ladybird/Userland/Applications/SpaceAnalyzer/TreeMapWidget.cpp

363 lines
14 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2021-2022, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "TreeMapWidget.h"
#include <AK/NumberFormat.h>
#include <LibGUI/ConnectionToWindowServer.h>
#include <LibGUI/Painter.h>
#include <LibGfx/Font.h>
#include <WindowServer/WindowManager.h>
REGISTER_WIDGET(SpaceAnalyzer, TreeMapWidget)
namespace SpaceAnalyzer {
static const Color colors[] = {
Color(253, 231, 37),
Color(148, 216, 64),
Color(60, 188, 117),
Color(31, 150, 139),
Color(45, 112, 142),
Color(63, 71, 136),
Color(85, 121, 104),
};
static float get_normalized_aspect_ratio(float a, float b)
{
if (a < b) {
return a / b;
} else {
return b / a;
}
}
static bool node_is_leaf(const TreeMapNode& node)
{
return node.num_children() == 0;
}
bool TreeMapWidget::rect_can_contain_label(const Gfx::IntRect& rect) const
{
return rect.height() >= font().presentation_size() && rect.width() > 20;
}
void TreeMapWidget::paint_cell_frame(GUI::Painter& painter, const TreeMapNode& node, const Gfx::IntRect& cell_rect, const Gfx::IntRect& inner_rect, int depth, HasLabel has_label) const
{
if (cell_rect.width() <= 2 || cell_rect.height() <= 2) {
painter.fill_rect(cell_rect, Color::Black);
return;
}
Gfx::IntRect remainder = cell_rect;
Color color = colors[depth % (sizeof(colors) / sizeof(colors[0]))];
if (m_selected_node_cache == &node) {
color = color.darkened(0.8f);
}
// Draw borders.
painter.fill_rect(remainder.take_from_right(1), Color::Black);
painter.fill_rect(remainder.take_from_bottom(1), Color::Black);
// Draw highlights.
painter.fill_rect(remainder.take_from_right(1), color.darkened());
painter.fill_rect(remainder.take_from_bottom(1), color.darkened());
painter.fill_rect(remainder.take_from_top(1), color.lightened());
painter.fill_rect(remainder.take_from_left(1), color.lightened());
// Paint the background.
if (inner_rect.is_empty()) {
painter.fill_rect(remainder, color);
} else {
// Draw black edges above and to the left of the inner_rect.
Gfx::IntRect border_rect = inner_rect.inflated(2, 2);
Gfx::IntRect hammer_rect = border_rect;
hammer_rect.set_width(hammer_rect.width() - 1);
hammer_rect.set_height(hammer_rect.height() - 1);
painter.fill_rect(border_rect.take_from_top(1), Color::Black);
painter.fill_rect(border_rect.take_from_left(1), Color::Black);
for (auto& shard : remainder.shatter(hammer_rect)) {
painter.fill_rect(shard, color);
}
}
// Paint text.
if (has_label == HasLabel::Yes) {
Gfx::IntRect text_rect = remainder;
text_rect.shrink(4, 4);
painter.clear_clip_rect();
painter.add_clip_rect(text_rect);
if (node_is_leaf(node)) {
2021-07-09 15:16:25 +03:00
painter.draw_text(text_rect, node.name(), font(), Gfx::TextAlignment::TopLeft, Color::Black);
text_rect.take_from_top(font().presentation_size() + 1);
painter.draw_text(text_rect, human_readable_size(node.area()), font(), Gfx::TextAlignment::TopLeft, Color::Black);
2021-07-09 15:16:25 +03:00
} else {
painter.draw_text(text_rect, String::formatted("{} - {}", node.name(), human_readable_size(node.area())), font(), Gfx::TextAlignment::TopLeft, Color::Black);
}
painter.clear_clip_rect();
}
}
template<typename Function>
void TreeMapWidget::lay_out_children(const TreeMapNode& node, const Gfx::IntRect& rect, int depth, Function callback)
{
if (node.num_children() == 0) {
return;
}
// Check if the children are sorted yet, if not do that now.
for (size_t k = 0; k < node.num_children() - 1; k++) {
if (node.child_at(k).area() < node.child_at(k + 1).area()) {
node.sort_children_by_area();
break;
}
}
i64 total_area = node.area();
Gfx::IntRect canvas = rect;
bool remaining_nodes_are_too_small = false;
for (size_t i = 0; !remaining_nodes_are_too_small && i < node.num_children(); i++) {
const i64 i_node_area = node.child_at(i).area();
if (i_node_area == 0)
break;
const size_t long_side_size = max(canvas.width(), canvas.height());
const size_t short_side_size = min(canvas.width(), canvas.height());
size_t row_or_column_size = long_side_size * i_node_area / total_area;
i64 node_area_sum = i_node_area;
size_t k = i + 1;
// Try to add nodes to this row or column so long as the worst aspect ratio of
// the new set of nodes is better than the worst aspect ratio of the current set.
{
float best_worst_aspect_ratio_so_far = get_normalized_aspect_ratio(row_or_column_size, short_side_size);
for (; k < node.num_children(); k++) {
// Do a preliminary calculation of the worst aspect ratio of the nodes at index i and k
// if that aspect ratio is better than the 'best_worst_aspect_ratio_so_far' we keep it,
// otherwise it is discarded.
i64 k_node_area = node.child_at(k).area();
if (k_node_area == 0) {
break;
}
i64 new_node_area_sum = node_area_sum + k_node_area;
size_t new_row_or_column_size = long_side_size * new_node_area_sum / total_area;
size_t i_node_size = short_side_size * i_node_area / new_node_area_sum;
size_t k_node_size = short_side_size * k_node_area / new_node_area_sum;
float i_node_aspect_ratio = get_normalized_aspect_ratio(new_row_or_column_size, i_node_size);
float k_node_aspect_ratio = get_normalized_aspect_ratio(new_row_or_column_size, k_node_size);
float new_worst_aspect_ratio = min(i_node_aspect_ratio, k_node_aspect_ratio);
if (new_worst_aspect_ratio < best_worst_aspect_ratio_so_far) {
break;
}
best_worst_aspect_ratio_so_far = new_worst_aspect_ratio;
node_area_sum = new_node_area_sum;
row_or_column_size = new_row_or_column_size;
}
}
// Paint the elements from 'i' up to and including 'k-1'.
{
const size_t fixed_side_size = row_or_column_size;
i64 placement_area = node_area_sum;
size_t main_dim = short_side_size;
// Lay out nodes in a row or column.
Orientation orientation = canvas.width() > canvas.height() ? Orientation::Horizontal : Orientation::Vertical;
Gfx::IntRect layout_rect = canvas;
layout_rect.set_primary_size_for_orientation(orientation, fixed_side_size);
for (size_t q = i; q < k; q++) {
auto& child = node.child_at(q);
size_t node_size = main_dim * child.area() / placement_area;
Gfx::IntRect cell_rect = layout_rect;
cell_rect.set_secondary_size_for_orientation(orientation, node_size);
Gfx::IntRect inner_rect;
HasLabel has_label = HasLabel::No;
if (child.num_children() != 0 && rect.height() >= 8 && rect.width() >= 8) {
inner_rect = cell_rect;
inner_rect.shrink(4, 4); // border and shading
if (rect_can_contain_label(inner_rect)) {
const int margin = 5;
has_label = HasLabel::Yes;
inner_rect.set_y(inner_rect.y() + font().presentation_size() + margin);
inner_rect.set_height(inner_rect.height() - (font().presentation_size() + margin * 2));
inner_rect.set_x(inner_rect.x() + margin);
inner_rect.set_width(inner_rect.width() - margin * 2);
}
} else if (rect_can_contain_label(cell_rect)) {
has_label = HasLabel::Yes;
}
callback(child, q, cell_rect, inner_rect, depth, has_label, IsRemainder::No);
if (cell_rect.width() * cell_rect.height() < 16) {
remaining_nodes_are_too_small = true;
} else if (!inner_rect.is_empty()) {
lay_out_children(child, inner_rect, depth + 1, callback);
}
layout_rect.set_secondary_offset_for_orientation(orientation, layout_rect.secondary_offset_for_orientation(orientation) + node_size);
main_dim -= node_size;
placement_area -= child.area();
}
canvas.set_primary_offset_for_orientation(orientation, canvas.primary_offset_for_orientation(orientation) + fixed_side_size);
canvas.set_primary_size_for_orientation(orientation, canvas.primary_size_for_orientation(orientation) - fixed_side_size);
}
// Consume nodes that were added to this row or column.
i = k - 1;
total_area -= node_area_sum;
}
// If not the entire canvas was filled with nodes, fill the remaining area with a dither pattern.
if (!canvas.is_empty()) {
callback(node, 0, canvas, Gfx::IntRect(), depth, HasLabel::No, IsRemainder::Yes);
}
}
const TreeMapNode* TreeMapWidget::path_node(size_t n) const
{
if (!m_tree.ptr())
return nullptr;
const TreeMapNode* iter = &m_tree->root();
size_t path_index = 0;
while (iter && path_index < m_path.size() && path_index < n) {
size_t child_index = m_path[path_index];
if (child_index >= iter->num_children()) {
return nullptr;
}
iter = &iter->child_at(child_index);
path_index++;
}
return iter;
}
void TreeMapWidget::paint_event(GUI::PaintEvent& event)
{
GUI::Frame::paint_event(event);
GUI::Painter painter(*this);
m_selected_node_cache = path_node(m_path.size());
const TreeMapNode* node = path_node(m_viewpoint);
if (!node) {
painter.fill_rect(frame_inner_rect(), Color::MidGray);
} else if (node_is_leaf(*node)) {
paint_cell_frame(painter, *node, frame_inner_rect(), Gfx::IntRect(), m_viewpoint - 1, HasLabel::Yes);
} else {
lay_out_children(*node, frame_inner_rect(), m_viewpoint, [&](const TreeMapNode& node, int, const Gfx::IntRect& rect, const Gfx::IntRect& inner_rect, int depth, HasLabel has_label, IsRemainder remainder) {
if (remainder == IsRemainder::No) {
paint_cell_frame(painter, node, rect, inner_rect, depth, has_label);
} else {
Color color = colors[depth % (sizeof(colors) / sizeof(colors[0]))];
Gfx::IntRect dither_rect = rect;
painter.fill_rect(dither_rect.take_from_right(1), Color::Black);
painter.fill_rect(dither_rect.take_from_bottom(1), Color::Black);
painter.fill_rect_with_dither_pattern(dither_rect, color, Color::Black);
}
});
}
}
Vector<int> TreeMapWidget::path_to_position(const Gfx::IntPoint& position)
{
const TreeMapNode* node = path_node(m_viewpoint);
if (!node) {
return {};
}
Vector<int> path;
lay_out_children(*node, frame_inner_rect(), m_viewpoint, [&](const TreeMapNode&, int index, const Gfx::IntRect& rect, const Gfx::IntRect&, int, HasLabel, IsRemainder is_remainder) {
if (is_remainder == IsRemainder::No && rect.contains(position)) {
path.append(index);
}
});
return path;
}
void TreeMapWidget::mousedown_event(GUI::MouseEvent& event)
{
const TreeMapNode* node = path_node(m_viewpoint);
if (node && !node_is_leaf(*node)) {
Vector<int> path = path_to_position(event.position());
if (!path.is_empty()) {
m_path.shrink(m_viewpoint);
m_path.extend(path);
if (on_path_change) {
on_path_change();
}
update();
}
}
}
void TreeMapWidget::doubleclick_event(GUI::MouseEvent& event)
{
if (event.button() != GUI::MouseButton::Primary)
return;
const TreeMapNode* node = path_node(m_viewpoint);
if (node && !node_is_leaf(*node)) {
Vector<int> path = path_to_position(event.position());
m_path.shrink(m_viewpoint);
m_path.extend(path);
m_viewpoint = m_path.size();
if (on_path_change) {
on_path_change();
}
update();
}
}
void TreeMapWidget::mousewheel_event(GUI::MouseEvent& event)
{
int delta = event.wheel_delta_y();
// FIXME: The wheel_delta_y is premultiplied in the window server, we actually want a raw value here.
int step_size = GUI::ConnectionToWindowServer::the().get_scroll_step_size();
if (delta > 0) {
size_t step_back = delta / step_size;
if (step_back > m_viewpoint)
step_back = m_viewpoint;
set_viewpoint(m_viewpoint - step_back);
} else {
size_t step_up = (-delta) / step_size;
set_viewpoint(m_viewpoint + step_up);
}
}
void TreeMapWidget::context_menu_event(GUI::ContextMenuEvent& context_menu_event)
{
if (on_context_menu_request)
on_context_menu_request(context_menu_event);
}
void TreeMapWidget::set_tree(RefPtr<TreeMap> tree)
{
m_tree = tree;
m_path.clear();
m_viewpoint = 0;
if (on_path_change) {
on_path_change();
}
update();
}
void TreeMapWidget::set_viewpoint(size_t viewpoint)
{
if (viewpoint > m_path.size())
viewpoint = m_path.size();
m_viewpoint = viewpoint;
if (on_path_change) {
on_path_change();
}
update();
}
size_t TreeMapWidget::path_size() const
{
return m_path.size() + 1;
}
size_t TreeMapWidget::viewpoint() const
{
return m_viewpoint;
}
}