ladybird/Userland/Libraries/LibC/elf.h

831 lines
33 KiB
C
Raw Normal View History

/* $OpenBSD: exec_elf.h,v 1.83 2019/01/22 23:23:18 jsg Exp $ */
/*
* Copyright (c) 1995, 1996 Erik Theisen. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This is the ELF ABI header file
* formerly known as "elf_abi.h".
*/
#pragma once
#ifndef KERNEL
# include <stdint.h>
# include <sys/types.h>
#else
# include <AK/Types.h>
#endif
#define ElfW(type) Elf64_##type
2019-06-07 18:12:30 +03:00
typedef uint8_t Elf_Byte;
2019-06-07 18:12:30 +03:00
typedef uint32_t Elf32_Addr; /* Unsigned program address */
typedef uint32_t Elf32_Off; /* Unsigned file offset */
typedef int32_t Elf32_Sword; /* Signed large integer */
typedef uint32_t Elf32_Word; /* Unsigned large integer */
typedef uint16_t Elf32_Half; /* Unsigned medium integer */
typedef uint64_t Elf32_Lword;
2019-06-07 18:12:30 +03:00
typedef uint64_t Elf64_Addr;
typedef uint64_t Elf64_Off;
typedef int32_t Elf64_Shalf;
#ifdef __alpha__
2019-06-07 18:12:30 +03:00
typedef int64_t Elf64_Sword;
typedef uint64_t Elf64_Word;
#else
2019-06-07 18:12:30 +03:00
typedef int32_t Elf64_Sword;
typedef uint32_t Elf64_Word;
#endif
2019-06-07 18:12:30 +03:00
typedef int64_t Elf64_Sxword;
typedef uint64_t Elf64_Xword;
typedef uint64_t Elf64_Lword;
2019-06-07 18:12:30 +03:00
typedef uint32_t Elf64_Half;
typedef uint16_t Elf64_Quarter;
/*
* e_ident[] identification indices
* See http://www.sco.com/developers/gabi/latest/ch4.eheader.html
*/
2019-06-07 18:12:30 +03:00
#define EI_MAG0 0 /* file ID */
#define EI_MAG1 1 /* file ID */
#define EI_MAG2 2 /* file ID */
#define EI_MAG3 3 /* file ID */
#define EI_CLASS 4 /* file class */
#define EI_DATA 5 /* data encoding */
#define EI_VERSION 6 /* ELF header version */
#define EI_OSABI 7 /* OS/ABI ID */
#define EI_ABIVERSION 8 /* ABI version */
#define EI_PAD 9 /* start of pad bytes */
#define EI_NIDENT 16 /* Gfx::Size of e_ident[] */
/* e_ident[] magic number */
2019-06-07 18:12:30 +03:00
#define ELFMAG0 0x7f /* e_ident[EI_MAG0] */
#define ELFMAG1 'E' /* e_ident[EI_MAG1] */
#define ELFMAG2 'L' /* e_ident[EI_MAG2] */
#define ELFMAG3 'F' /* e_ident[EI_MAG3] */
#define ELFMAG "\177ELF" /* magic */
#define SELFMAG 4 /* size of magic */
/* e_ident[] file class */
2019-06-07 18:12:30 +03:00
#define ELFCLASSNONE 0 /* invalid */
#define ELFCLASS32 1 /* 32-bit objs */
#define ELFCLASS64 2 /* 64-bit objs */
#define ELFCLASSNUM 3 /* number of classes */
/* e_ident[] data encoding */
2019-06-07 18:12:30 +03:00
#define ELFDATANONE 0 /* invalid */
#define ELFDATA2LSB 1 /* Little-Endian */
#define ELFDATA2MSB 2 /* Big-Endian */
#define ELFDATANUM 3 /* number of data encode defines */
/* e_ident[] Operating System/ABI */
#define ELFOSABI_SYSV 0 /* UNIX System V ABI */
#define ELFOSABI_HPUX 1 /* HP-UX operating system */
#define ELFOSABI_NETBSD 2 /* NetBSD */
#define ELFOSABI_LINUX 3 /* GNU/Linux */
#define ELFOSABI_GNU ELFOSABI_LINUX
#define ELFOSABI_HURD 4 /* GNU/Hurd */
#define ELFOSABI_86OPEN 5 /* 86Open common IA32 ABI */
#define ELFOSABI_SOLARIS 6 /* Solaris */
#define ELFOSABI_MONTEREY 7 /* Monterey */
#define ELFOSABI_AIX ELFOSABI_MONTEREY
2019-06-07 18:12:30 +03:00
#define ELFOSABI_IRIX 8 /* IRIX */
#define ELFOSABI_FREEBSD 9 /* FreeBSD */
#define ELFOSABI_TRU64 10 /* TRU64 UNIX */
#define ELFOSABI_MODESTO 11 /* Novell Modesto */
#define ELFOSABI_OPENBSD 12 /* OpenBSD */
#define ELFOSABI_ARM 97 /* ARM */
#define ELFOSABI_STANDALONE 255 /* Standalone (embedded) application */
/* e_ident */
2019-06-07 18:12:30 +03:00
#define IS_ELF(ehdr) ((ehdr).e_ident[EI_MAG0] == ELFMAG0 && (ehdr).e_ident[EI_MAG1] == ELFMAG1 && (ehdr).e_ident[EI_MAG2] == ELFMAG2 && (ehdr).e_ident[EI_MAG3] == ELFMAG3)
/* ELF Header */
typedef struct elfhdr {
2019-06-07 18:12:30 +03:00
unsigned char e_ident[EI_NIDENT]; /* ELF Identification */
Elf32_Half e_type; /* object file type */
Elf32_Half e_machine; /* machine */
Elf32_Word e_version; /* object file version */
Elf32_Addr e_entry; /* virtual entry point */
Elf32_Off e_phoff; /* program header table offset */
Elf32_Off e_shoff; /* section header table offset */
Elf32_Word e_flags; /* processor-specific flags */
Elf32_Half e_ehsize; /* ELF header size */
Elf32_Half e_phentsize; /* program header entry size */
Elf32_Half e_phnum; /* number of program header entries */
Elf32_Half e_shentsize; /* section header entry size */
Elf32_Half e_shnum; /* number of section header entries */
Elf32_Half e_shstrndx; /* section header table's "section
2022-04-01 20:58:27 +03:00
header string table" entry offset */
} Elf32_Ehdr;
typedef struct {
2019-06-07 18:12:30 +03:00
unsigned char e_ident[EI_NIDENT]; /* Id bytes */
Elf64_Quarter e_type; /* file type */
Elf64_Quarter e_machine; /* machine type */
Elf64_Half e_version; /* version number */
Elf64_Addr e_entry; /* entry point */
Elf64_Off e_phoff; /* Program hdr offset */
Elf64_Off e_shoff; /* Section hdr offset */
Elf64_Half e_flags; /* Processor flags */
Elf64_Quarter e_ehsize; /* sizeof ehdr */
Elf64_Quarter e_phentsize; /* Program header entry size */
Elf64_Quarter e_phnum; /* Number of program headers */
Elf64_Quarter e_shentsize; /* Section header entry size */
Elf64_Quarter e_shnum; /* Number of section headers */
Elf64_Quarter e_shstrndx; /* String table index */
} Elf64_Ehdr;
/* e_type */
2019-06-07 18:12:30 +03:00
#define ET_NONE 0 /* No file type */
#define ET_REL 1 /* relocatable file */
#define ET_EXEC 2 /* executable file */
#define ET_DYN 3 /* shared object file */
#define ET_CORE 4 /* core file */
#define ET_NUM 5 /* number of types */
#define ET_LOPROC 0xff00 /* reserved range for processor */
#define ET_HIPROC 0xffff /* specific e_type */
/* e_machine */
2019-06-07 18:12:30 +03:00
#define EM_NONE 0 /* No Machine */
#define EM_M32 1 /* AT&T WE 32100 */
#define EM_SPARC 2 /* SPARC */
#define EM_386 3 /* Intel 80386 */
#define EM_68K 4 /* Motorola 68000 */
#define EM_88K 5 /* Motorola 88000 */
#define EM_486 6 /* Intel 80486 - unused? */
#define EM_860 7 /* Intel 80860 */
#define EM_MIPS 8 /* MIPS R3000 Big-Endian only */
/*
* Don't know if EM_MIPS_RS4_BE,
* EM_SPARC64, EM_PARISC,
* or EM_PPC are ABI compliant
*/
2019-06-07 18:12:30 +03:00
#define EM_MIPS_RS4_BE 10 /* MIPS R4000 Big-Endian */
#define EM_SPARC64 11 /* SPARC v9 64-bit unofficial */
#define EM_PARISC 15 /* HPPA */
#define EM_SPARC32PLUS 18 /* Enhanced instruction set SPARC */
#define EM_PPC 20 /* PowerPC */
#define EM_PPC64 21 /* PowerPC 64 */
#define EM_S390 22 /* IBM S390 */
2019-06-07 18:12:30 +03:00
#define EM_ARM 40 /* Advanced RISC Machines ARM */
#define EM_ALPHA 41 /* DEC ALPHA */
#define EM_SH 42 /* Hitachi/Renesas Super-H */
#define EM_SPARCV9 43 /* SPARC version 9 */
#define EM_IA_64 50 /* Intel IA-64 Processor */
#define EM_AMD64 62 /* AMD64 architecture */
#define EM_X86_64 EM_AMD64
#define EM_VAX 75 /* DEC VAX */
#define EM_AARCH64 183 /* ARM 64-bit architecture (AArch64) */
/* Non-standard */
2019-06-07 18:12:30 +03:00
#define EM_ALPHA_EXP 0x9026 /* DEC ALPHA */
#define EM__LAST__ (EM_ALPHA_EXP + 1)
2019-06-07 18:12:30 +03:00
#define EM_NUM 22 /* number of machine types */
/* Version */
2019-06-07 18:12:30 +03:00
#define EV_NONE 0 /* Invalid */
#define EV_CURRENT 1 /* Current */
#define EV_NUM 2 /* number of versions */
/* Magic for e_phnum: get real value from sh_info of first section header */
2019-06-07 18:12:30 +03:00
#define PN_XNUM 0xffff
/* Section Header */
typedef struct {
2019-06-07 18:12:30 +03:00
Elf32_Word sh_name; /* name - index into section header
2022-04-01 20:58:27 +03:00
string table section */
2019-06-07 18:12:30 +03:00
Elf32_Word sh_type; /* type */
Elf32_Word sh_flags; /* flags */
Elf32_Addr sh_addr; /* address */
Elf32_Off sh_offset; /* file offset */
Elf32_Word sh_size; /* section size */
Elf32_Word sh_link; /* section header table index link */
Elf32_Word sh_info; /* extra information */
Elf32_Word sh_addralign; /* address alignment */
Elf32_Word sh_entsize; /* section entry size */
} Elf32_Shdr;
typedef struct {
2019-06-07 18:12:30 +03:00
Elf64_Half sh_name; /* section name */
Elf64_Half sh_type; /* section type */
Elf64_Xword sh_flags; /* section flags */
Elf64_Addr sh_addr; /* virtual address */
Elf64_Off sh_offset; /* file offset */
Elf64_Xword sh_size; /* section size */
Elf64_Half sh_link; /* link to another */
Elf64_Half sh_info; /* misc info */
Elf64_Xword sh_addralign; /* memory alignment */
Elf64_Xword sh_entsize; /* table entry size */
} Elf64_Shdr;
/* Special Section Indices */
2019-06-07 18:12:30 +03:00
#define SHN_UNDEF 0 /* undefined */
#define SHN_LORESERVE 0xff00 /* lower bounds of reserved indices */
2019-06-07 18:12:30 +03:00
#define SHN_LOPROC 0xff00 /* reserved range for processor */
#define SHN_HIPROC 0xff1f /* specific section indices */
2019-06-07 18:12:30 +03:00
#define SHN_ABS 0xfff1 /* absolute value */
#define SHN_COMMON 0xfff2 /* common symbol */
#define SHN_XINDEX 0xffff /* Escape -- index stored elsewhere. */
#define SHN_HIRESERVE 0xffff /* upper bounds of reserved indices */
/* sh_type */
2019-06-07 18:12:30 +03:00
#define SHT_NULL 0 /* inactive */
#define SHT_PROGBITS 1 /* program defined information */
#define SHT_SYMTAB 2 /* symbol table section */
#define SHT_STRTAB 3 /* string table section */
#define SHT_RELA 4 /* relocation section with addends*/
#define SHT_HASH 5 /* symbol hash table section */
#define SHT_DYNAMIC 6 /* dynamic section */
#define SHT_NOTE 7 /* note section */
#define SHT_NOBITS 8 /* no space section */
#define SHT_REL 9 /* relation section without addends */
#define SHT_SHLIB 10 /* reserved - purpose unknown */
#define SHT_DYNSYM 11 /* dynamic symbol table section */
#define SHT_NUM 12 /* number of section types */
#define SHT_INIT_ARRAY 14 /* pointers to init functions */
#define SHT_FINI_ARRAY 15 /* pointers to termination functions */
#define SHT_PREINIT_ARRAY 16 /* ptrs to funcs called before init */
#define SHT_GROUP 17 /* defines a section group */
#define SHT_SYMTAB_SHNDX 18 /* Section indices (see SHN_XINDEX). */
LibELF: Implement support for DT_RELR relative relocations The DT_RELR relocation is a relatively new relocation encoding designed to achieve space-efficient relative relocations in PIE programs. The description of the format is available here: https://groups.google.com/g/generic-abi/c/bX460iggiKg/m/Pi9aSwwABgAJ It works by using a bitmap to store the offsets which need to be relocated. Even entries are *address* entries: they contain an address (relative to the base of the executable) which needs to be relocated. Subsequent even entries are *bitmap* entries: "1" bits encode offsets (in word size increments) relative to the last address entry which need to be relocated. This is in contrast to the REL/RELA format, where each entry takes up 2/3 machine words. Certain kinds of relocations store useful data in that space (like the name of the referenced symbol), so not everything can be encoded in this format. But as position-independent executables and shared libraries tend to have a lot of relative relocations, a specialized encoding for them absolutely makes sense. The authors of the format suggest an overall 5-20% reduction in the file size of various programs. Due to our extensive use of dynamic linking and us not stripping debug info, relative relocations don't make up such a large portion of the binary's size, so the measurements will tend to skew to the lower side of the spectrum. The following measurements were made with the x86-64 Clang toolchain: - The kernel contains 290989 relocations. Enabling RELR decreased its size from 30 MiB to 23 MiB. - LibUnicodeData contains 190262 relocations, almost all of them relative. Its file size changed from 17 MiB to 13 MiB. - /bin/WebContent contains 1300 relocations, 66% of which are relative relocations. With RELR, its size changed from 832 KiB to 812 KiB. This change was inspired by the following blog post: https://maskray.me/blog/2021-10-31-relative-relocations-and-relr
2021-10-28 10:31:51 +03:00
#define SHT_RELR 19 /* relative-only relocation section */
2019-06-07 18:12:30 +03:00
#define SHT_LOOS 0x60000000 /* reserved range for OS specific */
#define SHT_SUNW_dof 0x6ffffff4 /* used by dtrace */
#define SHT_GNU_LIBLIST 0x6ffffff7 /* libraries to be prelinked */
#define SHT_SUNW_move 0x6ffffffa /* inf for partially init'ed symbols */
#define SHT_SUNW_syminfo 0x6ffffffc /* ad symbol information */
#define SHT_SUNW_verdef 0x6ffffffd /* symbol versioning inf */
#define SHT_SUNW_verneed 0x6ffffffe /* symbol versioning req */
#define SHT_SUNW_versym 0x6fffffff /* symbol versioning table */
#define SHT_HIOS 0x6fffffff /* section header types */
#define SHT_LOPROC 0x70000000 /* reserved range for processor */
#define SHT_HIPROC 0x7fffffff /* specific section header types */
#define SHT_LOUSER 0x80000000 /* reserved range for application */
#define SHT_HIUSER 0xffffffff /* specific indices */
2019-06-07 18:12:30 +03:00
#define SHT_GNU_HASH 0x6ffffff6 /* GNU-style hash table section */
/* Section names */
2019-06-07 18:12:30 +03:00
#define ELF_BSS ".bss" /* uninitialized data */
#define ELF_DATA ".data" /* initialized data */
#define ELF_CTF ".SUNW_ctf" /* CTF data */
#define ELF_DEBUG ".debug" /* debug */
#define ELF_DYNAMIC ".dynamic" /* dynamic linking information */
#define ELF_DYNSTR ".dynstr" /* dynamic string table */
#define ELF_DYNSYM ".dynsym" /* dynamic symbol table */
#define ELF_FINI ".fini" /* termination code */
#define ELF_GOT ".got" /* global offset table */
#define ELF_HASH ".hash" /* symbol hash table */
#define ELF_INIT ".init" /* initialization code */
#define ELF_REL_DATA ".rel.data" /* relocation data */
#define ELF_REL_FINI ".rel.fini" /* relocation termination code */
#define ELF_REL_INIT ".rel.init" /* relocation initialization code */
#define ELF_REL_DYN ".rel.dyn" /* relocation dynamic link info */
#define ELF_REL_RODATA ".rel.rodata" /* relocation read-only data */
#define ELF_REL_TEXT ".rel.text" /* relocation code */
#define ELF_RODATA ".rodata" /* read-only data */
#define ELF_SHSTRTAB ".shstrtab" /* section header string table */
#define ELF_STRTAB ".strtab" /* string table */
#define ELF_SYMTAB ".symtab" /* symbol table */
#define ELF_TEXT ".text" /* code */
#define ELF_OPENBSDRANDOMDATA ".openbsd.randomdata" /* constant randomdata */
/* Section Attribute Flags - sh_flags */
2019-06-07 18:12:30 +03:00
#define SHF_WRITE 0x1 /* Writable */
#define SHF_ALLOC 0x2 /* occupies memory */
#define SHF_EXECINSTR 0x4 /* executable */
#define SHF_MERGE 0x10 /* may be merged */
#define SHF_STRINGS 0x20 /* contains strings */
#define SHF_INFO_LINK 0x40 /* sh_info holds section index */
#define SHF_LINK_ORDER 0x80 /* ordering requirements */
#define SHF_OS_NONCONFORMING 0x100 /* OS-specific processing required */
#define SHF_GROUP 0x200 /* member of section group */
#define SHF_TLS 0x400 /* thread local storage */
#define SHF_COMPRESSED 0x800 /* contains compressed data */
#define SHF_MASKOS 0x0ff00000 /* OS-specific semantics */
#define SHF_MASKPROC 0xf0000000 /* reserved bits for processor */
/* specific section attributes */
/* Symbol Table Entry */
typedef struct elf32_sym {
2019-06-07 18:12:30 +03:00
Elf32_Word st_name; /* name - index into string table */
Elf32_Addr st_value; /* symbol value */
Elf32_Word st_size; /* symbol size */
unsigned char st_info; /* type and binding */
unsigned char st_other; /* 0 - no defined meaning */
Elf32_Half st_shndx; /* section header index */
} Elf32_Sym;
typedef struct {
2019-06-07 18:12:30 +03:00
Elf64_Half st_name; /* Symbol name index in str table */
Elf_Byte st_info; /* type / binding attrs */
Elf_Byte st_other; /* unused */
Elf64_Quarter st_shndx; /* section index of symbol */
Elf64_Xword st_value; /* value of symbol */
Elf64_Xword st_size; /* size of symbol */
} Elf64_Sym;
/* Symbol table index */
2019-06-07 18:12:30 +03:00
#define STN_UNDEF 0 /* undefined */
/* Extract symbol info - st_info */
2019-06-07 18:12:30 +03:00
#define ELF32_ST_BIND(x) ((x) >> 4)
#define ELF32_ST_TYPE(x) (((unsigned int)x) & 0xf)
#define ELF32_ST_INFO(b, t) (((b) << 4) + ((t)&0xf))
2019-06-07 18:12:30 +03:00
#define ELF64_ST_BIND(x) ((x) >> 4)
#define ELF64_ST_TYPE(x) (((unsigned int)x) & 0xf)
#define ELF64_ST_INFO(b, t) (((b) << 4) + ((t)&0xf))
/* Symbol Binding - ELF32_ST_BIND - st_info */
2019-06-07 18:12:30 +03:00
#define STB_LOCAL 0 /* Local symbol */
#define STB_GLOBAL 1 /* Global symbol */
#define STB_WEAK 2 /* like global - lower precedence */
#define STB_NUM 3 /* number of symbol bindings */
#define STB_LOPROC 13 /* reserved range for processor */
#define STB_HIPROC 15 /* specific symbol bindings */
/* Symbol type - ELF32_ST_TYPE - st_info */
2019-06-07 18:12:30 +03:00
#define STT_NOTYPE 0 /* not specified */
#define STT_OBJECT 1 /* data object */
#define STT_FUNC 2 /* function */
#define STT_SECTION 3 /* section */
#define STT_FILE 4 /* file */
#define STT_TLS 6 /* thread local storage */
#define STT_GNU_IFUNC 10
2019-06-07 18:12:30 +03:00
#define STT_LOPROC 13 /* reserved range for processor */
#define STT_HIPROC 15 /* specific symbol types */
/* Extract symbol visibility - st_other */
2019-06-07 18:12:30 +03:00
#define ELF_ST_VISIBILITY(v) ((v)&0x3)
#define ELF32_ST_VISIBILITY ELF_ST_VISIBILITY
#define ELF64_ST_VISIBILITY ELF_ST_VISIBILITY
2019-06-07 18:12:30 +03:00
#define STV_DEFAULT 0 /* Visibility set by binding type */
#define STV_INTERNAL 1 /* OS specific version of STV_HIDDEN */
#define STV_HIDDEN 2 /* can only be seen inside own .so */
#define STV_PROTECTED 3 /* HIDDEN inside, DEFAULT outside */
/* Relocation entry with implicit addend */
typedef struct {
2019-06-07 18:12:30 +03:00
Elf32_Addr r_offset; /* offset of relocation */
Elf32_Word r_info; /* symbol table index and type */
} Elf32_Rel;
/* Relocation entry with explicit addend */
typedef struct {
2019-06-07 18:12:30 +03:00
Elf32_Addr r_offset; /* offset of relocation */
Elf32_Word r_info; /* symbol table index and type */
Elf32_Sword r_addend;
} Elf32_Rela;
/* Extract relocation info - r_info */
2019-06-07 18:12:30 +03:00
#define ELF32_R_SYM(i) ((i) >> 8)
#define ELF32_R_TYPE(i) ((unsigned char)(i))
#define ELF32_R_INFO(s, t) (((s) << 8) + (unsigned char)(t))
typedef struct {
2019-06-07 18:12:30 +03:00
Elf64_Xword r_offset; /* where to do it */
Elf64_Xword r_info; /* index & type of relocation */
} Elf64_Rel;
typedef struct {
2019-06-07 18:12:30 +03:00
Elf64_Xword r_offset; /* where to do it */
Elf64_Xword r_info; /* index & type of relocation */
Elf64_Sxword r_addend; /* adjustment value */
} Elf64_Rela;
2019-06-07 18:12:30 +03:00
#define ELF64_R_SYM(info) ((info) >> 32)
#define ELF64_R_TYPE(info) ((info)&0xFFFFFFFF)
#define ELF64_R_INFO(s, t) (((s) << 32) + (uint32_t)(t))
#if defined(__mips64__) && defined(__MIPSEL__)
/*
* The 64-bit MIPS ELF ABI uses a slightly different relocation format
* than the regular ELF ABI: the r_info field is split into several
* pieces (see gnu/usr.bin/binutils-2.17/include/elf/mips.h for details).
*/
2019-06-07 18:12:30 +03:00
# undef ELF64_R_SYM
# undef ELF64_R_TYPE
# undef ELF64_R_INFO
# define ELF64_R_TYPE(info) ((uint64_t)swap32((info) >> 32))
# define ELF64_R_SYM(info) ((info)&0xFFFFFFFF)
# define ELF64_R_INFO(s, t) (((uint64_t)swap32(t) << 32) + (uint32_t)(s))
#endif /* __mips64__ && __MIPSEL__ */
LibELF: Implement support for DT_RELR relative relocations The DT_RELR relocation is a relatively new relocation encoding designed to achieve space-efficient relative relocations in PIE programs. The description of the format is available here: https://groups.google.com/g/generic-abi/c/bX460iggiKg/m/Pi9aSwwABgAJ It works by using a bitmap to store the offsets which need to be relocated. Even entries are *address* entries: they contain an address (relative to the base of the executable) which needs to be relocated. Subsequent even entries are *bitmap* entries: "1" bits encode offsets (in word size increments) relative to the last address entry which need to be relocated. This is in contrast to the REL/RELA format, where each entry takes up 2/3 machine words. Certain kinds of relocations store useful data in that space (like the name of the referenced symbol), so not everything can be encoded in this format. But as position-independent executables and shared libraries tend to have a lot of relative relocations, a specialized encoding for them absolutely makes sense. The authors of the format suggest an overall 5-20% reduction in the file size of various programs. Due to our extensive use of dynamic linking and us not stripping debug info, relative relocations don't make up such a large portion of the binary's size, so the measurements will tend to skew to the lower side of the spectrum. The following measurements were made with the x86-64 Clang toolchain: - The kernel contains 290989 relocations. Enabling RELR decreased its size from 30 MiB to 23 MiB. - LibUnicodeData contains 190262 relocations, almost all of them relative. Its file size changed from 17 MiB to 13 MiB. - /bin/WebContent contains 1300 relocations, 66% of which are relative relocations. With RELR, its size changed from 832 KiB to 812 KiB. This change was inspired by the following blog post: https://maskray.me/blog/2021-10-31-relative-relocations-and-relr
2021-10-28 10:31:51 +03:00
typedef Elf32_Word Elf32_Relr;
typedef Elf64_Xword Elf64_Relr;
/* Program Header */
typedef struct {
2019-06-07 18:12:30 +03:00
Elf32_Word p_type; /* segment type */
Elf32_Off p_offset; /* segment offset */
Elf32_Addr p_vaddr; /* virtual address of segment */
Elf32_Addr p_paddr; /* physical address - ignored? */
Elf32_Word p_filesz; /* number of bytes in file for seg. */
Elf32_Word p_memsz; /* number of bytes in mem. for seg. */
Elf32_Word p_flags; /* flags */
Elf32_Word p_align; /* memory alignment */
} Elf32_Phdr;
typedef struct {
2019-06-07 18:12:30 +03:00
Elf64_Half p_type; /* entry type */
Elf64_Half p_flags; /* flags */
Elf64_Off p_offset; /* offset */
Elf64_Addr p_vaddr; /* virtual address */
Elf64_Addr p_paddr; /* physical address */
Elf64_Xword p_filesz; /* file size */
Elf64_Xword p_memsz; /* memory size */
Elf64_Xword p_align; /* memory & file alignment */
} Elf64_Phdr;
/* Segment types - p_type */
2019-06-07 18:12:30 +03:00
#define PT_NULL 0 /* unused */
#define PT_LOAD 1 /* loadable segment */
#define PT_DYNAMIC 2 /* dynamic linking section */
#define PT_INTERP 3 /* the RTLD */
#define PT_NOTE 4 /* auxiliary information */
#define PT_SHLIB 5 /* reserved - purpose undefined */
#define PT_PHDR 6 /* program header */
#define PT_TLS 7 /* thread local storage */
#define PT_LOOS 0x60000000 /* reserved range for OS */
#define PT_HIOS 0x6fffffff /* specific segment types */
#define PT_LOPROC 0x70000000 /* reserved range for processor */
#define PT_HIPROC 0x7fffffff /* specific segment types */
#define PT_GNU_EH_FRAME 0x6474e550 /* Exception handling info */
#define PT_GNU_RELRO 0x6474e552 /* Read-only after relocation */
#define PT_GNU_STACK 0x6474e551 /* Stack permissions & size info */
2019-06-07 18:12:30 +03:00
#define PT_OPENBSD_RANDOMIZE 0x65a3dbe6 /* fill with random data */
#define PT_OPENBSD_WXNEEDED 0x65a3dbe7 /* program performs W^X violations */
#define PT_OPENBSD_BOOTDATA 0x65a41be6 /* section for boot arguments */
/* Segment flags - p_flags */
2019-06-07 18:12:30 +03:00
#define PF_X 0x1 /* Executable */
#define PF_W 0x2 /* Writable */
#define PF_R 0x4 /* Readable */
#define PF_MASKPROC 0xf0000000 /* reserved bits for processor */
/* specific segment flags */
/* Dynamic structure */
typedef struct {
2019-06-07 18:12:30 +03:00
Elf32_Sword d_tag; /* controls meaning of d_val */
union {
Elf32_Word d_val; /* Multiple meanings - see d_tag */
Elf32_Addr d_ptr; /* program virtual address */
} d_un;
} Elf32_Dyn;
typedef struct {
2019-06-07 18:12:30 +03:00
Elf64_Xword d_tag; /* controls meaning of d_val */
union {
Elf64_Addr d_ptr;
Elf64_Xword d_val;
} d_un;
} Elf64_Dyn;
/* Dynamic Array Tags - d_tag */
2019-06-07 18:12:30 +03:00
#define DT_NULL 0 /* marks end of _DYNAMIC array */
#define DT_NEEDED 1 /* string table offset of needed lib */
#define DT_PLTRELSZ 2 /* size of relocation entries in PLT */
#define DT_PLTGOT 3 /* address PLT/GOT */
#define DT_HASH 4 /* address of symbol hash table */
#define DT_STRTAB 5 /* address of string table */
#define DT_SYMTAB 6 /* address of symbol table */
#define DT_RELA 7 /* address of relocation table */
#define DT_RELASZ 8 /* size of relocation table */
#define DT_RELAENT 9 /* size of relocation entry */
#define DT_STRSZ 10 /* size of string table */
#define DT_SYMENT 11 /* size of symbol table entry */
#define DT_INIT 12 /* address of initialization func. */
#define DT_FINI 13 /* address of termination function */
#define DT_SONAME 14 /* string table offset of shared obj */
#define DT_RPATH 15 /* string table offset of library \
search path */
#define DT_SYMBOLIC 16 /* start sym search in shared obj. */
#define DT_REL 17 /* address of rel. tbl. w addends */
#define DT_RELSZ 18 /* size of DT_REL relocation table */
#define DT_RELENT 19 /* size of DT_REL relocation entry */
#define DT_PLTREL 20 /* PLT referenced relocation entry */
#define DT_DEBUG 21 /* bugger */
#define DT_TEXTREL 22 /* Allow rel. mod. to unwritable seg */
#define DT_JMPREL 23 /* add. of PLT's relocation entries */
#define DT_BIND_NOW 24 /* Bind now regardless of env setting */
#define DT_INIT_ARRAY 25 /* address of array of init func */
#define DT_FINI_ARRAY 26 /* address of array of term func */
#define DT_INIT_ARRAYSZ 27 /* size of array of init func */
#define DT_FINI_ARRAYSZ 28 /* size of array of term func */
#define DT_RUNPATH 29 /* strtab offset of lib search path */
#define DT_FLAGS 30 /* Set of DF_* flags */
#define DT_ENCODING 31 /* further DT_* follow encoding rules */
#define DT_PREINIT_ARRAY 32 /* address of array of preinit func */
#define DT_PREINIT_ARRAYSZ 33 /* size of array of preinit func */
LibELF: Implement support for DT_RELR relative relocations The DT_RELR relocation is a relatively new relocation encoding designed to achieve space-efficient relative relocations in PIE programs. The description of the format is available here: https://groups.google.com/g/generic-abi/c/bX460iggiKg/m/Pi9aSwwABgAJ It works by using a bitmap to store the offsets which need to be relocated. Even entries are *address* entries: they contain an address (relative to the base of the executable) which needs to be relocated. Subsequent even entries are *bitmap* entries: "1" bits encode offsets (in word size increments) relative to the last address entry which need to be relocated. This is in contrast to the REL/RELA format, where each entry takes up 2/3 machine words. Certain kinds of relocations store useful data in that space (like the name of the referenced symbol), so not everything can be encoded in this format. But as position-independent executables and shared libraries tend to have a lot of relative relocations, a specialized encoding for them absolutely makes sense. The authors of the format suggest an overall 5-20% reduction in the file size of various programs. Due to our extensive use of dynamic linking and us not stripping debug info, relative relocations don't make up such a large portion of the binary's size, so the measurements will tend to skew to the lower side of the spectrum. The following measurements were made with the x86-64 Clang toolchain: - The kernel contains 290989 relocations. Enabling RELR decreased its size from 30 MiB to 23 MiB. - LibUnicodeData contains 190262 relocations, almost all of them relative. Its file size changed from 17 MiB to 13 MiB. - /bin/WebContent contains 1300 relocations, 66% of which are relative relocations. With RELR, its size changed from 832 KiB to 812 KiB. This change was inspired by the following blog post: https://maskray.me/blog/2021-10-31-relative-relocations-and-relr
2021-10-28 10:31:51 +03:00
#define DT_RELRSZ 35 /* size of DT_RELR relocation table */
#define DT_RELR 36 /* addr of DT_RELR relocation table */
#define DT_RELRENT 37 /* size of DT_RELR relocation entry */
2019-06-07 18:12:30 +03:00
#define DT_LOOS 0x6000000d /* reserved range for OS */
#define DT_HIOS 0x6ffff000 /* specific dynamic array tags */
#define DT_LOPROC 0x70000000 /* reserved range for processor */
#define DT_HIPROC 0x7fffffff /* specific dynamic array tags */
/* some other useful tags */
2019-06-07 18:12:30 +03:00
#define DT_GNU_HASH 0x6ffffef5 /* address of GNU hash table */
#define DT_VERSYM 0x6ffffff0 /* address of table provided by .gnu.version */
2019-06-07 18:12:30 +03:00
#define DT_RELACOUNT 0x6ffffff9 /* if present, number of RELATIVE */
#define DT_RELCOUNT 0x6ffffffa /* relocs, which must come first */
#define DT_FLAGS_1 0x6ffffffb
#define DT_VERDEF 0x6ffffffc /* address of version definition table */
#define DT_VERDEFNUM 0x6ffffffd /* number of version definitions */
#define DT_VERNEEDED 0x6ffffffe /* address of the dependency table */
#define DT_VERNEEDEDNUM 0x6fffffff /* number of entries in VERNEEDED */
/* Dynamic Flags - DT_FLAGS .dynamic entry */
2019-06-07 18:12:30 +03:00
#define DF_ORIGIN 0x00000001
#define DF_SYMBOLIC 0x00000002
#define DF_TEXTREL 0x00000004
#define DF_BIND_NOW 0x00000008
#define DF_STATIC_TLS 0x00000010
/* Dynamic Flags - DT_FLAGS_1 .dynamic entry */
2019-06-07 18:12:30 +03:00
#define DF_1_NOW 0x00000001
#define DF_1_GLOBAL 0x00000002
#define DF_1_GROUP 0x00000004
#define DF_1_NODELETE 0x00000008
#define DF_1_LOADFLTR 0x00000010
#define DF_1_INITFIRST 0x00000020
#define DF_1_NOOPEN 0x00000040
#define DF_1_ORIGIN 0x00000080
#define DF_1_DIRECT 0x00000100
#define DF_1_TRANS 0x00000200
#define DF_1_INTERPOSE 0x00000400
#define DF_1_NODEFLIB 0x00000800
#define DF_1_NODUMP 0x00001000
#define DF_1_CONLFAT 0x00002000
/*
* Note header
*/
typedef struct {
2019-06-07 18:12:30 +03:00
Elf32_Word n_namesz;
Elf32_Word n_descsz;
Elf32_Word n_type;
} Elf32_Nhdr;
typedef struct {
2019-06-07 18:12:30 +03:00
Elf64_Half n_namesz;
Elf64_Half n_descsz;
Elf64_Half n_type;
} Elf64_Nhdr;
/*
* Note Definitions
*/
typedef struct {
2019-06-07 18:12:30 +03:00
Elf32_Word namesz;
Elf32_Word descsz;
Elf32_Word type;
} Elf32_Note;
typedef struct {
2019-06-07 18:12:30 +03:00
Elf64_Half namesz;
Elf64_Half descsz;
Elf64_Half type;
} Elf64_Note;
/* Values for n_type. */
2019-06-07 18:12:30 +03:00
#define NT_PRSTATUS 1 /* Process status. */
#define NT_FPREGSET 2 /* Floating point registers. */
#define NT_PRPSINFO 3 /* Process state info. */
/*
* OpenBSD-specific core file information.
*
* OpenBSD ELF core files use notes to provide information about
* the process's state. The note name is "OpenBSD" for information
* that is global to the process, and "OpenBSD@nn", where "nn" is the
* thread ID of the thread that the information belongs to (such as
* register state).
*
* We use the following note identifiers:
*
* NT_OPENBSD_PROCINFO
* Note is a "elfcore_procinfo" structure.
* NT_OPENBSD_AUXV
2020-10-03 00:14:37 +03:00
* Note is a a bunch of Auxiliary Vectors, terminated by
* an AT_NULL entry.
* NT_OPENBSD_REGS
* Note is a "reg" structure.
* NT_OPENBSD_FPREGS
* Note is a "fpreg" structure.
*
* Please try to keep the members of the "elfcore_procinfo" structure
* nicely aligned, and if you add elements, add them to the end and
* bump the version.
*/
2019-06-07 18:12:30 +03:00
#define NT_OPENBSD_PROCINFO 10
#define NT_OPENBSD_AUXV 11
2019-06-07 18:12:30 +03:00
#define NT_OPENBSD_REGS 20
#define NT_OPENBSD_FPREGS 21
#define NT_OPENBSD_XFPREGS 22
#define NT_OPENBSD_WCOOKIE 23
struct elfcore_procinfo {
2019-06-07 18:12:30 +03:00
/* Version 1 fields start here. */
uint32_t cpi_version; /* netbsd_elfcore_procinfo version */
#define ELFCORE_PROCINFO_VERSION 1
uint32_t cpi_cpisize; /* sizeof(netbsd_elfcore_procinfo) */
uint32_t cpi_signo; /* killing signal */
uint32_t cpi_sigcode; /* signal code */
uint32_t cpi_sigpend; /* pending signals */
uint32_t cpi_sigmask; /* blocked signals */
uint32_t cpi_sigignore; /* ignored signals */
uint32_t cpi_sigcatch; /* signals being caught by user */
int32_t cpi_pid; /* process ID */
int32_t cpi_ppid; /* parent process ID */
int32_t cpi_pgrp; /* process group ID */
int32_t cpi_sid; /* session ID */
uint32_t cpi_ruid; /* real user ID */
uint32_t cpi_euid; /* effective user ID */
uint32_t cpi_svuid; /* saved user ID */
uint32_t cpi_rgid; /* real group ID */
uint32_t cpi_egid; /* effective group ID */
uint32_t cpi_svgid; /* saved group ID */
int8_t cpi_name[32]; /* copy of pr->ps_comm */
};
/*
* FIXME - these _KERNEL items aren't part of the ABI!
*/
#if defined(_KERNEL) || defined(_DYN_LOADER)
2019-06-07 18:12:30 +03:00
# define ELF32_NO_ADDR ((uint32_t)~0) /* Indicates addr. not yet filled in */
typedef struct {
2019-06-07 18:12:30 +03:00
Elf32_Sword au_id; /* 32-bit id */
Elf32_Word au_v; /* 32-bit value */
} Aux32Info;
2019-06-07 18:12:30 +03:00
# define ELF64_NO_ADDR ((uint64_t)~0) /* Indicates addr. not yet filled in */
typedef struct {
2019-06-07 18:12:30 +03:00
Elf64_Shalf au_id; /* 32-bit id */
Elf64_Xword au_v; /* 64-bit value */
} Aux64Info;
enum AuxID {
2019-06-07 18:12:30 +03:00
AUX_null = 0,
AUX_ignore = 1,
AUX_execfd = 2,
AUX_phdr = 3, /* &phdr[0] */
AUX_phent = 4, /* sizeof(phdr[0]) */
AUX_phnum = 5, /* # phdr entries */
AUX_pagesz = 6, /* PAGESIZE */
AUX_base = 7, /* ld.so base addr */
AUX_flags = 8, /* processor flags */
AUX_entry = 9, /* a.out entry */
AUX_sun_uid = 2000, /* euid */
AUX_sun_ruid = 2001, /* ruid */
AUX_sun_gid = 2002, /* egid */
AUX_sun_rgid = 2003 /* rgid */
};
struct elf_args {
2019-06-07 18:12:30 +03:00
u_long arg_entry; /* program entry point */
u_long arg_interp; /* Interpreter load address */
u_long arg_phaddr; /* program header address */
u_long arg_phentsize; /* Gfx::Size of program header */
2019-06-07 18:12:30 +03:00
u_long arg_phnum; /* Number of program headers */
};
#endif
#if !defined(ELFSIZE) && defined(ARCH_ELFSIZE)
2019-06-07 18:12:30 +03:00
# define ELFSIZE ARCH_ELFSIZE
#endif
#if defined(ELFSIZE)
2019-06-07 18:12:30 +03:00
# define CONCAT(x, y) __CONCAT(x, y)
# define ELFNAME(x) CONCAT(elf, CONCAT(ELFSIZE, CONCAT(_, x)))
# define ELFDEFNNAME(x) CONCAT(ELF, CONCAT(ELFSIZE, CONCAT(_, x)))
#endif
#if defined(ELFSIZE) && (ELFSIZE == 32)
2019-06-07 18:12:30 +03:00
# define Elf_Ehdr Elf32_Ehdr
# define Elf_Phdr Elf32_Phdr
# define Elf_Shdr Elf32_Shdr
# define Elf_Sym Elf32_Sym
# define Elf_Rel Elf32_Rel
# define Elf_RelA Elf32_Rela
LibELF: Implement support for DT_RELR relative relocations The DT_RELR relocation is a relatively new relocation encoding designed to achieve space-efficient relative relocations in PIE programs. The description of the format is available here: https://groups.google.com/g/generic-abi/c/bX460iggiKg/m/Pi9aSwwABgAJ It works by using a bitmap to store the offsets which need to be relocated. Even entries are *address* entries: they contain an address (relative to the base of the executable) which needs to be relocated. Subsequent even entries are *bitmap* entries: "1" bits encode offsets (in word size increments) relative to the last address entry which need to be relocated. This is in contrast to the REL/RELA format, where each entry takes up 2/3 machine words. Certain kinds of relocations store useful data in that space (like the name of the referenced symbol), so not everything can be encoded in this format. But as position-independent executables and shared libraries tend to have a lot of relative relocations, a specialized encoding for them absolutely makes sense. The authors of the format suggest an overall 5-20% reduction in the file size of various programs. Due to our extensive use of dynamic linking and us not stripping debug info, relative relocations don't make up such a large portion of the binary's size, so the measurements will tend to skew to the lower side of the spectrum. The following measurements were made with the x86-64 Clang toolchain: - The kernel contains 290989 relocations. Enabling RELR decreased its size from 30 MiB to 23 MiB. - LibUnicodeData contains 190262 relocations, almost all of them relative. Its file size changed from 17 MiB to 13 MiB. - /bin/WebContent contains 1300 relocations, 66% of which are relative relocations. With RELR, its size changed from 832 KiB to 812 KiB. This change was inspired by the following blog post: https://maskray.me/blog/2021-10-31-relative-relocations-and-relr
2021-10-28 10:31:51 +03:00
# define Elf_Relr Elf32_Relr
2019-06-07 18:12:30 +03:00
# define Elf_Dyn Elf32_Dyn
# define Elf_Half Elf32_Half
# define Elf_Word Elf32_Word
# define Elf_Sword Elf32_Sword
# define Elf_Addr Elf32_Addr
# define Elf_Off Elf32_Off
# define Elf_Nhdr Elf32_Nhdr
# define Elf_Note Elf32_Note
# define ELF_R_SYM ELF32_R_SYM
# define ELF_R_TYPE ELF32_R_TYPE
# define ELF_R_INFO ELF32_R_INFO
# define ELFCLASS ELFCLASS32
# define ELF_ST_BIND ELF32_ST_BIND
# define ELF_ST_TYPE ELF32_ST_TYPE
# define ELF_ST_INFO ELF32_ST_INFO
# define ELF_NO_ADDR ELF32_NO_ADDR
# define AuxInfo Aux32Info
#elif defined(ELFSIZE) && (ELFSIZE == 64)
2019-06-07 18:12:30 +03:00
# define Elf_Ehdr Elf64_Ehdr
# define Elf_Phdr Elf64_Phdr
# define Elf_Shdr Elf64_Shdr
# define Elf_Sym Elf64_Sym
# define Elf_Rel Elf64_Rel
# define Elf_RelA Elf64_Rela
LibELF: Implement support for DT_RELR relative relocations The DT_RELR relocation is a relatively new relocation encoding designed to achieve space-efficient relative relocations in PIE programs. The description of the format is available here: https://groups.google.com/g/generic-abi/c/bX460iggiKg/m/Pi9aSwwABgAJ It works by using a bitmap to store the offsets which need to be relocated. Even entries are *address* entries: they contain an address (relative to the base of the executable) which needs to be relocated. Subsequent even entries are *bitmap* entries: "1" bits encode offsets (in word size increments) relative to the last address entry which need to be relocated. This is in contrast to the REL/RELA format, where each entry takes up 2/3 machine words. Certain kinds of relocations store useful data in that space (like the name of the referenced symbol), so not everything can be encoded in this format. But as position-independent executables and shared libraries tend to have a lot of relative relocations, a specialized encoding for them absolutely makes sense. The authors of the format suggest an overall 5-20% reduction in the file size of various programs. Due to our extensive use of dynamic linking and us not stripping debug info, relative relocations don't make up such a large portion of the binary's size, so the measurements will tend to skew to the lower side of the spectrum. The following measurements were made with the x86-64 Clang toolchain: - The kernel contains 290989 relocations. Enabling RELR decreased its size from 30 MiB to 23 MiB. - LibUnicodeData contains 190262 relocations, almost all of them relative. Its file size changed from 17 MiB to 13 MiB. - /bin/WebContent contains 1300 relocations, 66% of which are relative relocations. With RELR, its size changed from 832 KiB to 812 KiB. This change was inspired by the following blog post: https://maskray.me/blog/2021-10-31-relative-relocations-and-relr
2021-10-28 10:31:51 +03:00
# define Elf_Relr Elf64_Relr
2019-06-07 18:12:30 +03:00
# define Elf_Dyn Elf64_Dyn
# define Elf_Half Elf64_Half
# define Elf_Word Elf64_Word
# define Elf_Sword Elf64_Sword
# define Elf_Addr Elf64_Addr
# define Elf_Off Elf64_Off
# define Elf_Nhdr Elf64_Nhdr
# define Elf_Note Elf64_Note
# define ELF_R_SYM ELF64_R_SYM
# define ELF_R_TYPE ELF64_R_TYPE
# define ELF_R_INFO ELF64_R_INFO
# define ELFCLASS ELFCLASS64
# define ELF_ST_BIND ELF64_ST_BIND
# define ELF_ST_TYPE ELF64_ST_TYPE
# define ELF_ST_INFO ELF64_ST_INFO
# define ELF_NO_ADDR ELF64_NO_ADDR
# define AuxInfo Aux64Info
#endif
2019-06-07 18:12:30 +03:00
#define ELF_TARG_VER 1 /* The ver for which this code is intended */
/* Relocation types */
#define R_386_NONE 0
#define R_386_32 1 /* Symbol + Addend */
#define R_386_PC32 2 /* Symbol + Addend - Section offset */
#define R_386_GOT32 3 /* Used by build-time linker to create GOT entry */
#define R_386_PLT32 4 /* Used by build-time linker to create PLT entry */
#define R_386_COPY 5 /* https://docs.oracle.com/cd/E23824_01/html/819-0690/chapter4-10454.html#chapter4-84604 */
#define R_386_GLOB_DAT 6 /* Relation b/w GOT entry and symbol */
#define R_386_JMP_SLOT 7 /* Fixed up by dynamic loader */
#define R_386_RELATIVE 8 /* Base address + Addned */
#define R_386_TLS_TPOFF 14 /* Negative offset into the static TLS storage */
#define R_386_TLS_TPOFF32 37
#define R_386_IRELATIVE 42 /* PLT entry resolved indirectly at runtime */
#define R_X86_64_NONE 0
#define R_X86_64_64 1
#define R_X86_64_GLOB_DAT 6
#define R_X86_64_JUMP_SLOT 7
#define R_X86_64_RELATIVE 8
2021-06-29 03:56:36 +03:00
#define R_X86_64_TPOFF64 18
#define R_X86_64_IRELATIVE 37
#define R_AARCH64_ABS64 257
#define R_AARCH64_GLOB_DAT 1025
#define R_AARCH64_JUMP_SLOT 1026
#define R_AARCH64_RELATIVE 1027
#define R_AARCH64_TLS_TPREL64 1030
#define R_AARCH64_IRELATIVE 1032