++m_context.handshake_messages[2];
#ifdef TLS_DEBUG
dbg() << "server hello";
#endif
if (m_context.is_server) {
dbg() << "unsupported: server mode";
ASSERT_NOT_REACHED();
} else {
payload_res = handle_hello(buffer.slice_view(1, payload_size), write_packets);
}
break;
// hello verify request
case 0x03:
dbg() << "unsupported: DTLS";
payload_res = (i8)Error::UnexpectedMessage;
break;
// certificate
case 0x0b:
if (m_context.handshake_messages[4] >= 1) {
dbg() << "unexpected certificate message";
payload_res = (i8)Error::UnexpectedMessage;
break;
}
++m_context.handshake_messages[4];
#ifdef TLS_DEBUG
dbg() << "certificate";
#endif
if (m_context.connection_status == 1) {
if (m_context.is_server) {
dbg() << "unsupported: server mode";
ASSERT_NOT_REACHED();
}
payload_res = handle_certificate(buffer.slice_view(1, payload_size));
} else {
payload_res = (i8)Error::UnexpectedMessage;
}
break;
// server key exchange
case 0x0c:
if (m_context.handshake_messages[5] >= 1) {
dbg() << "unexpected server key exchange message";
payload_res = (i8)Error::UnexpectedMessage;
break;
}
++m_context.handshake_messages[5];
#ifdef TLS_DEBUG
dbg() << "server key exchange";
#endif
if (m_context.is_server) {
dbg() << "unsupported: server mode";
ASSERT_NOT_REACHED();
} else {
payload_res = handle_server_key_exchange(buffer.slice_view(1, payload_size));
}
break;
// certificate request
case 0x0d:
if (m_context.handshake_messages[6] >= 1) {
dbg() << "unexpected certificate request message";
payload_res = (i8)Error::UnexpectedMessage;
break;
}
++m_context.handshake_messages[6];
if (m_context.is_server) {
dbg() << "invalid request";
dbg() << "unsupported: server mode";
ASSERT_NOT_REACHED();
} else {
// we do not support "certificate request"
dbg() << "certificate request";
ASSERT_NOT_REACHED();
}
break;
// server hello done
case 0x0e:
if (m_context.handshake_messages[7] >= 1) {
dbg() << "unexpected server hello done message";
payload_res = (i8)Error::UnexpectedMessage;
break;
}
++m_context.handshake_messages[7];
#ifdef TLS_DEBUG
dbg() << "server hello done";
#endif
if (m_context.is_server) {
dbg() << "unsupported: server mode";
ASSERT_NOT_REACHED();
} else {
payload_res = handle_server_hello_done(buffer.slice_view(1, payload_size));
if (payload_res > 0)
write_packets = 1;
}
break;
// certificate verify
case 0x0f:
if (m_context.handshake_messages[8] >= 1) {
dbg() << "unexpected certificate verify message";
payload_res = (i8)Error::UnexpectedMessage;
break;
}
++m_context.handshake_messages[8];
#ifdef TLS_DEBUG
dbg() << "certificate verify";
#endif
if (m_context.connection_status == 2) {
payload_res = handle_verify(buffer.slice_view(1, payload_size));
} else {
payload_res = (i8)Error::UnexpectedMessage;
}
break;
// client key exchange
case 0x10:
if (m_context.handshake_messages[9] >= 1) {
dbg() << "unexpected client key exchange message";
payload_res = (i8)Error::UnexpectedMessage;
break;
}
++m_context.handshake_messages[9];
#ifdef TLS_DEBUG
dbg() << "client key exchange";
#endif
if (m_context.is_server) {
dbg() << "unsupported: server mode";
ASSERT_NOT_REACHED();
} else {
payload_res = (i8)Error::UnexpectedMessage;
}
break;
// finished
case 0x14:
if (m_context.cached_handshake) {
m_context.cached_handshake.clear();
}
if (m_context.handshake_messages[10] >= 1) {
dbg() << "unexpected finished message";
payload_res = (i8)Error::UnexpectedMessage;
break;
}
++m_context.handshake_messages[10];
#ifdef TLS_DEBUG
dbg() << "finished";
#endif
payload_res = handle_finished(buffer.slice_view(1, payload_size), write_packets);
if (payload_res > 0) {
memset(m_context.handshake_messages, 0, sizeof(m_context.handshake_messages));
}
break;
default:
dbg() << "message type not understood: " << type;
return (i8)Error::NotUnderstood;
}
if (type != 0x00) {
update_hash(buffer.slice_view(0, payload_size + 1));
}
// if something went wrong, send an alert about it
if (payload_res < 0) {
switch ((Error)payload_res) {
case Error::UnexpectedMessage: {
auto packet = build_alert(true, (u8)AlertDescription::UnexpectedMessage);
write_packet(packet);
break;
}
case Error::CompressionNotSupported: {
auto packet = build_alert(true, (u8)AlertDescription::DecompressionFailure);
write_packet(packet);
break;
}
case Error::BrokenPacket: {
auto packet = build_alert(true, (u8)AlertDescription::DecodeError);
write_packet(packet);
break;
}
case Error::NotVerified: {
auto packet = build_alert(true, (u8)AlertDescription::BadRecordMAC);
write_packet(packet);
break;
}
case Error::BadCertificate: {
auto packet = build_alert(true, (u8)AlertDescription::BadCertificate);
write_packet(packet);
break;
}
case Error::UnsupportedCertificate: {
auto packet = build_alert(true, (u8)AlertDescription::UnsupportedCertificate);
write_packet(packet);
break;
}
case Error::NoCommonCipher: {
auto packet = build_alert(true, (u8)AlertDescription::InsufficientSecurity);
write_packet(packet);
break;
}
case Error::NotUnderstood: {
auto packet = build_alert(true, (u8)AlertDescription::InternalError);
write_packet(packet);
break;
}
case Error::NoRenegotiation: {
auto packet = build_alert(true, (u8)AlertDescription::NoRenegotiation);
write_packet(packet);
break;
}
case Error::DecryptionFailed: {
auto packet = build_alert(true, (u8)AlertDescription::DecryptionFailed);
write_packet(packet);
break;
}
default:
break;
}
if (payload_res < 0)
return payload_res;
}
switch (write_packets) {
case 1:
if (m_context.client_verified == 2) {
auto packet = build_certificate();
write_packet(packet);
m_context.client_verified = 0;
}
// client handshake
{
#ifdef TLS_DEBUG
dbg() << "> Key exchange";
#endif
auto packet = build_client_key_exchange();
write_packet(packet);
}
{
#ifdef TLS_DEBUG
dbg() << "> change cipher spec";
#endif
auto packet = build_change_cipher_spec();
write_packet(packet);
}
m_context.cipher_spec_set = 1;
m_context.local_sequence_number = 0;
{
#ifdef TLS_DEBUG
dbg() << "> client finished";
#endif
auto packet = build_finished();
write_packet(packet);
}
m_context.cipher_spec_set = 0;
break;
case 2:
// server handshake
dbg() << "UNSUPPORTED: Server mode";
ASSERT_NOT_REACHED();
break;
case 3:
// finished
{
#ifdef TLS_DEBUG
dbg() << "> change cipher spec";
#endif
auto packet = build_change_cipher_spec();
write_packet(packet);
}
{
#ifdef TLS_DEBUG
dbg() << "> client finished";
#endif
auto packet = build_finished();
write_packet(packet);
}
m_context.connection_status = 0xff;
break;
}
payload_size++;
buffer_length -= payload_size;
buffer = buffer.slice(payload_size, buffer_length);
}
return original_length;
}
}